# Is the Hawking Quasilocal Energy “Newtonian”?

## Abstract

**:**

## 1. Introduction

## 2. Decomposing the Hawking Mass

## 3. “Newtonian” Character of the Hawking mass

## 4. Conclusions

## Acknowledgments

## Conflicts of Interest

## References

- Szabados, L.B. Quasi-local energy-momentum and angular momentum in general relativity. Living Rev. Rel.
**2009**, 12. [Google Scholar] [CrossRef] - Faraoni, V.; Lapierre-Léonard, M.; Prain, A. Do Newtonian large-scale structure simulations fail to include relativistic effects? Phys. Rev. D
**2015**, 92. [Google Scholar] [CrossRef] - Souriau, J.M. Un modèle d’univers confronté aux observations. In Dynamics and Processes, Proceedings of the Third Encounter in Mathematics and Physics, Bielefeld, Germany, 30 November–4 December 1981; Lecture Notes in Mathematics. Blanchard, P., Streit, W., Eds.; Springer-Verlag: Berlin, Germany, 1981; Volume 1031, pp. 114–160. [Google Scholar]
- Stuchlik, Z. The motion of test particles in black-hole backgrounds with non-zero cosmological constant. Bull. Astron. Inst. Czechoslov.
**1983**, 34, 129–149. [Google Scholar] - Stuchlik, Z.; Hledik, S. Some properties of the Schwarzschild-de Sitter and Schwarzschild-anti-de Sitter spacetimes. Phys. Rev. D
**1999**, 60. [Google Scholar] [CrossRef] - Stuchlik, Z.; Slany, P.; Hledik, S. Equilibrium configurations of perfect fluid orbiting Schwarzschild-de Sitter black holes. Astron. Astrophys.
**2000**, 363, 425–439. [Google Scholar] - Stuchlik, Z. Influence of the relict cosmological constant on accretion discs. Mod. Phys. Lett. A
**2005**, 20, 561–576. [Google Scholar] [CrossRef] - Mizony, M.; Lachiéze-Rey, M. Cosmological effects in the local static frame. Astron. Astrophys.
**2005**, 434, 45–52. [Google Scholar] [CrossRef] - Stuchlik, Z.; Schee, J. Influence of the cosmological constant on the motion of Magellanic Clouds in the gravitational field of Milky Way. JCAP
**2011**, 9. [Google Scholar] [CrossRef] - Roupas, Z.; Axenides, M.; Georgiou, G.; Saridakis, E.N. Galaxy clusters and structure formation in quintessence versus phantom dark energy universe. Phys. Rev. D
**2014**, 89. [Google Scholar] [CrossRef] - Nolan, B.C. Particle and photon orbits in McVittie spacetimes. Class. Quantum Grav.
**2014**, 31. [Google Scholar] [CrossRef] - Pavlidou, V.; Tomaras, T.N. Where the world stands still: Turnaround as a strong test of ΛCDM cosmology. JCAP
**2014**, 1409. [Google Scholar] [CrossRef] - Pavlidou, V.; Tetradis, N.; Tomaras, T.N. Constraining dark energy through the stability of cosmic structures. JCAP
**2014**, 1405. [Google Scholar] [CrossRef] - Maciel, A.; Le Delliou, M.; Mimoso, J.P. A dual null formalism for the collapse of fluids in a cosmological background. 2015. arXiv:1506.07122 [gr-qc]. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1506.07122 (accessed on 29 October 2015).
- Le Delliou, M.; Mimoso, J.P.; Mena, F.C.; Fontanini, M.; Guariento, D.C.; Abdalla, E. Separating expansion and collapse in general fluid models with heat flux. Phys. Rev. D
**2013**, 88. [Google Scholar] [CrossRef] - Mimoso, J.P.; Le Delliou, M.; Mena, F.C. Local conditions separating expansion from collapse in spherically symmetric models with anisotropic pressures. Phys. Rev. D
**2013**, 88. [Google Scholar] [CrossRef] - Mimoso, J.P.; Le Delliou, M.; Mena, F.C. Spherically symmetric models: Separating expansion from contraction in models with anisotropic pressures. AIP Conf. Proc.
**2011**, 1458, 487–490. [Google Scholar] - Mimoso, J.P.; Le Delliou, M.; Mena, F.C. Separating expansion from contraction in spherically symmetric models with a perfect-fluid: Generalization of the Tolman–Oppenheimer–Volkoff condition and application to models with a cosmological constant. Phys. Rev. D
**2010**, 81. [Google Scholar] [CrossRef] - Le Delliou, M.; Mimoso, J.P. Separating expansion from contraction and generalizing TOV condition in spherically symmetric models with pressure. AIP Conf. Proc.
**2009**, 1122, 316–319. [Google Scholar] - Tanoglidis, D.; Pavlidou, V.; Tomaras, T.N. Statistics of the end of turnaround-scale structure formation in ΛCDM cosmology. 2014. arXiv:1412.6671 [astro-ph.CO]. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1412.6671 (accessed on 29 October 2015).
- Busha, M.T.; Adams, F.C.; Wechsler, R.H.; Evrard, A.E. Future evolution of structure in an accelerating universe. Astrophys. J.
**2003**, 596, 713–724. [Google Scholar] [CrossRef] - Faraoni, V.; Lapierre-Léonard, M.; Prain, A. Turnaround radius in an accelerated universe with quasi-local mass. JCAP
**2015**, 10. [Google Scholar] [CrossRef] - Blau, M.; Rollier, B. Brown–York energy and radial geodesics. Class. Quantum Grav.
**2008**, 25. [Google Scholar] [CrossRef] - Misner, C.W.; Sharp, D.H. Relativistic equations for adiabatic, spherically symmetric gravitational collapse. Phys. Rev.
**1964**, 136, B571–B576. [Google Scholar] [CrossRef] - Hernandez, W.C.; Misner, C.W. Observer time as a coordinate in relativistic spherical hydrodynamics. Astrophys. J.
**1966**, 143, 452–464. [Google Scholar] [CrossRef] - Brown, J.D.; York, J.W. Quasilocal energy and conserved charges from the gravitational action. Phys. Rev. D
**1993**, 47, 1407–1419. [Google Scholar] [CrossRef] - Matte, A. Sur des nouvelles solutions oscillatoires des equations de la gravitation. Can. J. Math.
**1953**, 5, 1–16. [Google Scholar] [CrossRef] - Matarrese, S.; Pantano, O.; Saez, D. A general relativistic approach to the nonlinear evolution of collisionless matter. Phys. Rev. D
**1993**, 47, 1311–1323. [Google Scholar] [CrossRef] - Bertschinger, E.; Jain, B. Gravitational instability of cold matter. Astrophys. J.
**1994**, 431, 486–494. [Google Scholar] [CrossRef] - Bertschinger, E.; Hamilton, A.J.S. Lagrangian evolution of the Weyl tensor. Astrophys. J.
**1994**, 435, 1–7. [Google Scholar] [CrossRef] - Bruni, M.; Matarrese, S.; Pantano, O. Dynamics of silent universes. Astrophys. J.
**1995**, 445, 958–977. [Google Scholar] [CrossRef] - Croudace, K.M.; Parry, J.; Salopek, D.S.; Stewart, J.M. Applying the Zeldovich approximation to general relativity. Astrophys. J.
**1994**, 423, 22–32. [Google Scholar] [CrossRef] - Kofman, L.; Pogosyan, D. Dynamics of gravitational instability is nonlocal. Astrophys. J.
**1995**, 442, 30–38. [Google Scholar] [CrossRef] - Ellis, G.F.R. General Relativity and Cosmology. In Proceedings of the International School of Physics E. Fermi, Course XLVII, Varenna, Italy, 1969; Sachs, R.K., Ed.; Academic Press: New York, NY, USA, 1971; pp. 104–182. [Google Scholar]
- Bertschinger, E. Cosmological dynamics. 1993. [arXiv:astro-ph/9503125]. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/astro-ph/9503125 (accessed on 29 October 2015).
- Wald, R.M. General Relativity; Chicago University Press: Chicago, IL, USA, 1984. [Google Scholar]
- Hawking, S. Gravitational radiation in an expanding universe. J. Math. Phys.
**1968**, 9, 598–604. [Google Scholar] [CrossRef] - Hayward, S.A. Quasilocal gravitational energy. Phys. Rev. D
**1994**, 49, 831–839. [Google Scholar] [CrossRef] - Hayward, S.A. Gravitational energy in spherical symmetry. Phys. Rev. D
**1996**, 53, 1938–1949. [Google Scholar] [CrossRef] - Kodama, H. Conserved energy flux from the spherically symmetric system and the back reaction problem in the black hole evaporation. Progr. Theor. Phys.
**1980**, 63, 1217–1228. [Google Scholar] [CrossRef] - Abreu, G.; Visser, M. Kodama time: Geometrically preferred foliations of spherically symmetric spacetimes. Phys. Rev. D
**2010**, 82. [Google Scholar] [CrossRef] - Faraoni, V. Quasilocal energy in modified gravity. 2015. arXiv:1508.06845. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1508.06845 (accessed on 29 October 2015).
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Krasiński, A. Inhomogeneous Cosmological Models; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Uzun, N.; Wiltshire, D.L. Quasilocal energy and thermodynamic equilibrium conditions. Class. Quantum Grav.
**2015**, 32. [Google Scholar] [CrossRef]

© 2015 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Faraoni, V.
Is the Hawking Quasilocal Energy “Newtonian”? *Symmetry* **2015**, *7*, 2038-2046.
https://doi.org/10.3390/sym7042038

**AMA Style**

Faraoni V.
Is the Hawking Quasilocal Energy “Newtonian”? *Symmetry*. 2015; 7(4):2038-2046.
https://doi.org/10.3390/sym7042038

**Chicago/Turabian Style**

Faraoni, Valerio.
2015. "Is the Hawking Quasilocal Energy “Newtonian”?" *Symmetry* 7, no. 4: 2038-2046.
https://doi.org/10.3390/sym7042038