Is the Hawking Quasilocal Energy “Newtonian”?
Abstract
:1. Introduction
2. Decomposing the Hawking Mass
3. “Newtonian” Character of the Hawking mass
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Szabados, L.B. Quasi-local energy-momentum and angular momentum in general relativity. Living Rev. Rel. 2009, 12. [Google Scholar] [CrossRef]
- Faraoni, V.; Lapierre-Léonard, M.; Prain, A. Do Newtonian large-scale structure simulations fail to include relativistic effects? Phys. Rev. D 2015, 92. [Google Scholar] [CrossRef]
- Souriau, J.M. Un modèle d’univers confronté aux observations. In Dynamics and Processes, Proceedings of the Third Encounter in Mathematics and Physics, Bielefeld, Germany, 30 November–4 December 1981; Lecture Notes in Mathematics. Blanchard, P., Streit, W., Eds.; Springer-Verlag: Berlin, Germany, 1981; Volume 1031, pp. 114–160. [Google Scholar]
- Stuchlik, Z. The motion of test particles in black-hole backgrounds with non-zero cosmological constant. Bull. Astron. Inst. Czechoslov. 1983, 34, 129–149. [Google Scholar]
- Stuchlik, Z.; Hledik, S. Some properties of the Schwarzschild-de Sitter and Schwarzschild-anti-de Sitter spacetimes. Phys. Rev. D 1999, 60. [Google Scholar] [CrossRef]
- Stuchlik, Z.; Slany, P.; Hledik, S. Equilibrium configurations of perfect fluid orbiting Schwarzschild-de Sitter black holes. Astron. Astrophys. 2000, 363, 425–439. [Google Scholar]
- Stuchlik, Z. Influence of the relict cosmological constant on accretion discs. Mod. Phys. Lett. A 2005, 20, 561–576. [Google Scholar] [CrossRef]
- Mizony, M.; Lachiéze-Rey, M. Cosmological effects in the local static frame. Astron. Astrophys. 2005, 434, 45–52. [Google Scholar] [CrossRef]
- Stuchlik, Z.; Schee, J. Influence of the cosmological constant on the motion of Magellanic Clouds in the gravitational field of Milky Way. JCAP 2011, 9. [Google Scholar] [CrossRef]
- Roupas, Z.; Axenides, M.; Georgiou, G.; Saridakis, E.N. Galaxy clusters and structure formation in quintessence versus phantom dark energy universe. Phys. Rev. D 2014, 89. [Google Scholar] [CrossRef]
- Nolan, B.C. Particle and photon orbits in McVittie spacetimes. Class. Quantum Grav. 2014, 31. [Google Scholar] [CrossRef]
- Pavlidou, V.; Tomaras, T.N. Where the world stands still: Turnaround as a strong test of ΛCDM cosmology. JCAP 2014, 1409. [Google Scholar] [CrossRef]
- Pavlidou, V.; Tetradis, N.; Tomaras, T.N. Constraining dark energy through the stability of cosmic structures. JCAP 2014, 1405. [Google Scholar] [CrossRef]
- Maciel, A.; Le Delliou, M.; Mimoso, J.P. A dual null formalism for the collapse of fluids in a cosmological background. 2015. arXiv:1506.07122 [gr-qc]. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1506.07122 (accessed on 29 October 2015).
- Le Delliou, M.; Mimoso, J.P.; Mena, F.C.; Fontanini, M.; Guariento, D.C.; Abdalla, E. Separating expansion and collapse in general fluid models with heat flux. Phys. Rev. D 2013, 88. [Google Scholar] [CrossRef]
- Mimoso, J.P.; Le Delliou, M.; Mena, F.C. Local conditions separating expansion from collapse in spherically symmetric models with anisotropic pressures. Phys. Rev. D 2013, 88. [Google Scholar] [CrossRef]
- Mimoso, J.P.; Le Delliou, M.; Mena, F.C. Spherically symmetric models: Separating expansion from contraction in models with anisotropic pressures. AIP Conf. Proc. 2011, 1458, 487–490. [Google Scholar]
- Mimoso, J.P.; Le Delliou, M.; Mena, F.C. Separating expansion from contraction in spherically symmetric models with a perfect-fluid: Generalization of the Tolman–Oppenheimer–Volkoff condition and application to models with a cosmological constant. Phys. Rev. D 2010, 81. [Google Scholar] [CrossRef]
- Le Delliou, M.; Mimoso, J.P. Separating expansion from contraction and generalizing TOV condition in spherically symmetric models with pressure. AIP Conf. Proc. 2009, 1122, 316–319. [Google Scholar]
- Tanoglidis, D.; Pavlidou, V.; Tomaras, T.N. Statistics of the end of turnaround-scale structure formation in ΛCDM cosmology. 2014. arXiv:1412.6671 [astro-ph.CO]. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1412.6671 (accessed on 29 October 2015).
- Busha, M.T.; Adams, F.C.; Wechsler, R.H.; Evrard, A.E. Future evolution of structure in an accelerating universe. Astrophys. J. 2003, 596, 713–724. [Google Scholar] [CrossRef]
- Faraoni, V.; Lapierre-Léonard, M.; Prain, A. Turnaround radius in an accelerated universe with quasi-local mass. JCAP 2015, 10. [Google Scholar] [CrossRef]
- Blau, M.; Rollier, B. Brown–York energy and radial geodesics. Class. Quantum Grav. 2008, 25. [Google Scholar] [CrossRef]
- Misner, C.W.; Sharp, D.H. Relativistic equations for adiabatic, spherically symmetric gravitational collapse. Phys. Rev. 1964, 136, B571–B576. [Google Scholar] [CrossRef]
- Hernandez, W.C.; Misner, C.W. Observer time as a coordinate in relativistic spherical hydrodynamics. Astrophys. J. 1966, 143, 452–464. [Google Scholar] [CrossRef]
- Brown, J.D.; York, J.W. Quasilocal energy and conserved charges from the gravitational action. Phys. Rev. D 1993, 47, 1407–1419. [Google Scholar] [CrossRef]
- Matte, A. Sur des nouvelles solutions oscillatoires des equations de la gravitation. Can. J. Math. 1953, 5, 1–16. [Google Scholar] [CrossRef]
- Matarrese, S.; Pantano, O.; Saez, D. A general relativistic approach to the nonlinear evolution of collisionless matter. Phys. Rev. D 1993, 47, 1311–1323. [Google Scholar] [CrossRef]
- Bertschinger, E.; Jain, B. Gravitational instability of cold matter. Astrophys. J. 1994, 431, 486–494. [Google Scholar] [CrossRef]
- Bertschinger, E.; Hamilton, A.J.S. Lagrangian evolution of the Weyl tensor. Astrophys. J. 1994, 435, 1–7. [Google Scholar] [CrossRef]
- Bruni, M.; Matarrese, S.; Pantano, O. Dynamics of silent universes. Astrophys. J. 1995, 445, 958–977. [Google Scholar] [CrossRef]
- Croudace, K.M.; Parry, J.; Salopek, D.S.; Stewart, J.M. Applying the Zeldovich approximation to general relativity. Astrophys. J. 1994, 423, 22–32. [Google Scholar] [CrossRef]
- Kofman, L.; Pogosyan, D. Dynamics of gravitational instability is nonlocal. Astrophys. J. 1995, 442, 30–38. [Google Scholar] [CrossRef]
- Ellis, G.F.R. General Relativity and Cosmology. In Proceedings of the International School of Physics E. Fermi, Course XLVII, Varenna, Italy, 1969; Sachs, R.K., Ed.; Academic Press: New York, NY, USA, 1971; pp. 104–182. [Google Scholar]
- Bertschinger, E. Cosmological dynamics. 1993. [arXiv:astro-ph/9503125]. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/astro-ph/9503125 (accessed on 29 October 2015).
- Wald, R.M. General Relativity; Chicago University Press: Chicago, IL, USA, 1984. [Google Scholar]
- Hawking, S. Gravitational radiation in an expanding universe. J. Math. Phys. 1968, 9, 598–604. [Google Scholar] [CrossRef]
- Hayward, S.A. Quasilocal gravitational energy. Phys. Rev. D 1994, 49, 831–839. [Google Scholar] [CrossRef]
- Hayward, S.A. Gravitational energy in spherical symmetry. Phys. Rev. D 1996, 53, 1938–1949. [Google Scholar] [CrossRef]
- Kodama, H. Conserved energy flux from the spherically symmetric system and the back reaction problem in the black hole evaporation. Progr. Theor. Phys. 1980, 63, 1217–1228. [Google Scholar] [CrossRef]
- Abreu, G.; Visser, M. Kodama time: Geometrically preferred foliations of spherically symmetric spacetimes. Phys. Rev. D 2010, 82. [Google Scholar] [CrossRef]
- Faraoni, V. Quasilocal energy in modified gravity. 2015. arXiv:1508.06845. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1508.06845 (accessed on 29 October 2015).
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Krasiński, A. Inhomogeneous Cosmological Models; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Uzun, N.; Wiltshire, D.L. Quasilocal energy and thermodynamic equilibrium conditions. Class. Quantum Grav. 2015, 32. [Google Scholar] [CrossRef]
© 2015 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faraoni, V. Is the Hawking Quasilocal Energy “Newtonian”? Symmetry 2015, 7, 2038-2046. https://doi.org/10.3390/sym7042038
Faraoni V. Is the Hawking Quasilocal Energy “Newtonian”? Symmetry. 2015; 7(4):2038-2046. https://doi.org/10.3390/sym7042038
Chicago/Turabian StyleFaraoni, Valerio. 2015. "Is the Hawking Quasilocal Energy “Newtonian”?" Symmetry 7, no. 4: 2038-2046. https://doi.org/10.3390/sym7042038