An Enhanced Plant Growth Algorithm with Adam Learning, Lévy Flight, and Dynamic Stage Control
Abstract
1. Introduction
1.1. Motivations
- Excessive reliance on global best guidance weakens late-stage local exploitation. In the cell mitosis phase, the light region functions as the primary exploitation zone of the algorithm, where individuals generally represent superior solutions within the population. However, in the original PGA, the update direction of this region depends excessively on the global best solution . Although this global-guidance mechanism can accelerate convergence, it simultaneously weakens the algorithm’s capacity for thorough local neighborhood exploration in the later stages. As population members become more homogeneous, the diversity of differential terms diminishes significantly, increasing the risk of premature convergence to local optima.
- The shaded region lacks adaptive regulation and effective global–local coordination. Meanwhile, the shaded region is mainly responsible for global exploration. Yet, its original update mechanism remains rather simplistic—primarily relying on random perturbations and difference operations with the best solution from the light region—without adaptive or dynamic regulation. Furthermore, the update mechanisms of the light and shaded regions operate relatively independently, lacking interactive information exchange. This separation undermines the synergy between global exploration and local exploitation, reducing the algorithm’s overall search effectiveness.
- Randomized step length and direction lead to unstable convergence trajectories. In the curvature and elongation phase of the PGA’s phototropic growth process, the curvature and cell vicinity components collaboratively determine the displacement direction of each cell. Nevertheless, in this phase, both the step length and direction factor are modeled as random variables (, ), without any adaptive regulation mechanism. The absence of mechanisms leveraging historical search information causes the convergence trajectory to exhibit pronounced oscillations and instability in high-dimensional complex spaces, thereby limiting the algorithm’s accuracy during the later stages of optimization.
- Fixed decay of growth parameters ignores problem-dependent dynamics. Additionally, in the Mutation and Auxin Redistribution Operator phases, the parameter governs the phototropic growth behavior of PGA via a fixed exponential decay function . Although this time-dependent decay mechanism captures, to some extent, the natural tendency of plant growth rates to slow down over time, it overlooks dynamic factors such as problem complexity, dimensionality, and the distribution of fitness values. Consequently, during the early stages of optimization, an excessively rapid reduction in step size restricts global exploration, whereas in the later stages, overly small step sizes diminish the efficiency of local exploitation.
- Static regional strategies fail to adapt to different search stages. Lastly, within the original structural design of PGA, the update mechanisms of the light region and shaded region remain static and do not adapt according to different stages of iteration. Theoretically, during the early phase of the search, exploration-oriented mutation processes should be emphasized to expand the search space, whereas during the later phase, convergence-oriented local refinement should be strengthened to enhance accuracy. However, PGA does not differentiate between these phase-specific behaviors, resulting in insufficient dynamic adaptability and imbalance in the overall optimization process.
1.2. Contributions
- Light-region enhancement via adaptive gradient learning and probabilistic acceptance. In the light region, an adaptive learning mechanism driven by gradient estimation is incorporated together with a simulated annealing–based acceptance rule. Specifically, inspired by the Adam [5] optimizer, first- and second-moment estimates of historical updates are maintained to dynamically regulate [6] the search step size and direction. This enables each individual to adjust not only according to the current best solution but also in response to historical gradient tendencies and population-level distribution patterns, thereby strengthening local exploitation while mitigating oscillations and premature convergence in high-dimensional spaces [7].Moreover, to prevent stagnation in the later stages, a simulated-annealing acceptance mechanism is employed. By decreasing the acceptance probability of inferior solutions through a temperature-decay schedule, the algorithm preserves population diversity in the early phase and achieves smoother convergence in the later phase, ensuring adequate exploration of the search space [8].
- Shaded-region improvement through staged hybrid perturbation and dynamic learning-rate scheduling. In the shaded region, a staged hybrid updating [9] mechanism together with a dynamically scheduled learning rate [10] is introduced. The algorithm partitions the search into different phases according to the iteration progress: during the early stage, intensified random perturbations and differential-like operations expand the search region, facilitating broader global exploration.As the search advances, guidance information from the light region is gradually incorporated, steering shaded-region individuals toward promising areas of the solution space and thereby achieving a dynamic balance between exploration and exploitation. In addition, a learning-rate schedule that decays over iterations is employed to enhance update stability. This enables individuals to exhibit stronger directional consistency and higher local sensitivity in the later stages, preventing the search dynamics from becoming excessively stochastic [9].
- Cell-elongation phase redesign using Lévy-driven global perturbation and dynamic weighting. In the cell elongation phase, a global perturbation model based on Lévy flight and a dynamic weight scheduling mechanism are incorporated. By leveraging the long-tailed nature of the Lévy distribution, this model effectively combines large-scale jumps with fine local tuning, enabling cross-regional exploration and avoiding entrapment in local optima. Additionally, the inclusion of an elite-guided factor prevents the population from collectively moving in an incorrect direction when the current best solution () is suboptimal. To achieve a better balance between convergence speed and precision, a time-varying weight parameter is introduced, guiding individuals to focus on exploration during the early stage and on exploitation in the later stage, thereby strengthening the algorithm’s dynamic equilibrium.
- Overall contribution and paper organization. Based on the above improvements, an enhanced algorithm named ALDPGA is proposed, which integrates Adam-based adaptive gradient learning, elite-guided Lévy flight perturbation, and a dynamic phase-control mechanism within a unified symmetric growth framework.
2. Related Work
2.1. The PGA
- is an adaptive parameter that facilitates exploration in the early stages and exploitation in the later stages of the search process.
- is a direction-switching coefficient that enables flexible movement, mimicking variations observed in real-world growth behaviors.
- denotes the average fitness of cells in the light region.
- represents the best fitness value among all cells in the population.
2.2. Adam Optimizer
2.3. Metropolis Criterion
2.4. Lévy Flight Theory
2.5. Classical Optimization Algorithms
3. Proposed Algorithm
3.1. Improvement in the Light Region
3.1.1. Construction of Candidate Solutions
3.1.2. Direction Factor
3.1.3. Guiding Point
3.1.4. Metropolis Acceptance Criterion
| Algorithm 1 Light region Updating Strategy in ALDPGA. |
|
3.2. Improvement in the Shaded Region
| Algorithm 2 Shaded region Updating Strategy in ALDPGA. |
|
3.3. Improvement in the Cell Elongation Stage and the Lévy Flight Strategy
- (1)
- Lack of global exploration: During the elongation stage, the original algorithm updates individuals only through random perturbations and movement toward the current best solution, without employing long-range jump exploration. Consequently, the algorithm is easily trapped in local optima when optimizing multimodal functions.
- (2)
- Monolithic update mechanism: In the original algorithm, the update direction is determined solely by the linear term , without incorporating probabilistic perturbations or non-Gaussian randomness. As a result, the search trajectory tends to converge prematurely and exhibits limited ability to escape local optima.
- (3)
- Late-stage oscillation and divergence: Because the original algorithm does not include a dynamic suppression mechanism for search intensity, it continues to apply relatively strong perturbations even near the optimum, which can cause instability such as oscillation or boundary overshooting.
3.3.1. Stage Partitioning and Probability Control Mechanism
3.3.2. Segmented Lévy-Based Global Exploration
| Algorithm 3 Cell Elongation and Lévy Flight Phase in ALDPGA. |
|
3.4. Distinction from Existing Adam- or Lévy-Enhanced Metaheuristics
- ALDPGA introduces these mechanisms in a structure-aware manner by explicitly leveraging the light–shade partitioning and phototropic growth behavior that are intrinsic to PGA.
- Moreover, in ALDPGA, Adam is not employed as a general-purpose optimizer; instead, it is specifically applied to elite cells and functions as a growth operator analogous to biologically inspired directional growth.
- Similarly, the Lévy mechanism in ALDPGA does not act as a simple random perturbation. Rather, it adaptively varies with the plant growth stage (i.e., the iteration process), operating either as stochastic directional exploration or elite-guided perturbation, thereby supporting the natural transition from exploration to exploitation during the cell elongation phase.Consequently, we argue that the dynamic stage-control strategy adopted in ALDPGA should not be regarded as an external scheduling heuristic, but rather as an intrinsic component that is highly consistent with the biological interpretation of PGA.
3.5. Analyzing the Time Complexity of ALDPGA
4. Experimental Results and Discussion
4.1. Experimental Setup
4.2. Experiment 1: Comparisons of the Solution Accuracy
4.3. Experiment 2: Comparisons of Convergence Performance
4.4. Experiment 3: Comparisons of Stability Performance
4.5. Experiment 4: Statistical Significance Testing Experiments
4.5.1. Wilcoxon Signed-Rank Test with Multiple Comparison Correction
4.5.2. Friedman Test and Post Hoc Analysis
4.6. Experiment 5: Effectiveness of the Involved Strategies
4.7. Applied Engineering Challenges in Mathematical Modeling
4.7.1. The Tension/Compression Spring Design
4.7.2. Three-Bar Truss Design Problem
4.7.3. Cantilever Beam Design Problem
5. Discussion and Future Directions
6. Conclusions
- Systematic evaluations on the CEC2017, CEC2020, and CEC2022 benchmark suites show that the algorithm surpasses both the original PGA and various classical or state-of-the-art optimizers with respect to best performance, mean fitness, and stability.
- Through the coordinated integration of Adam–SA gradient learning, Lévy-based global perturbation, and dynamic stage control, ALDPGA maintains high global exploration capability in the early search period and achieves fast, stable convergence in later iterations. Ablation studies confirm that these components are all essential contributors to performance improvement and that significant synergistic effects exist among them.
- Meanwhile, comprehensive nonparametric statistical analyses further confirm the robustness of the proposed ALDPGA. These results jointly verify that the superiority of ALDPGA is not incidental but statistically reliable across the benchmark suite.
- In terms of engineering applications, ALDPGA achieves excellent optimization results on representative engineering problems, including the tension/compression spring design, three-bar truss optimization, and cantilever beam design problems. These results further demonstrate the effectiveness and reliability of ALDPGA in solving complex, constrained offline engineering optimization tasks.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Function | GWO | TOC | PSO | GA | DE | RIME | SAO | VO | PGA | ALDPGA | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Mean | 9.88 × 109 | 4.30 × 109 | 7.11 × 109 | 8.44 × 105 | 2.96 × 108 | 5.13 × 105 | 4.95 × 103 | 1.26 × 105 | 9.33 × 103 | 6.06 × 103 | |
| Std | 3.91 × 109 | 1.93 × 109 | 4.98 × 109 | 3.14 × 105 | 4.99 × 108 | 1.32 × 105 | 7.05 × 103 | 6.14 × 104 | 9.94 × 103 | 6.85 × 103 | |
| Mean | 9.59 × 104 | 1.21 × 105 | 6.94 × 104 | 3.82 × 105 | 1.12 × 105 | 2.37 × 104 | 2.39 × 105 | 5.55 × 104 | 8.36 × 104 | 3.00 × 102 | |
| Std | 1.25 × 104 | 6.88 × 104 | 2.76 × 104 | 8.58 × 104 | 2.55 × 104 | 7.60 × 103 | 3.98 × 104 | 1.52 × 104 | 1.64 × 104 | 1.65 × 10−6 | |
| Mean | 1.41 × 103 | 1.46 × 103 | 1.24 × 103 | 5.82 × 102 | 5.39 × 102 | 6.01 × 102 | 5.18 × 102 | 5.37 × 102 | 5.38 × 102 | 4.69 × 102 | |
| Std | 6.54 × 102 | 4.02 × 102 | 8.59 × 102 | 4.63 × 101 | 3.42 × 101 | 4.02 × 101 | 5.07 × 101 | 4.98 × 101 | 4.21 × 101 | 5.58 × 101 | |
| Mean | 7.28 × 102 | 1.03 × 103 | 6.67 × 102 | 1.04 × 103 | 5.88 × 102 | 6.84 × 102 | 6.44 × 102 | 9.81 × 102 | 7.19 × 102 | 5.83 × 102 | |
| Std | 3.79 × 101 | 7.25 × 101 | 3.65 × 101 | 8.43 × 101 | 2.12 × 101 | 3.16 × 101 | 3.63 × 101 | 6.35 × 101 | 3.93 × 101 | 1.97 × 101 | |
| Mean | 6.19 × 102 | 6.72 × 102 | 6.10 × 102 | 6.06 × 102 | 6.02 × 102 | 6.09 × 102 | 6.01 × 102 | 6.71 × 102 | 6.15 × 102 | 6.01 × 102 | |
| Std | 5.51 × 100 | 1.11 × 101 | 3.37 × 100 | 5.53 × 100 | 1.22 × 100 | 4.67 × 100 | 1.13 × 100 | 8.55 × 100 | 9.30 × 100 | 8.11 × 10−1 | |
| Mean | 1.09 × 103 | 1.73 × 103 | 9.58 × 102 | 1.17 × 103 | 9.69 × 102 | 9.50 × 102 | 1.17 × 103 | 1.76 × 103 | 1.03 × 103 | 8.65 × 102 | |
| Std | 6.93 × 101 | 1.62 × 102 | 6.93 × 101 | 8.11 × 101 | 1.12 × 102 | 4.94 × 101 | 5.16 × 101 | 2.05 × 102 | 6.63 × 101 | 3.70 × 101 | |
| Mean | 1.05 × 103 | 1.33 × 103 | 9.92 × 102 | 1.26 × 103 | 8.95 × 102 | 9.88 × 102 | 9.41 × 102 | 1.24 × 103 | 1.03 × 103 | 8.92 × 102 | |
| Std | 7.55 × 101 | 7.04 × 101 | 5.13 × 101 | 6.95 × 101 | 2.40 × 101 | 3.27 × 101 | 3.14 × 101 | 6.92 × 101 | 5.51 × 101 | 1.98 × 101 | |
| Mean | 9.14 × 103 | 1.44 × 104 | 5.03 × 103 | 2.11 × 104 | 1.69 × 103 | 4.38 × 103 | 2.45 × 103 | 2.25 × 104 | 3.02 × 103 | 1.15 × 103 | |
| Std | 3.69 × 103 | 4.26 × 103 | 3.51 × 103 | 5.22 × 103 | 1.02 × 103 | 1.64 × 103 | 1.80 × 103 | 7.15 × 103 | 1.18 × 103 | 2.31 × 102 | |
| Mean | 7.00 × 103 | 1.22 × 104 | 7.15 × 103 | 7.34 × 103 | 1.36 × 104 | 7.26 × 103 | 6.55 × 103 | 9.54 × 103 | 7.92 × 103 | 7.30 × 103 | |
| Std | 9.54 × 102 | 1.45 × 103 | 9.56 × 102 | 7.06 × 102 | 2.35 × 103 | 8.49 × 102 | 1.91 × 103 | 1.22 × 103 | 1.03 × 103 | 1.12 × 103 | |
| Mean | 4.82 × 103 | 2.83 × 103 | 1.70 × 103 | 1.10 × 104 | 1.40 × 103 | 1.47 × 103 | 1.46 × 103 | 1.52 × 103 | 1.31 × 103 | 1.29 × 103 | |
| Std | 1.75 × 103 | 1.41 × 103 | 4.80 × 102 | 7.92 × 103 | 2.56 × 102 | 9.07 × 101 | 1.28 × 102 | 9.81 × 101 | 5.80 × 101 | 6.20 × 101 | |
| Mean | 1.18 × 109 | 1.00 × 109 | 3.34 × 109 | 1.79 × 107 | 2.99 × 106 | 5.25 × 107 | 1.99 × 106 | 5.84 × 107 | 3.57 × 106 | 1.77 × 105 | |
| Std | 9.76 × 108 | 7.91 × 108 | 3.84 × 109 | 6.38 × 106 | 2.27 × 106 | 3.81 × 107 | 1.17 × 106 | 3.32 × 107 | 1.91 × 106 | 8.52 × 104 | |
| Mean | 2.98 × 108 | 2.07 × 108 | 7.18 × 108 | 1.13 × 105 | 1.03 × 104 | 9.02 × 104 | 8.07 × 103 | 9.62 × 104 | 1.23 × 104 | 9.99 × 103 | |
| Std | 8.28 × 108 | 4.96 × 108 | 1.01 × 109 | 5.13 × 104 | 8.53 × 103 | 4.51 × 104 | 6.59 × 103 | 3.86 × 104 | 1.02 × 104 | 8.19 × 103 | |
| Mean | 9.92 × 105 | 7.72 × 105 | 8.46 × 105 | 5.41 × 106 | 5.53 × 104 | 1.67 × 105 | 5.10 × 104 | 3.36 × 105 | 1.40 × 105 | 1.17 × 104 | |
| Std | 9.99 × 105 | 9.60 × 105 | 2.15 × 106 | 4.11 × 106 | 7.06 × 104 | 1.15 × 105 | 4.14 × 104 | 7.56 × 104 | 8.85 × 104 | 1.06 × 104 | |
| Mean | 1.61 × 107 | 5.70 × 107 | 4.79 × 106 | 8.65 × 104 | 9.98 × 103 | 1.11 × 104 | 1.27 × 104 | 7.19 × 104 | 1.63 × 104 | 1.28 × 104 | |
| Std | 2.38 × 107 | 2.87 × 108 | 1.81 × 107 | 7.95 × 104 | 8.27 × 103 | 7.16 × 103 | 5.66 × 103 | 3.96 × 104 | 1.09 × 104 | 1.09 × 104 | |
| Mean | 3.10 × 103 | 5.02 × 103 | 3.41 × 103 | 4.18 × 103 | 2.80 × 103 | 3.31 × 103 | 3.33 × 103 | 4.61 × 103 | 3.34 × 103 | 3.07 × 103 | |
| Std | 3.70 × 102 | 6.27 × 102 | 5.25 × 102 | 5.35 × 102 | 6.35 × 102 | 4.53 × 102 | 4.23 × 102 | 5.03 × 102 | 5.31 × 102 | 3.84 × 102 | |
| Mean | 2.90 × 103 | 4.01 × 103 | 3.00 × 103 | 3.94 × 103 | 2.78 × 103 | 3.00 × 103 | 2.92 × 103 | 3.90 × 103 | 2.95 × 103 | 2.69 × 103 | |
| Std | 2.97 × 102 | 4.26 × 102 | 2.85 × 102 | 4.29 × 102 | 4.25 × 102 | 2.31 × 102 | 2.76 × 102 | 3.96 × 102 | 3.61 × 102 | 2.61 × 102 | |
| Mean | 5.11 × 106 | 9.52 × 106 | 4.67 × 106 | 3.99 × 106 | 3.07 × 105 | 1.94 × 106 | 8.14 × 105 | 7.58 × 105 | 1.54 × 106 | 5.65 × 104 | |
| Std | 5.40 × 106 | 2.99 × 107 | 1.69 × 107 | 3.93 × 106 | 5.36 × 105 | 1.35 × 106 | 8.28 × 105 | 4.59 × 105 | 1.76 × 106 | 4.84 × 104 | |
| Mean | 6.67 × 106 | 4.03 × 106 | 1.91 × 106 | 2.46 × 104 | 1.11 × 104 | 1.77 × 104 | 2.15 × 104 | 3.60 × 106 | 1.82 × 104 | 1.66 × 104 | |
| Std | 2.41 × 107 | 7.28 × 106 | 6.18 × 106 | 1.47 × 104 | 9.40 × 103 | 1.14 × 104 | 1.33 × 104 | 1.60 × 106 | 1.57 × 104 | 1.40 × 104 | |
| Mean | 2.92 × 103 | 3.62 × 103 | 2.99 × 103 | 3.52 × 103 | 3.04 × 103 | 3.05 × 103 | 2.97 × 103 | 3.69 × 103 | 3.11 × 103 | 2.83 × 103 | |
| Std | 3.25 × 102 | 3.48 × 102 | 3.73 × 102 | 4.15 × 102 | 3.11 × 102 | 2.78 × 102 | 3.18 × 102 | 4.20 × 102 | 3.39 × 102 | 3.01 × 102 | |
| Mean | 2.51 × 103 | 2.86 × 103 | 2.51 × 103 | 2.93 × 103 | 2.40 × 103 | 2.50 × 103 | 2.45 × 103 | 2.84 × 103 | 2.52 × 103 | 2.39 × 103 | |
| Std | 2.95 × 101 | 1.02 × 102 | 5.05 × 101 | 1.07 × 102 | 5.35 × 101 | 4.38 × 101 | 3.90 × 101 | 1.11 × 102 | 4.58 × 101 | 2.20 × 101 | |
| Mean | 9.14 × 103 | 1.42 × 104 | 9.00 × 103 | 9.78 × 103 | 1.55 × 104 | 9.00 × 103 | 8.31 × 103 | 1.16 × 104 | 9.58 × 103 | 9.02 × 103 | |
| Std | 9.42 × 102 | 1.20 × 103 | 9.17 × 102 | 6.39 × 102 | 1.48 × 103 | 7.28 × 102 | 1.15 × 103 | 1.04 × 103 | 1.07 × 103 | 9.50 × 102 | |
| Mean | 3.01 × 103 | 3.73 × 103 | 3.35 × 103 | 3.53 × 103 | 2.87 × 103 | 2.95 × 103 | 2.89 × 103 | 3.70 × 103 | 2.96 × 103 | 2.83 × 103 | |
| Std | 6.62 × 101 | 2.18 × 102 | 1.68 × 102 | 1.13 × 102 | 4.80 × 101 | 5.08 × 101 | 2.55 × 101 | 3.29 × 102 | 5.47 × 101 | 2.67 × 101 | |
| Mean | 3.17 × 103 | 3.89 × 103 | 3.52 × 103 | 4.03 × 103 | 3.03 × 103 | 3.12 × 103 | 3.05 × 103 | 4.01 × 103 | 3.06 × 103 | 3.00 × 103 | |
| Std | 9.39 × 101 | 2.23 × 102 | 1.76 × 102 | 1.79 × 102 | 7.71 × 101 | 5.50 × 101 | 3.30 × 101 | 2.80 × 102 | 3.47 × 101 | 2.15 × 101 | |
| Mean | 3.75 × 103 | 3.83 × 103 | 3.33 × 103 | 3.09 × 103 | 3.07 × 103 | 3.07 × 103 | 3.02 × 103 | 3.09 × 103 | 3.05 × 103 | 3.03 × 103 | |
| Std | 3.28 × 102 | 3.30 × 102 | 5.31 × 102 | 2.80 × 101 | 3.52 × 101 | 2.76 × 101 | 3.66 × 101 | 2.51 × 101 | 3.96 × 101 | 3.84 × 101 | |
| Mean | 6.69 × 103 | 1.40 × 104 | 7.38 × 103 | 9.80 × 103 | 5.20 × 103 | 5.93 × 103 | 5.26 × 103 | 1.26 × 104 | 5.87 × 103 | 4.78 × 103 | |
| Std | 6.66 × 102 | 2.06 × 103 | 1.36 × 103 | 1.01 × 103 | 3.96 × 102 | 7.57 × 102 | 3.38 × 102 | 2.38 × 103 | 4.08 × 102 | 2.57 × 102 | |
| Mean | 3.66 × 103 | 4.06 × 103 | 3.78 × 103 | 4.16 × 103 | 3.45 × 103 | 3.46 × 103 | 3.38 × 103 | 4.91 × 103 | 3.45 × 103 | 3.44 × 103 | |
| Std | 1.47 × 102 | 2.38 × 102 | 2.58 × 102 | 2.89 × 102 | 1.08 × 102 | 5.60 × 101 | 9.12 × 101 | 3.87 × 102 | 1.25 × 102 | 1.07 × 102 | |
| Mean | 4.39 × 103 | 4.55 × 103 | 4.25 × 103 | 3.36 × 103 | 3.35 × 103 | 3.33 × 103 | 3.30 × 103 | 3.33 × 103 | 3.31 × 103 | 3.30 × 103 | |
| Std | 4.31 × 102 | 1.12 × 103 | 8.00 × 102 | 2.91 × 101 | 4.87 × 101 | 2.84 × 101 | 1.77 × 101 | 1.24 × 101 | 1.20 × 101 | 1.89 × 101 | |
| Mean | 4.54 × 103 | 7.43 × 103 | 4.49 × 103 | 5.11 × 103 | 3.67 × 103 | 4.56 × 103 | 4.21 × 103 | 6.59 × 103 | 4.28 × 103 | 3.98 × 103 | |
| Std | 3.03 × 102 | 1.18 × 103 | 3.96 × 102 | 3.52 × 102 | 2.37 × 102 | 2.78 × 102 | 3.79 × 102 | 5.02 × 102 | 3.74 × 102 | 3.01 × 102 | |
| Mean | 1.14 × 108 | 1.01 × 108 | 7.52 × 106 | 2.01 × 106 | 1.15 × 106 | 7.08 × 106 | 1.13 × 106 | 7.50 × 107 | 1.18 × 106 | 9.57 × 105 | |
| Std | 4.76 × 107 | 8.63 × 107 | 7.85 × 106 | 6.70 × 105 | 4.10 × 105 | 2.92 × 106 | 2.98 × 105 | 1.69 × 107 | 3.75 × 105 | 1.62 × 105 | |
| Rank First | 0 | 0 | 0 | 0 | 4 | 0 | 7 | 0 | 0 | 18 |
| Function | GWO | ALDPGA | ||||
|---|---|---|---|---|---|---|
| Best | Mean | Std | Best | Mean | Std | |
| 3.43 × 1010 () | 5.20 × 1010 () | 9.97 × 109 () | 1.00 × 102 () | 7.35 × 103 () | 9.01 × 103 () | |
| 2.41 × 105 () | 2.78 × 105 () | 2.13 × 104 () | 3.00 × 102 () | 5.98 × 102 () | 7.47 × 102 () | |
| 3.21 × 103 (−) | 5.16 × 103 (−) | 1.27 × 103 () | 4.00 × 102 (+) | 5.66 × 102 (+) | 8.03 × 101 () | |
| 1.09 × 103 (−) | 1.20 × 103 (−) | 1.12 × 102 (−) | 7.04 × 102 (+) | 7.99 × 102 (+) | 4.85 × 101 (+) | |
| 6.31 × 102 (−) | 6.40 × 102 (−) | 5.58 × 100 (−) | 6.06 × 102 (+) | 6.16 × 102 (+) | 5.18 × 100 (+) | |
| 1.79 × 103 (−) | 2.04 × 103 (−) | 1.32 × 102 (−) | 1.11 × 103 (+) | 1.32 × 103 (+) | 1.21 × 102 (+) | |
| 1.34 × 103 (−) | 1.48 × 103 (−) | 6.85 × 101 (+) | 1.00 × 103 (+) | 1.12 × 103 (+) | 7.34 × 101 (−) | |
| 1.58 × 104 (−) | 3.41 × 104 (−) | 1.22 × 104 (−) | 3.08 × 103 (+) | 5.99 × 103 (+) | 2.75 × 103 (+) | |
| 1.22 × 104 (−) | 1.70 × 104 (−) | 5.13 × 103 (−) | 1.20 × 104 (+) | 1.47 × 104 (+) | 1.18 × 103 (+) | |
| 4.61 × 104 () | 6.51 × 104 () | 1.39 × 104 () | 1.64 × 103 () | 2.21 × 103 () | 2.52 × 102 () | |
| 3.53 × 109 () | 9.24 × 109 () | 4.88 × 109 () | 1.33 × 105 () | 4.69 × 105 () | 1.78 × 105 () | |
| 1.48 × 106 () | 1.32 × 109 () | 1.51 × 109 () | 5.07 × 103 () | 1.76 × 104 () | 1.14 × 104 () | |
| 8.04 × 105 () | 7.09 × 106 () | 3.53 × 106 () | 1.70 × 104 () | 9.26 × 104 () | 4.75 × 104 () | |
| 7.15 × 104 () | 1.56 × 108 () | 2.38 × 108 () | 2.15 × 103 () | 9.64 × 103 () | 8.61 × 103 () | |
| 4.83 × 103 (−) | 6.16 × 103 (−) | 5.80 × 102 (−) | 3.69 × 103 (+) | 4.90 × 103 (+) | 5.48 × 102 (+) | |
| 4.40 × 103 (−) | 5.23 × 103 (−) | 8.97 × 102 (−) | 3.49 × 103 (+) | 4.51 × 103 (+) | 4.64 × 102 (+) | |
| 1.22 × 106 () | 6.18 × 106 () | 5.80 × 106 () | 5.68 × 104 () | 1.71 × 105 () | 7.66 × 104 () | |
| 3.99 × 106 () | 2.65 × 108 () | 3.36 × 108 () | 2.21 × 103 () | 1.24 × 104 () | 1.37 × 104 () | |
| 3.65 × 103 (−) | 4.80 × 103 (−) | 8.25 × 102 (−) | 3.44 × 103 (+) | 4.48 × 103 (+) | 4.74 × 102 (+) | |
| 2.80 × 103 (−) | 3.00 × 103 (−) | 1.22 × 102 (−) | 2.51 × 103 (+) | 2.63 × 103 (+) | 6.43 × 101 (+) | |
| 1.57 × 104 (−) | 1.96 × 104 (−) | 3.02 × 103 (−) | 1.51 × 104 (+) | 1.72 × 104 (+) | 1.21 × 103 (+) | |
| 3.50 × 103 (−) | 3.65 × 103 (−) | 1.39 × 102 (−) | 3.06 × 103 (+) | 3.14 × 103 (+) | 4.17 × 101 (+) | |
| 4.01 × 103 (−) | 4.27 × 103 (−) | 1.22 × 102 (−) | 3.54 × 103 (+) | 3.62 × 103 (+) | 5.43 × 101 (+) | |
| 5.53 × 103 (−) | 7.02 × 103 (−) | 1.16 × 103 () | 3.13 × 103 (+) | 3.26 × 103 (+) | 7.36 × 101 () | |
| 1.36 × 104 (−) | 1.54 × 104 (−) | 1.12 × 103 (−) | 8.08 × 103 (+) | 9.62 × 103 (+) | 8.18 × 102 (+) | |
| 3.91 × 103 (−) | 4.12 × 103 (−) | 1.23 × 102 (−) | 3.42 × 103 (+) | 3.64 × 103 (+) | 1.10 × 102 (+) | |
| 6.61 × 103 (−) | 8.87 × 103 (−) | 1.13 × 103 (+) | 3.10 × 103 (+) | 4.56 × 103 (+) | 3.69 × 103 (−) | |
| 6.97 × 103 (−) | 8.50 × 103 (−) | 8.69 × 102 (−) | 5.03 × 103 (+) | 6.08 × 103 (+) | 5.33 × 102 (+) | |
| 1.58 × 108 () | 1.67 × 109 () | 1.66 × 109 () | 6.74 × 103 () | 1.02 × 104 () | 3.62 × 103 () | |
| Function | TOC | ALDPGA | ||||
|---|---|---|---|---|---|---|
| Best | Mean | Std | Best | Mean | Std | |
| 1.87 × 1010 () | 4.52 × 1010 () | 1.58 × 1010 () | 1.00 × 102 () | 7.35 × 103 () | 9.01 × 103 () | |
| 2.35 × 105 () | 4.30 × 105 () | 2.53 × 105 () | 3.00 × 102 () | 5.98 × 102 () | 7.47 × 102 () | |
| 3.34 × 103 (−) | 8.02 × 103 () | 3.20 × 103 () | 4.00 × 102 (+) | 5.66 × 102 () | 8.03 × 101 () | |
| 1.56 × 103 (−) | 1.85 × 103 (−) | 1.33 × 102 (−) | 7.04 × 102 (+) | 7.99 × 102 (+) | 4.85 × 101 (+) | |
| 6.77 × 102 (−) | 6.94 × 102 (−) | 6.67 × 100 (−) | 6.06 × 102 (+) | 6.16 × 102 (+) | 5.18 × 100 (+) | |
| 2.90 × 103 (−) | 3.63 × 103 (−) | 3.49 × 102 (−) | 1.11 × 103 (+) | 1.32 × 103 (+) | 1.21 × 102 (+) | |
| 2.12 × 103 (−) | 2.28 × 103 (−) | 9.68 × 101 (−) | 1.00 × 103 (+) | 1.12 × 103 (+) | 7.34 × 101 (+) | |
| 3.76 × 104 () | 5.72 × 104 (−) | 9.29 × 103 (−) | 3.08 × 103 () | 5.99 × 103 (+) | 2.75 × 103 (+) | |
| 2.43 × 104 (−) | 2.76 × 104 (−) | 1.68 × 103 (−) | 1.20 × 104 (+) | 1.47 × 104 (+) | 1.18 × 103 (+) | |
| 1.42 × 104 (−) | 6.47 × 104 () | 4.47 × 104 () | 1.64 × 103 (+) | 2.21 × 103 () | 2.52 × 102 () | |
| 2.72 × 109 () | 8.15 × 109 () | 5.85 × 109 () | 1.33 × 105 () | 4.69 × 105 () | 1.78 × 105 () | |
| 8.04 × 107 () | 4.01 × 108 () | 2.36 × 108 () | 5.07 × 103 () | 1.76 × 104 () | 1.14 × 104 () | |
| 1.09 × 106 () | 1.34 × 107 () | 2.09 × 107 () | 1.70 × 104 () | 9.26 × 104 () | 4.75 × 104 () | |
| 8.86 × 106 () | 7.01 × 107 () | 6.96 × 107 () | 2.15 × 103 () | 9.64 × 103 () | 8.61 × 103 () | |
| 8.12 × 103 (−) | 1.17 × 104 (−) | 1.85 × 103 (−) | 3.69 × 103 (+) | 4.90 × 103 (+) | 5.48 × 102 (+) | |
| 6.74 × 103 (−) | 1.08 × 104 (−) | 7.36 × 103 () | 3.49 × 103 (+) | 4.51 × 103 (+) | 4.64 × 102 () | |
| 1.12 × 106 () | 1.31 × 107 () | 1.10 × 107 () | 5.68 × 104 () | 1.71 × 105 () | 7.66 × 104 () | |
| 1.14 × 107 () | 1.93 × 108 () | 2.31 × 108 () | 2.21 × 103 () | 1.24 × 104 () | 1.37 × 104 () | |
| 5.27 × 103 (−) | 6.18 × 103 (−) | 5.46 × 102 (−) | 3.44 × 103 (+) | 4.48 × 103 (+) | 4.74 × 102 (+) | |
| 3.75 × 103 (−) | 4.12 × 103 (−) | 1.83 × 102 (−) | 2.51 × 103 (+) | 2.63 × 103 (+) | 6.43 × 101 (+) | |
| 2.46 × 104 (−) | 2.99 × 104 (−) | 2.04 × 103 (−) | 1.51 × 104 (+) | 1.72 × 104 (+) | 1.21 × 103 (+) | |
| 4.84 × 103 (−) | 5.34 × 103 (−) | 3.24 × 102 (−) | 3.06 × 103 (+) | 3.14 × 103 (+) | 4.17 × 101 (+) | |
| 5.67 × 103 (−) | 6.78 × 103 (−) | 6.13 × 102 () | 3.54 × 103 (+) | 3.62 × 103 (+) | 5.43 × 101 () | |
| 5.45 × 103 (−) | 8.34 × 103 (−) | 1.74 × 103 () | 3.13 × 103 (+) | 3.26 × 103 (+) | 7.36 × 101 () | |
| 2.34 × 104 (−) | 3.47 × 104 (−) | 5.05 × 103 (−) | 8.08 × 103 (+) | 9.62 × 103 (+) | 8.18 × 102 (+) | |
| 4.08 × 103 (−) | 4.87 × 103 (−) | 4.72 × 102 (−) | 3.42 × 103 (+) | 3.64 × 103 (+) | 1.10 × 102 (+) | |
| 6.00 × 103 (−) | 9.82 × 103 (−) | 2.27 × 103 (+) | 3.10 × 103 (+) | 4.56 × 103 (+) | 3.69 × 103 (−) | |
| 1.15 × 104 (−) | 1.59 × 104 (−) | 2.88 × 103 (−) | 5.03 × 103 (+) | 6.08 × 103 (+) | 5.33 × 102 (+) | |
| 8.32 × 107 () | 6.60 × 108 () | 4.70 × 108 () | 6.74 × 103 () | 1.02 × 104 () | 3.62 × 103 () | |
| Function | PSO | ALDPGA | ||||
|---|---|---|---|---|---|---|
| Best | Mean | Std | Best | Mean | Std | |
| 1.67 × 1010 () | 4.04 × 1010 () | 1.62 × 1010 () | 1.00 × 102 () | 7.35 × 103 () | 9.01 × 103 () | |
| 3.22 × 105 () | 4.90 × 105 () | 9.91 × 104 () | 3.00 × 102 () | 5.98 × 102 () | 7.47 × 102 () | |
| 2.96 × 103 (−) | 5.57 × 103 (−) | 2.73 × 103 () | 4.00 × 102 (+) | 5.66 × 102 (+) | 8.03 × 101 () | |
| 9.13 × 102 (−) | 1.06 × 103 (−) | 9.30 × 101 (−) | 7.04 × 102 (+) | 7.99 × 102 (+) | 4.85 × 101 (+) | |
| 6.21 × 102 (−) | 6.32 × 102 (−) | 6.70 × 100 (−) | 6.06 × 102 (+) | 6.16 × 102 (+) | 5.18 × 100 (+) | |
| 1.24 × 103 (−) | 1.70 × 103 (−) | 2.76 × 102 (−) | 1.11 × 103 (+) | 1.32 × 103 (+) | 1.21 × 102 (+) | |
| 1.21 × 103 (−) | 1.36 × 103 (−) | 7.58 × 101 (−) | 1.00 × 103 (+) | 1.12 × 103 (+) | 7.34 × 101 (+) | |
| 1.90 × 104 (−) | 5.32 × 104 (−) | 2.14 × 104 (−) | 3.08 × 103 (+) | 5.99 × 103 (+) | 2.75 × 103 (+) | |
| 1.13 × 104 (+) | 1.56 × 104 (−) | 1.67 × 103 (−) | 1.20 × 104 (−) | 1.47 × 104 (+) | 1.18 × 103 (+) | |
| 4.28 × 103 (−) | 1.48 × 104 (−) | 1.26 × 104 () | 1.64 × 103 (+) | 2.21 × 103 (+) | 2.52 × 102 () | |
| 1.39 × 109 () | 1.46 × 1010 () | 1.20 × 1010 () | 1.33 × 105 () | 4.69 × 105 () | 1.78 × 105 () | |
| 2.41 × 105 () | 2.07 × 109 () | 2.67 × 109 () | 5.07 × 103 () | 1.76 × 104 () | 1.14 × 104 () | |
| 4.86 × 105 () | 2.41 × 106 () | 2.22 × 106 () | 1.70 × 104 () | 9.26 × 104 () | 4.75 × 104 () | |
| 1.28 × 104 (−) | 5.04 × 108 () | 8.00 × 108 () | 2.15 × 103 (+) | 9.64 × 103 () | 8.61 × 103 () | |
| 5.09 × 103 (−) | 6.33 × 103 (−) | 7.44 × 102 (−) | 3.69 × 103 (+) | 4.90 × 103 (+) | 5.48 × 102 (+) | |
| 4.24 × 103 (−) | 6.16 × 103 (−) | 1.09 × 103 (−) | 3.49 × 103 (+) | 4.51 × 103 (+) | 4.64 × 102 (+) | |
| 1.09 × 106 () | 7.11 × 106 () | 4.56 × 106 () | 5.68 × 104 () | 1.71 × 105 () | 7.66 × 104 () | |
| 1.08 × 106 () | 3.15 × 108 () | 4.92 × 108 () | 2.21 × 103 () | 1.24 × 104 () | 1.37 × 104 () | |
| 3.51 × 103 (−) | 5.24 × 103 (−) | 8.52 × 102 (−) | 3.44 × 103 (+) | 4.48 × 103 (+) | 4.74 × 102 (+) | |
| 2.94 × 103 (−) | 3.14 × 103 (−) | 1.20 × 102 (−) | 2.51 × 103 (+) | 2.63 × 103 (+) | 6.43 × 101 (+) | |
| 1.54 × 104 (−) | 1.84 × 104 (−) | 1.49 × 103 (−) | 1.51 × 104 (+) | 1.72 × 104 (+) | 1.21 × 103 (+) | |
| 4.16 × 103 (−) | 4.73 × 103 (−) | 3.33 × 102 (−) | 3.06 × 103 (+) | 3.14 × 103 (+) | 4.17 × 101 (+) | |
| 4.71 × 103 (−) | 6.00 × 103 (−) | 5.07 × 102 (−) | 3.54 × 103 (+) | 3.62 × 103 (+) | 5.43 × 101 (+) | |
| 3.58 × 103 (−) | 4.88 × 103 (−) | 1.08 × 103 () | 3.13 × 103 (+) | 3.26 × 103 (+) | 7.36 × 101 () | |
| 9.60 × 103 (−) | 1.88 × 104 (−) | 3.52 × 103 (−) | 8.08 × 103 (+) | 9.62 × 103 (+) | 8.18 × 102 (+) | |
| 3.68 × 103 (−) | 4.24 × 103 (−) | 4.14 × 102 (−) | 3.42 × 103 (+) | 3.64 × 103 (+) | 1.10 × 102 (+) | |
| 4.33 × 103 (−) | 9.00 × 103 (−) | 3.12 × 103 (+) | 3.10 × 103 (+) | 4.56 × 103 (+) | 3.69 × 103 (−) | |
| 6.14 × 103 (−) | 7.49 × 103 (−) | 7.24 × 102 (−) | 5.03 × 103 (+) | 6.08 × 103 (+) | 5.33 × 102 (+) | |
| 1.21 × 107 () | 1.28 × 109 () | 1.32 × 109 () | 6.74 × 103 () | 1.02 × 104 () | 3.62 × 103 () | |
| Function | GA | ALDPGA | ||||
|---|---|---|---|---|---|---|
| Best | Mean | Std | Best | Mean | Std | |
| 4.91 × 106 () | 9.20 × 106 () | 4.58 × 106 () | 1.00 × 102 () | 7.35 × 103 () | 9.01 × 103 () | |
| 5.54 × 105 () | 7.64 × 105 () | 1.13 × 105 () | 3.00 × 102 () | 5.98 × 102 () | 7.47 × 102 () | |
| 7.24 × 102 (−) | 8.76 × 102 (−) | 9.50 × 101 (−) | 4.00 × 102 (+) | 5.66 × 102 (+) | 8.03 × 101 (+) | |
| 1.56 × 103 (−) | 1.90 × 103 (−) | 1.59 × 102 (−) | 7.04 × 102 (+) | 7.99 × 102 (+) | 4.85 × 101 (+) | |
| 6.10 × 102 (−) | 6.17 × 102 (−) | 5.42 × 100 (−) | 6.06 × 102 (+) | 6.16 × 102 (+) | 5.18 × 100 (+) | |
| 1.89 × 103 (−) | 2.28 × 103 (−) | 1.84 × 102 (−) | 1.11 × 103 (+) | 1.32 × 103 (+) | 1.21 × 102 (+) | |
| 1.95 × 103 (−) | 2.20 × 103 (−) | 1.12 × 102 (−) | 1.00 × 103 (+) | 1.12 × 103 (+) | 7.34 × 101 (+) | |
| 3.42 × 104 () | 5.01 × 104 (−) | 6.91 × 103 (−) | 3.08 × 103 () | 5.99 × 103 (+) | 2.75 × 103 (+) | |
| 1.23 × 104 (−) | 1.53 × 104 (−) | 1.52 × 103 (−) | 1.20 × 104 (+) | 1.47 × 104 (+) | 1.18 × 103 (+) | |
| 6.63 × 104 () | 1.17 × 105 () | 2.98 × 104 () | 1.64 × 103 () | 2.21 × 103 () | 2.52 × 102 () | |
| 3.16 × 107 () | 6.97 × 107 () | 2.08 × 107 () | 1.33 × 105 () | 4.69 × 105 () | 1.78 × 105 () | |
| 3.83 × 104 (−) | 9.51 × 104 (−) | 7.27 × 104 (−) | 5.07 × 103 (+) | 1.76 × 104 (+) | 1.14 × 104 (+) | |
| 2.50 × 106 () | 8.34 × 106 () | 3.40 × 106 () | 1.70 × 104 () | 9.26 × 104 () | 4.75 × 104 () | |
| 1.37 × 104 (−) | 5.82 × 104 (−) | 7.06 × 104 (−) | 2.15 × 103 (+) | 9.64 × 103 (+) | 8.61 × 103 (+) | |
| 5.31 × 103 (−) | 6.61 × 103 (−) | 6.69 × 102 (−) | 3.69 × 103 (+) | 4.90 × 103 (+) | 5.48 × 102 (+) | |
| 5.08 × 103 (−) | 6.31 × 103 (−) | 7.16 × 102 (−) | 3.49 × 103 (+) | 4.51 × 103 (+) | 4.64 × 102 (+) | |
| 1.62 × 106 () | 8.06 × 106 () | 3.35 × 106 () | 5.68 × 104 () | 1.71 × 105 () | 7.66 × 104 () | |
| 1.86 × 104 (−) | 4.89 × 104 (−) | 2.24 × 104 (−) | 2.21 × 103 (+) | 1.24 × 104 (+) | 1.37 × 104 (+) | |
| 4.56 × 103 (−) | 5.86 × 103 (−) | 6.80 × 102 (−) | 3.44 × 103 (+) | 4.48 × 103 (+) | 4.74 × 102 (+) | |
| 3.71 × 103 (−) | 4.01 × 103 (−) | 1.36 × 102 (−) | 2.51 × 103 (+) | 2.63 × 103 (+) | 6.43 × 101 (+) | |
| 1.53 × 104 (−) | 1.80 × 104 (−) | 1.34 × 103 (−) | 1.51 × 104 (+) | 1.72 × 104 (+) | 1.21 × 103 (+) | |
| 3.77 × 103 (−) | 4.04 × 103 (−) | 1.38 × 102 (−) | 3.06 × 103 (+) | 3.14 × 103 (+) | 4.17 × 101 (+) | |
| 5.09 × 103 (−) | 5.63 × 103 (−) | 3.13 × 102 (−) | 3.54 × 103 (+) | 3.62 × 103 (+) | 5.43 × 101 (+) | |
| 3.40 × 103 (−) | 3.49 × 103 (−) | 4.27 × 101 (+) | 3.13 × 103 (+) | 3.26 × 103 (+) | 7.36 × 101 (−) | |
| 2.15 × 104 (−) | 2.53 × 104 (−) | 2.31 × 103 (−) | 8.08 × 103 (+) | 9.62 × 103 (+) | 8.18 × 102 (+) | |
| 3.79 × 103 (−) | 4.29 × 103 (−) | 2.76 × 102 (−) | 3.42 × 103 (+) | 3.64 × 103 (+) | 1.10 × 102 (+) | |
| 3.43 × 103 (−) | 3.53 × 103 (+) | 3.57 × 101 () | 3.10 × 103 (+) | 4.56 × 103 (−) | 3.69 × 103 () | |
| 7.09 × 103 (−) | 8.21 × 103 (−) | 5.58 × 102 (−) | 5.03 × 103 (+) | 6.08 × 103 (+) | 5.33 × 102 (+) | |
| 7.79 × 104 () | 2.34 × 105 () | 1.18 × 105 () | 6.74 × 103 () | 1.02 × 104 () | 3.62 × 103 () | |
| Function | DE | ALDPGA | ||||
|---|---|---|---|---|---|---|
| Best | Mean | Std | Best | Mean | Std | |
| 1.10 × 107 () | 1.86 × 109 () | 1.99 × 109 () | 1.00 × 102 () | 7.35 × 103 () | 9.01 × 103 () | |
| 4.55 × 105 () | 5.92 × 105 () | 6.73 × 104 () | 3.00 × 102 () | 5.98 × 102 () | 7.47 × 102 () | |
| 7.34 × 102 (−) | 8.84 × 102 (−) | 8.21 × 101 (−) | 4.00 × 102 (+) | 5.66 × 102 (+) | 8.03 × 101 (+) | |
| 7.57 × 102 (−) | 8.58 × 102 (−) | 6.71 × 101 (−) | 7.04 × 102 (+) | 7.99 × 102 (+) | 4.85 × 101 (+) | |
| 6.07 × 102 (−) | 6.12 × 102 (+) | 2.74 × 100 (+) | 6.06 × 102 (+) | 6.16 × 102 (−) | 5.18 × 100 (−) | |
| 1.30 × 103 (−) | 1.65 × 103 (−) | 3.03 × 102 (−) | 1.11 × 103 (+) | 1.32 × 103 (+) | 1.21 × 102 (+) | |
| 1.06 × 103 (−) | 1.15 × 103 (−) | 4.37 × 101 (+) | 1.00 × 103 (+) | 1.12 × 103 (+) | 7.34 × 101 (−) | |
| 6.59 × 103 (−) | 1.83 × 104 (−) | 5.16 × 103 (−) | 3.08 × 103 (+) | 5.99 × 103 (+) | 2.75 × 103 (+) | |
| 3.04 × 104 (−) | 3.19 × 104 (−) | 5.24 × 102 (+) | 1.20 × 104 (+) | 1.47 × 104 (+) | 1.18 × 103 (−) | |
| 3.76 × 103 (−) | 1.06 × 104 (−) | 4.12 × 103 () | 1.64 × 103 (+) | 2.21 × 103 (+) | 2.52 × 102 () | |
| 4.79 × 106 () | 2.46 × 108 () | 6.47 × 108 () | 1.33 × 105 () | 4.69 × 105 () | 1.78 × 105 () | |
| 2.72 × 103 (+) | 4.84 × 105 () | 2.39 × 106 () | 5.07 × 103 (−) | 1.76 × 104 () | 1.14 × 104 () | |
| 8.40 × 104 (−) | 4.30 × 105 (−) | 2.51 × 105 (−) | 1.70 × 104 (+) | 9.26 × 104 (+) | 4.75 × 104 (+) | |
| 1.98 × 103 (+) | 6.53 × 104 (−) | 3.21 × 105 () | 2.15 × 103 (−) | 9.64 × 103 (+) | 8.61 × 103 () | |
| 3.41 × 103 (+) | 5.19 × 103 (−) | 1.82 × 103 (−) | 3.69 × 103 (−) | 4.90 × 103 (+) | 5.48 × 102 (+) | |
| 3.29 × 103 (+) | 5.02 × 103 (−) | 1.20 × 103 (−) | 3.49 × 103 (−) | 4.51 × 103 (+) | 4.64 × 102 (+) | |
| 3.45 × 105 (−) | 1.14 × 106 (−) | 5.21 × 105 (−) | 5.68 × 104 (+) | 1.71 × 105 (+) | 7.66 × 104 (+) | |
| 2.06 × 103 (+) | 2.51 × 105 () | 8.52 × 105 () | 2.21 × 103 (−) | 1.24 × 104 () | 1.37 × 104 () | |
| 4.73 × 103 (−) | 6.60 × 103 (−) | 9.46 × 102 (−) | 3.44 × 103 (+) | 4.48 × 103 (+) | 4.74 × 102 (+) | |
| 2.59 × 103 (−) | 2.69 × 103 (−) | 5.88 × 101 (+) | 2.51 × 103 (+) | 2.63 × 103 (+) | 6.43 × 101 (−) | |
| 3.24 × 104 (−) | 3.38 × 104 (−) | 5.32 × 102 (+) | 1.51 × 104 (+) | 1.72 × 104 (+) | 1.21 × 103 (−) | |
| 3.13 × 103 (−) | 3.29 × 103 (−) | 9.09 × 101 (−) | 3.06 × 103 (+) | 3.14 × 103 (+) | 4.17 × 101 (+) | |
| 3.62 × 103 (−) | 3.88 × 103 (−) | 1.76 × 102 (−) | 3.54 × 103 (+) | 3.62 × 103 (+) | 5.43 × 101 (+) | |
| 3.41 × 103 (−) | 3.57 × 103 (−) | 8.86 × 101 (−) | 3.13 × 103 (+) | 3.26 × 103 (+) | 7.36 × 101 (+) | |
| 9.94 × 103 (−) | 1.19 × 104 (−) | 1.25 × 103 (−) | 8.08 × 103 (+) | 9.62 × 103 (+) | 8.18 × 102 (+) | |
| 3.43 × 103 (−) | 3.60 × 103 (+) | 7.17 × 101 (+) | 3.42 × 103 (+) | 3.64 × 103 (−) | 1.10 × 102 (−) | |
| 3.50 × 103 (−) | 3.82 × 103 (+) | 2.74 × 102 () | 3.10 × 103 (+) | 4.56 × 103 (−) | 3.69 × 103 () | |
| 4.82 × 103 (+) | 5.83 × 103 (+) | 4.81 × 102 (+) | 5.03 × 103 (−) | 6.08 × 103 (−) | 5.33 × 102 (−) | |
| 9.20 × 103 (−) | 4.11 × 105 () | 1.51 × 106 () | 6.74 × 103 (+) | 1.02 × 104 () | 3.62 × 103 () | |
| Function | RIME | ALDPGA | ||||
|---|---|---|---|---|---|---|
| Best | Mean | Std | Best | Mean | Std | |
| 7.33 × 106 () | 1.29 × 107 () | 5.19 × 106 () | 1.00 × 102 () | 7.35 × 103 () | 9.01 × 103 () | |
| 2.91 × 105 () | 3.73 × 105 () | 5.97 × 104 () | 3.00 × 102 () | 5.98 × 102 () | 7.47 × 102 () | |
| 6.68 × 102 (−) | 7.90 × 102 (−) | 6.78 × 101 (+) | 4.00 × 102 (+) | 5.66 × 102 (+) | 8.03 × 101 (−) | |
| 8.93 × 102 (−) | 1.01 × 103 (−) | 8.05 × 101 (−) | 7.04 × 102 (+) | 7.99 × 102 (+) | 4.85 × 101 (+) | |
| 6.22 × 102 (−) | 6.30 × 102 (−) | 5.66 × 100 (−) | 6.06 × 102 (+) | 6.16 × 102 (+) | 5.18 × 100 (+) | |
| 1.28 × 103 (−) | 1.53 × 103 (−) | 1.16 × 102 (+) | 1.11 × 103 (+) | 1.32 × 103 (+) | 1.21 × 102 (−) | |
| 1.17 × 103 (−) | 1.31 × 103 (−) | 8.29 × 101 (−) | 1.00 × 103 (+) | 1.12 × 103 (+) | 7.34 × 101 (+) | |
| 7.86 × 103 (−) | 2.52 × 104 (−) | 8.78 × 103 (−) | 3.08 × 103 (+) | 5.99 × 103 (+) | 2.75 × 103 (+) | |
| 1.42 × 104 (−) | 1.61 × 104 (−) | 1.27 × 103 (−) | 1.20 × 104 (+) | 1.47 × 104 (+) | 1.18 × 103 (+) | |
| 3.09 × 103 (−) | 4.23 × 103 (−) | 6.04 × 102 (−) | 1.64 × 103 (+) | 2.21 × 103 (+) | 2.52 × 102 (+) | |
| 1.18 × 108 () | 4.38 × 108 () | 1.81 × 108 () | 1.33 × 105 () | 4.69 × 105 () | 1.78 × 105 () | |
| 7.06 × 104 () | 2.26 × 105 () | 3.87 × 105 () | 5.07 × 103 () | 1.76 × 104 () | 1.14 × 104 () | |
| 4.78 × 105 () | 2.58 × 106 () | 1.47 × 106 () | 1.70 × 104 () | 9.26 × 104 () | 4.75 × 104 () | |
| 3.22 × 104 () | 1.68 × 105 () | 4.42 × 105 () | 2.15 × 103 () | 9.64 × 103 () | 8.61 × 103 () | |
| 5.27 × 103 (−) | 6.58 × 103 (−) | 6.99 × 102 (−) | 3.69 × 103 (+) | 4.90 × 103 (+) | 5.48 × 102 (+) | |
| 5.02 × 103 (−) | 5.72 × 103 (−) | 5.12 × 102 (−) | 3.49 × 103 (+) | 4.51 × 103 (+) | 4.64 × 102 (+) | |
| 1.62 × 106 () | 5.02 × 106 () | 2.59 × 106 () | 5.68 × 104 () | 1.71 × 105 () | 7.66 × 104 () | |
| 4.76 × 105 () | 1.64 × 106 () | 9.36 × 105 () | 2.21 × 103 () | 1.24 × 104 () | 1.37 × 104 () | |
| 4.38 × 103 (−) | 5.32 × 103 (−) | 4.24 × 102 (+) | 3.44 × 103 (+) | 4.48 × 103 (+) | 4.74 × 102 (−) | |
| 2.75 × 103 (−) | 2.86 × 103 (−) | 7.79 × 101 (−) | 2.51 × 103 (+) | 2.63 × 103 (+) | 6.43 × 101 (+) | |
| 1.55 × 104 (−) | 1.83 × 104 (−) | 1.38 × 103 (−) | 1.51 × 104 (+) | 1.72 × 104 (+) | 1.21 × 103 (+) | |
| 3.27 × 103 (−) | 3.38 × 103 (−) | 8.05 × 101 (−) | 3.06 × 103 (+) | 3.14 × 103 (+) | 4.17 × 101 (+) | |
| 3.66 × 103 (−) | 3.88 × 103 (−) | 1.20 × 102 (−) | 3.54 × 103 (+) | 3.62 × 103 (+) | 5.43 × 101 (+) | |
| 3.35 × 103 (−) | 3.50 × 103 (−) | 7.44 × 101 (−) | 3.13 × 103 (+) | 3.26 × 103 (+) | 7.36 × 101 (+) | |
| 1.09 × 104 (−) | 1.22 × 104 (−) | 8.88 × 102 (−) | 8.08 × 103 (+) | 9.62 × 103 (+) | 8.18 × 102 (+) | |
| 3.57 × 103 (−) | 3.72 × 103 (−) | 7.01 × 101 (+) | 3.42 × 103 (+) | 3.64 × 103 (+) | 1.10 × 102 (−) | |
| 3.50 × 103 (−) | 3.58 × 103 (+) | 4.15 × 101 () | 3.10 × 103 (+) | 4.56 × 103 (−) | 3.69 × 103 () | |
| 7.05 × 103 (−) | 8.19 × 103 (−) | 5.48 × 102 (−) | 5.03 × 103 (+) | 6.08 × 103 (+) | 5.33 × 102 (+) | |
| 7.82 × 106 () | 3.06 × 107 () | 1.36 × 107 () | 6.74 × 103 () | 1.02 × 104 () | 3.62 × 103 () | |
| Function | SAO | ALDPGA | ||||
|---|---|---|---|---|---|---|
| Best | Mean | Std | Best | Mean | Std | |
| 1.08 × 107 () | 3.20 × 108 () | 7.94 × 108 () | 1.00 × 102 () | 7.35 × 103 () | 9.01 × 103 () | |
| 5.22 × 105 () | 7.88 × 105 () | 1.53 × 105 () | 3.00 × 102 () | 5.98 × 102 () | 7.47 × 102 () | |
| 6.17 × 102 (−) | 7.20 × 102 (−) | 4.12 × 101 (+) | 4.00 × 102 (+) | 5.66 × 102 (+) | 8.03 × 101 (−) | |
| 8.47 × 102 (−) | 1.18 × 103 (−) | 2.81 × 102 (−) | 7.04 × 102 (+) | 7.99 × 102 (+) | 4.85 × 101 (+) | |
| 6.08 × 102 (−) | 6.19 × 102 (−) | 6.06 × 100 (−) | 6.06 × 102 (+) | 6.16 × 102 (+) | 5.18 × 100 (+) | |
| 1.94 × 103 (−) | 2.09 × 103 (−) | 1.04 × 102 (+) | 1.11 × 103 (+) | 1.32 × 103 (+) | 1.21 × 102 (−) | |
| 1.18 × 103 (−) | 1.43 × 103 (−) | 2.01 × 102 (−) | 1.00 × 103 (+) | 1.12 × 103 (+) | 7.34 × 101 (+) | |
| 5.41 × 103 (−) | 2.37 × 104 (−) | 1.07 × 104 (−) | 3.08 × 103 (+) | 5.99 × 103 (+) | 2.75 × 103 (+) | |
| 1.29 × 104 (−) | 1.86 × 104 (−) | 6.08 × 103 (−) | 1.20 × 104 (+) | 1.47 × 104 (+) | 1.18 × 103 (+) | |
| 8.21 × 104 () | 1.45 × 105 () | 5.63 × 104 () | 1.64 × 103 () | 2.21 × 103 () | 2.52 × 102 () | |
| 6.21 × 106 () | 3.99 × 107 () | 2.58 × 107 () | 1.33 × 105 () | 4.69 × 105 () | 1.78 × 105 () | |
| 3.52 × 103 (+) | 1.26 × 104 (+) | 8.96 × 103 (+) | 5.07 × 103 (−) | 1.76 × 104 (−) | 1.14 × 104 (−) | |
| 2.15 × 105 () | 7.19 × 105 (−) | 3.99 × 105 (−) | 1.70 × 104 () | 9.26 × 104 (+) | 4.75 × 104 (+) | |
| 2.04 × 103 (+) | 4.18 × 103 (+) | 3.27 × 103 (+) | 2.15 × 103 (−) | 9.64 × 103 (−) | 8.61 × 103 (−) | |
| 4.44 × 103 (−) | 5.67 × 103 (−) | 1.07 × 103 (−) | 3.69 × 103 (+) | 4.90 × 103 (+) | 5.48 × 102 (+) | |
| 3.70 × 103 (−) | 4.92 × 103 (−) | 8.18 × 102 (−) | 3.49 × 103 (+) | 4.51 × 103 (+) | 4.64 × 102 (+) | |
| 7.31 × 105 () | 3.04 × 106 () | 3.15 × 106 () | 5.68 × 104 () | 1.71 × 105 () | 7.66 × 104 () | |
| 2.25 × 103 (−) | 6.42 × 103 (+) | 3.70 × 103 (+) | 2.21 × 103 (+) | 1.24 × 104 (−) | 1.37 × 104 (−) | |
| 3.69 × 103 (−) | 4.98 × 103 (−) | 1.04 × 103 (−) | 3.44 × 103 (+) | 4.48 × 103 (+) | 4.74 × 102 (+) | |
| 2.68 × 103 (−) | 2.85 × 103 (−) | 1.46 × 102 (−) | 2.51 × 103 (+) | 2.63 × 103 (+) | 6.43 × 101 (+) | |
| 1.33 × 104 (+) | 1.94 × 104 (−) | 5.47 × 103 (−) | 1.51 × 104 (−) | 1.72 × 104 (+) | 1.21 × 103 (+) | |
| 3.18 × 103 (−) | 3.30 × 103 (−) | 6.27 × 101 (−) | 3.06 × 103 (+) | 3.14 × 103 (+) | 4.17 × 101 (+) | |
| 3.55 × 103 (−) | 3.72 × 103 (−) | 9.70 × 101 (−) | 3.54 × 103 (+) | 3.62 × 103 (+) | 5.43 × 101 (+) | |
| 3.33 × 103 (−) | 3.45 × 103 (−) | 7.51 × 101 (−) | 3.13 × 103 (+) | 3.26 × 103 (+) | 7.36 × 101 (+) | |
| 9.24 × 103 (−) | 1.02 × 104 (−) | 5.59 × 102 (+) | 8.08 × 103 (+) | 9.62 × 103 (+) | 8.18 × 102 (−) | |
| 3.35 × 103 (+) | 3.47 × 103 (+) | 5.79 × 101 (+) | 3.42 × 103 (−) | 3.64 × 103 (−) | 1.10 × 102 (−) | |
| 3.40 × 103 (−) | 3.48 × 103 (+) | 4.86 × 101 () | 3.10 × 103 (+) | 4.56 × 103 (−) | 3.69 × 103 () | |
| 5.52 × 103 (−) | 6.50 × 103 (−) | 5.13 × 102 (+) | 5.03 × 103 (+) | 6.08 × 103 (+) | 5.33 × 102 (−) | |
| 9.23 × 103 (−) | 4.61 × 104 (−) | 7.23 × 104 () | 6.74 × 103 (+) | 1.02 × 104 (+) | 3.62 × 103 () | |
| Function | VO | ALDPGA | ||||
|---|---|---|---|---|---|---|
| Best | Mean | Std | Best | Mean | Std | |
| 1.22 × 106 () | 2.02 × 106 () | 5.14 × 105 () | 1.00 × 102 () | 7.35 × 103 () | 9.01 × 103 () | |
| 2.73 × 105 () | 3.57 × 105 () | 5.12 × 104 () | 3.00 × 102 () | 5.98 × 102 () | 7.47 × 102 () | |
| 6.62 × 102 (−) | 8.02 × 102 (−) | 6.45 × 101 (+) | 4.00 × 102 (+) | 5.66 × 102 (+) | 8.03 × 101 (−) | |
| 1.41 × 103 (−) | 1.65 × 103 (−) | 1.42 × 102 (−) | 7.04 × 102 (+) | 7.99 × 102 (+) | 4.85 × 101 (+) | |
| 6.71 × 102 (−) | 6.82 × 102 (−) | 8.01 × 100 (−) | 6.06 × 102 (+) | 6.16 × 102 (+) | 5.18 × 100 (+) | |
| 2.86 × 103 (−) | 3.62 × 103 (−) | 4.48 × 102 (−) | 1.11 × 103 (+) | 1.32 × 103 (+) | 1.21 × 102 (+) | |
| 1.80 × 103 (−) | 2.03 × 103 (−) | 1.02 × 102 (−) | 1.00 × 103 (+) | 1.12 × 103 (+) | 7.34 × 101 (+) | |
| 3.12 × 104 () | 6.76 × 104 () | 1.68 × 104 (−) | 3.08 × 103 () | 5.99 × 103 () | 2.75 × 103 (+) | |
| 1.59 × 104 (−) | 2.17 × 104 (−) | 2.31 × 103 (−) | 1.20 × 104 (+) | 1.47 × 104 (+) | 1.18 × 103 (+) | |
| 4.00 × 103 (−) | 5.19 × 103 (−) | 7.30 × 102 (−) | 1.64 × 103 (+) | 2.21 × 103 (+) | 2.52 × 102 (+) | |
| 1.61 × 108 () | 3.61 × 108 () | 9.80 × 107 () | 1.33 × 105 () | 4.69 × 105 () | 1.78 × 105 () | |
| 2.68 × 104 (−) | 6.53 × 104 (−) | 1.55 × 104 (−) | 5.07 × 103 (+) | 1.76 × 104 (+) | 1.14 × 104 (+) | |
| 1.81 × 106 () | 2.54 × 106 () | 2.96 × 105 (−) | 1.70 × 104 () | 9.26 × 104 () | 4.75 × 104 (+) | |
| 2.68 × 104 () | 5.32 × 104 (−) | 1.65 × 104 (−) | 2.15 × 103 () | 9.64 × 103 (+) | 8.61 × 103 (+) | |
| 6.64 × 103 (−) | 8.43 × 103 (−) | 9.90 × 102 (−) | 3.69 × 103 (+) | 4.90 × 103 (+) | 5.48 × 102 (+) | |
| 5.34 × 103 (−) | 6.66 × 103 (−) | 5.74 × 102 (−) | 3.49 × 103 (+) | 4.51 × 103 (+) | 4.64 × 102 (+) | |
| 1.16 × 106 () | 3.32 × 106 () | 8.60 × 105 () | 5.68 × 104 () | 1.71 × 105 () | 7.66 × 104 () | |
| 1.21 × 106 () | 1.22 × 107 () | 6.44 × 106 () | 2.21 × 103 () | 1.24 × 104 () | 1.37 × 104 () | |
| 4.97 × 103 (−) | 6.06 × 103 (−) | 6.37 × 102 (−) | 3.44 × 103 (+) | 4.48 × 103 (+) | 4.74 × 102 (+) | |
| 2.99 × 103 (−) | 3.73 × 103 (−) | 2.77 × 102 (−) | 2.51 × 103 (+) | 2.63 × 103 (+) | 6.43 × 101 (+) | |
| 2.19 × 104 (−) | 2.47 × 104 (−) | 1.80 × 103 (−) | 1.51 × 104 (+) | 1.72 × 104 (+) | 1.21 × 103 (+) | |
| 4.56 × 103 (−) | 5.61 × 103 (−) | 5.32 × 102 () | 3.06 × 103 (+) | 3.14 × 103 (+) | 4.17 × 101 () | |
| 5.91 × 103 (−) | 6.91 × 103 (−) | 5.51 × 102 () | 3.54 × 103 (+) | 3.62 × 103 (+) | 5.43 × 101 () | |
| 3.37 × 103 (−) | 3.49 × 103 (−) | 5.25 × 101 (+) | 3.13 × 103 (+) | 3.26 × 103 (+) | 7.36 × 101 (−) | |
| 2.63 × 104 (−) | 3.41 × 104 (−) | 4.44 × 103 (−) | 8.08 × 103 (+) | 9.62 × 103 (+) | 8.18 × 102 (+) | |
| 5.44 × 103 (−) | 6.27 × 103 (−) | 6.87 × 102 (−) | 3.42 × 103 (+) | 3.64 × 103 (+) | 1.10 × 102 (+) | |
| 3.46 × 103 (−) | 3.53 × 103 (+) | 3.96 × 101 () | 3.10 × 103 (+) | 4.56 × 103 (−) | 3.69 × 103 () | |
| 9.01 × 103 (−) | 1.18 × 104 (−) | 1.65 × 103 (−) | 5.03 × 103 (+) | 6.08 × 103 (+) | 5.33 × 102 (+) | |
| 2.30 × 107 () | 4.79 × 107 () | 1.58 × 107 () | 6.74 × 103 () | 1.02 × 104 () | 3.62 × 103 () | |




| Function | ALDPGA_1 | ALDPGA_2 | ALDPGA_3 | PGA | ALDPGA | |
|---|---|---|---|---|---|---|
| Mean | 5.30 × 103 | 4.15 × 103 | 6.06 × 103 | 9.33 × 103 | 6.06 × 103 | |
| Std | 6.44 × 103 | 5.19 × 103 | 6.85 × 103 | 9.94 × 103 | 6.85 × 103 | |
| Mean | 1.17 × 103 | 5.69 × 104 | 3.00 × 102 | 8.36 × 104 | 3.00 × 102 | |
| Std | 1.33 × 103 | 1.49 × 104 | 1.96 × 10−6 | 1.64 × 104 | 1.65 × 10−6 | |
| Mean | 5.33 × 102 | 5.26 × 102 | 4.72 × 102 | 5.38 × 102 | 4.69 × 102 | |
| Std | 6.29 × 101 | 5.00 × 101 | 5.38 × 101 | 4.21 × 101 | 5.58 × 101 | |
| Mean | 5.96 × 102 | 7.45 × 102 | 5.84 × 102 | 7.19 × 102 | 5.83 × 102 | |
| Std | 2.25 × 101 | 4.10 × 101 | 1.96 × 101 | 3.93 × 101 | 1.97 × 101 | |
| Mean | 6.05 × 102 | 6.30 × 102 | 6.01 × 102 | 6.15 × 102 | 6.01 × 102 | |
| Std | 8.26 × 10−1 | 1.75 × 101 | 8.39 × 10−1 | 9.30 × 100 | 8.11 × 10−1 | |
| Mean | 8.71 × 102 | 1.11 × 103 | 8.65 × 102 | 1.03 × 103 | 8.65 × 102 | |
| Std | 3.81 × 101 | 1.08 × 102 | 3.60 × 101 | 6.63 × 101 | 3.70 × 101 | |
| Mean | 8.90 × 102 | 1.06 × 103 | 8.92 × 102 | 1.03 × 103 | 8.92 × 102 | |
| Std | 2.28 × 101 | 3.94 × 101 | 2.00 × 101 | 5.51 × 101 | 1.98 × 101 | |
| Mean | 1.13 × 103 | 8.29 × 103 | 1.15 × 103 | 3.02 × 103 | 1.15 × 103 | |
| Std | 2.28 × 102 | 3.49 × 103 | 2.33 × 102 | 1.18 × 103 | 2.31 × 102 | |
| Mean | 7.78 × 103 | 7.98 × 103 | 7.31 × 103 | 7.92 × 103 | 7.30 × 103 | |
| Std | 8.85 × 102 | 9.76 × 102 | 1.13 × 103 | 1.03 × 103 | 1.12 × 103 | |
| Mean | 1.28 × 103 | 1.33 × 103 | 1.29 × 103 | 1.31 × 103 | 1.29 × 103 | |
| Std | 4.95 × 101 | 7.35 × 101 | 6.20 × 101 | 5.80 × 101 | 6.20 × 101 | |
| Mean | 3.27 × 106 | 3.02 × 106 | 2.18 × 105 | 3.57 × 106 | 1.77 × 105 | |
| Std | 1.50 × 106 | 1.79 × 106 | 9.90 × 104 | 1.91 × 106 | 8.52 × 104 | |
| Mean | 9.27 × 103 | 1.42 × 104 | 1.00 × 104 | 1.23 × 104 | 9.99 × 103 | |
| Std | 7.34 × 103 | 1.13 × 104 | 8.21 × 103 | 1.02 × 104 | 8.19 × 103 | |
| Mean | 5.73 × 104 | 1.88 × 105 | 1.26 × 104 | 1.40 × 105 | 1.17 × 104 | |
| Std | 3.96 × 104 | 1.41 × 105 | 1.00 × 104 | 8.85 × 104 | 1.06 × 104 | |
| Mean | 1.38 × 104 | 1.33 × 104 | 1.29 × 104 | 1.63 × 104 | 1.28 × 104 | |
| Std | 9.27 × 103 | 9.13 × 103 | 1.09 × 104 | 1.09 × 104 | 1.09 × 104 | |
| Mean | 3.08 × 103 | 3.55 × 103 | 3.07 × 103 | 3.34 × 103 | 3.07 × 103 | |
| Std | 3.99 × 102 | 4.64 × 102 | 3.87 × 102 | 5.31 × 102 | 3.84 × 102 | |
| Mean | 2.74 × 103 | 3.07 × 103 | 2.69 × 103 | 2.95 × 103 | 2.69 × 103 | |
| Std | 3.71 × 102 | 3.22 × 102 | 2.60 × 102 | 3.61 × 102 | 2.61 × 102 | |
| Mean | 3.03 × 105 | 1.48 × 106 | 7.18 × 104 | 1.54 × 106 | 5.65 × 104 | |
| Std | 3.63 × 105 | 1.39 × 106 | 5.78 × 104 | 1.76 × 106 | 4.84 × 104 | |
| Mean | 1.70 × 104 | 1.87 × 104 | 1.66 × 104 | 1.82 × 104 | 1.66 × 104 | |
| Std | 1.27 × 104 | 1.38 × 104 | 1.40 × 104 | 1.57 × 104 | 1.40 × 104 | |
| Mean | 2.99 × 103 | 3.09 × 103 | 2.80 × 103 | 3.11 × 103 | 2.83 × 103 | |
| Std | 3.56 × 102 | 2.83 × 102 | 3.04 × 102 | 3.39 × 102 | 3.01 × 102 | |
| Mean | 2.39 × 103 | 2.56 × 103 | 2.39 × 103 | 2.52 × 103 | 2.39 × 103 | |
| Std | 2.76 × 101 | 4.70 × 101 | 2.19 × 101 | 4.58 × 101 | 2.20 × 101 | |
| Mean | 9.29 × 103 | 9.60 × 103 | 8.99 × 103 | 9.58 × 103 | 9.02 × 103 | |
| Std | 1.13 × 103 | 9.17 × 102 | 9.71 × 102 | 1.07 × 103 | 9.50 × 102 | |
| Mean | 2.83 × 103 | 2.97 × 103 | 2.83 × 103 | 2.96 × 103 | 2.83 × 103 | |
| Std | 2.95 × 101 | 4.38 × 101 | 2.67 × 101 | 5.47 × 101 | 2.67 × 101 | |
| Mean | 3.01 × 103 | 3.12 × 103 | 3.00 × 103 | 3.06 × 103 | 3.00 × 103 | |
| Std | 4.21 × 101 | 4.66 × 101 | 2.15 × 101 | 3.47 × 101 | 2.15 × 101 | |
| Mean | 3.04 × 103 | 3.06 × 103 | 3.03 × 103 | 3.05 × 103 | 3.03 × 103 | |
| Std | 3.54 × 101 | 3.97 × 101 | 3.90 × 101 | 3.96 × 101 | 3.84 × 101 | |
| Mean | 4.79 × 103 | 6.40 × 103 | 4.78 × 103 | 5.87 × 103 | 4.78 × 103 | |
| Std | 2.80 × 102 | 5.81 × 102 | 2.57 × 102 | 4.08 × 102 | 2.57 × 102 | |
| Mean | 3.40 × 103 | 3.46 × 103 | 3.44 × 103 | 3.45 × 103 | 3.44 × 103 | |
| Std | 9.92 × 101 | 7.26 × 101 | 1.09 × 102 | 1.25 × 102 | 1.07 × 102 | |
| Mean | 3.31 × 103 | 3.31 × 103 | 3.30 × 103 | 3.31 × 103 | 3.30 × 103 | |
| Std | 2.91 × 101 | 1.74 × 101 | 1.89 × 101 | 1.20 × 101 | 1.89 × 101 | |
| Mean | 3.87 × 103 | 4.46 × 103 | 3.98 × 103 | 4.28 × 103 | 3.98 × 103 | |
| Std | 2.78 × 102 | 3.64 × 102 | 3.02 × 102 | 3.74 × 102 | 3.01 × 102 | |
| Mean | 1.09 × 106 | 1.38 × 106 | 9.62 × 105 | 1.18 × 106 | 9.57 × 105 | |
| Std | 2.73 × 105 | 4.98 × 105 | 1.61 × 105 | 3.75 × 105 | 1.62 × 105 | |
| Rank First | 7 | 1 | 2 | 0 | 19 |
References
- Boussaïd, I.; Lepagnot, J.; Siarry, P. A survey on optimization metaheuristics. Inf. Sci. 2013, 237, 82–117. [Google Scholar] [CrossRef]
- Radwan, M.; Elsayed, S.; Sarker, R.; Essam, D.; Coello, C.C. Neuro-PSO algorithm for large-scale dynamic optimization. Swarm Evol. Comput. 2025, 94, 101865. [Google Scholar] [CrossRef]
- Tomar, V.; Bansal, M.; Singh, P. Metaheuristic algorithms for optimization: A brief review. Eng. Proc. 2023, 59, 238. [Google Scholar]
- Bohat, V.K.; Hashim, F.A.; Batra, H.; Elaziz, M.A. Phototropic growth algorithm: A novel metaheuristic inspired from phototropic growth of plants. Knowl.-Based Syst. 2025, 322, 113548. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Shao, Y.; Wang, J.; Sun, H.; Yu, H.; Xing, L.; Zhao, Q.; Zhang, L. An Improved BGE-Adam Optimization Algorithm Based on Entropy Weighting and Adaptive Gradient Strategy. Symmetry 2024, 16, 623. [Google Scholar] [CrossRef]
- Xia, Y.; Ji, Y. Application of a novel metaheuristic algorithm inspired by Adam gradient descent in distributed permutation flow shop scheduling problem and continuous engineering problems. Sci. Rep. 2025, 15, 21692. [Google Scholar] [CrossRef]
- Duan, Q.; Wang, L.; Kang, H.; Shen, Y.; Sun, X.; Chen, Q. Improved Salp Swarm Algorithm with Simulated Annealing Mechanism Based on Symmetric Perturbation. Symmetry 2021, 13, 1092. [Google Scholar] [CrossRef]
- Seyyedabbasi, A.; Tareq, W.Z.; Bačanin, N. An Effective Hybrid Metaheuristic Algorithm for Solving Global Optimization Algorithms. Multimed. Tools Appl. 2024, 83, 85103–85138. [Google Scholar] [CrossRef]
- Danach, K.; Harb, H.; Hejase, H.J.; Saker, L. Hybrid metaheuristic framework with reinforcement learning-based adaptation for large-scale combinatorial optimization. Eur. J. Pure Appl. Math. 2025, 18, 6602. [Google Scholar] [CrossRef]
- Loshchilov, I.; Hutter, F. Fixing weight decay regularization in Adam. In Proceedings of the International Conference on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Liu, L.; Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; Han, J. On the variance of the adaptive learning rate and beyond. In Proceedings of the International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia, 26–30 April 2020. [Google Scholar]
- Liu, M.; Yao, D.; Liu, Z.; Guo, J.; Chen, J. An improved Adam optimization algorithm combining adaptive coefficients and composite gradients based on randomized block coordinate descent. Comput. Intell. Neurosci. 2023, 2023, 4765891. [Google Scholar] [CrossRef]
- Zou, F.; Shen, L.; Jie, Z.; Zhang, W.; Liu, W. A Sufficient Condition for Convergences of Adam and RMSProp. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 11127–11135. [Google Scholar]
- Zhang, Q.; Zhou, Y.; Zou, S. Convergence Guarantees for RMSProp and Adam in Stochastic Non convex Optimization with Affine Noise Variance. arXiv 2024, arXiv:2404.01436. [Google Scholar]
- Hospodarskyy, O.; Matsiuk, V.; Matsiuk, R.; Turkot, V.; Vasylkiv, N. Understanding the Adam optimization algorithm in machine learning. In Proceedings of the CITI’2024: 2nd International Workshop on Computer Information Technologies in Industry 4.0, Ternopil, Ukraine, 12–14 June 2024. [Google Scholar]
- Yang, D.; Xu, B.; Xu, B.; Lu, T.; Wang, X. Application of Particle Swarm Optimization with Simulated Annealing in MIT Regularization Image Reconstruction. Symmetry 2022, 14, 275. [Google Scholar] [CrossRef]
- Li, J.; Pan, Q.K.; Gao, L.; Li, X.L.; Wang, C. Survey of Lévy flight-based metaheuristics for optimization. Mathematics 2022, 10, 2785. [Google Scholar] [CrossRef]
- Tarkhaneh, O.; Moser, I. An improved differential evolution algorithm using Archimedean spiral and neighborhood search based mutation approach for cluster analysis. Future Gener. Comput. Syst. 2019, 101, 921–939. [Google Scholar] [CrossRef]
- Zhang, T.; Yin, Q.; Li, S.; Guo, T.; Fan, Z. An Optimized Genetic Algorithm-Based Wavelet Image Fusion Technique for PCBDetection. Appl. Sci. 2025, 15, 3217. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Li, X.; Zhou, Y. An Adaptive Differential Evolution Algorithm with Strategy Self-Learning for Global Optimization. Inf. Sci. 2023, 625, 250–270. [Google Scholar]
- Sheng, L.; Wu, S.; Lv, Z. Modified Grey Wolf Optimizer and Application in Parameter Optimization of PI Controller. Appl. Sci. 2025, 15, 4530. [Google Scholar] [CrossRef]
- Hussien, A.G.; Soleimanian Gharehchopogh, F.; Bouaouda, A.; Kumar, S.; Hu, G. Recent applications and advances of African Vultures Optimization Algorithm. Artif. Intell. Rev. 2024, 57, 335. [Google Scholar] [CrossRef]
- Braik, M.; Al-Hiary, H.; Alzoubi, H.; Hammouri, A.; Al-Betar, M.A.; Awadallah, M.A. Tornado optimizer with Coriolis force: A novel bio-inspired meta-heuristic algorithm for solving engineering problems. Artif. Intell. Rev. 2025, 58, 123. [Google Scholar] [CrossRef]
- Deng, L.; Liu, S. Snow ablation optimizer: A novel metaheuristic technique for numerical optimization and engineering design. Expert Syst. Appl. 2023, 225, 120069. [Google Scholar] [CrossRef]
- Qin, A.K.; Suganthan, P.N. Self-adaptive differential evolution algorithm for numerical optimization. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Edinburgh, UK, 2–5 September 2005; pp. 1785–1791. [Google Scholar]
- Shao, Y.; Yang, J.; Zhou, W.; Sun, H.; Xing, L.; Zhao, Q.; Zhang, L. An Improvement of Adam Based on a Cyclic Exponential Decay Learning Rate and Gradient Norm Constraints. Electronics 2024, 13, 1778. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Sarhani, M.; Preuss, M.; Fernandez, C.M. Initialization of metaheuristics: Comprehensive review, critical analysis and research directions. Int. Trans. Oper. Res. 2023, 30, 1886–1919. [Google Scholar] [CrossRef]
- Sun, H.; Yu, H.; Shao, Y.; Wang, J.; Xing, L.; Zhang, L.; Zhao, Q. An Improved Adam’s Algorithm for Stomach Image Classification. Algorithms 2024, 17, 272. [Google Scholar] [CrossRef]
- Sun, H.; Cui, J.; Shao, Y.; Yang, J.; Xing, L.; Zhao, Q.; Zhang, L. A Gastrointestinal Image Classification Method Based on Improved Adam Algorithm. Mathematics 2024, 12, 2452. [Google Scholar] [CrossRef]
- Awad, N.H.; Ali, M.Z.; Liang, J.J.; Qu, B.Y.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Bound Constrained Real-Parameter Numerical Optimization; Technical Report; Nanyang Technological University: Singapore, 2016. [Google Scholar]
- Liang, J.J.; Suganthan, P.N.; Qu, B.Y.; Gong, D.W.; Yue, C.T. Problem Definitions and Evaluation Criteria for the CEC 2020 Special Session on Multimodal Multiobjective Optimization; Technical Report; Nanyang Technological University: Singapore, 2020. [Google Scholar]
- Luo, W.; Lin, X.; Li, C.; Yang, S.; Shi, Y. Benchmark functions for the CEC 2022 competition on seeking multiple optima in dynamic environments. arXiv 2022, arXiv:2201.00523. [Google Scholar] [CrossRef]
- Mirjalili, S. Nature-Inspired Optimizers: Theories, Literature Reviews and Applications. In Studies in Computational Intelligence; Springer: Cham, Switzerland, 2019; Volume 811. [Google Scholar]
- Li, H.; Jiang, J.; Ma, Z.; Li, L.; Liu, J.; Li, C.; Yu, Z. A Symmetry-Driven Adaptive Dual-Subpopulation Tree–Seed Algorithm for Complex Optimization with Local Optima Avoidance and Convergence Acceleration. Symmetry 2025, 17, 1200. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers, 7th ed.; Wiley: New York, NY, USA, 2018. [Google Scholar]
- Gao, F.; Abisado, M. Enhanced Feature Engineering Symmetry Model Based on Novel Dolphin Swarm Algorithm. Symmetry 2025, 17, 1736. [Google Scholar] [CrossRef]
- Li, W.; Liang, P.; Sun, B.; Sun, Y.; Huang, Y. Reinforcement learning-based particle swarm optimization with neighborhood differential mutation strategy. Swarm Evol. Comput. 2023, 78, 101274. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, W.; Yang, J.; Shao, Y.; Xing, L.; Zhao, Q.; Zhang, L. An Improved Medical Image Classification Algorithm Based on Adam Optimizer. Mathematics 2024, 12, 2509. [Google Scholar] [CrossRef]
- Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput. Struct. 2016, 169, 1–12. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.; Liu, J. Dimension by dimension dynamic sine cosine algorithm for global optimization problems. Appl. Soft Comput. 2021, 98, 106933. [Google Scholar] [CrossRef]
- Baghmisheh, M.V.; Peimani, M.; Sadeghi, M.H.; Ettefagh, M.M.; Tabrizi, A.F. A hybrid particle swarm–Nelder–Mead optimization method for crack detection in cantilever beams. Appl. Soft Comput. 2012, 12, 2217–2226. [Google Scholar] [CrossRef]
- Jiang, J.; Huang, J.; Wu, J.; Luo, J.; Yang, X.; Li, W. DTSA: Dynamic Tree-Seed Algorithm with Velocity-Driven Seed Generation and Count-Based Adaptive Strategies. Symmetry 2024, 16, 795. [Google Scholar] [CrossRef]







| Algorithm | Year | Description of Algorithms |
|---|---|---|
| GA | 1975 | GA simulates selection, crossover, and mutation, iteratively approaching optimal solutions with strong robustness and comprehensive global search. |
| PSO | 1995 | PSO simulates swarm cooperation, updating positions using personal and global bests, offering strong global search and fast convergence. |
| DE | 1997 | DE updates individuals via vector-based mutation and crossover, featuring simple structure, few parameters, and strong global search ability. |
| GWO | 2014 | GWO models wolf hierarchy and hunting behavior, where , , and wolves guide the population to balance exploration and exploitation. |
| VO | 2021 | VO models vultures’ foraging and circling behaviors, using an energy factor to switch between global exploration and local exploitation. |
| TOC | 2022 | TOC simulates tornado updraft and spiral flows, enabling alternating global and local search through upward and rotating particle movements. |
| SAO | 2023 | SAO models snow-melting evaporation and aggregation, providing precise convergence and strong ability to escape local optima. |
| RIME | 2023 | RIME models ice-crystal formation and frost deposition, using freezing and redistribution to maintain diversity and enhance local optimization. |
| Test Suite | Function Categories | Dim/Iter/Runs |
|---|---|---|
| CEC2017 | • Unimodal (–) | 10/30/50/100D |
| • Multimodal (–) | 3000 Iter | |
| • Hybrid (–) | 30 Runs | |
| • Composition (–) | ||
| CEC2020 | • Unimodal () | 10/30/50/100D |
| • Basic (–) | 3000 Iter | |
| • Hybrid (–) | 30 Runs | |
| • Composition (–) | ||
| CEC2022 | • Unimodal () | 10/20D |
| • Basic (–) | 3000 Iter | |
| • Hybrid (–) | 30 Runs | |
| • Composition (–) |
| Function | GWO | TOC | PSO | GA | DE | RIME | SAO | VO | PGA | ALDPGA | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Mean | 5.20 × 1010 | 4.52 × 1010 | 4.04 × 1010 | 9.20 × 106 | 1.86 × 109 | 1.29 × 107 | 3.20 × 108 | 2.02 × 106 | 9.83 × 104 | 7.35 × 103 | |
| Std | 9.97 × 109 | 1.58 × 1010 | 1.62 × 1010 | 4.58 × 106 | 1.99 × 109 | 5.19 × 106 | 7.94 × 108 | 5.14 × 105 | 4.06 × 105 | 9.01 × 103 | |
| Mean | 2.78 × 105 | 4.30 × 105 | 4.90 × 105 | 7.64 × 105 | 5.92 × 105 | 3.73 × 105 | 7.88 × 105 | 3.57 × 105 | 3.05 × 105 | 5.98 × 102 | |
| Std | 2.13 × 104 | 2.53 × 105 | 9.91 × 104 | 1.13 × 105 | 6.73 × 104 | 5.97 × 104 | 1.53 × 105 | 5.12 × 104 | 3.20 × 104 | 7.47 × 102 | |
| Mean | 5.16 × 103 | 8.02 × 103 | 5.57 × 103 | 8.76 × 102 | 8.84 × 102 | 7.90 × 102 | 7.20 × 102 | 8.02 × 102 | 7.09 × 102 | 5.66 × 102 | |
| Std | 1.27 × 103 | 3.20 × 103 | 2.73 × 103 | 9.50 × 101 | 8.21 × 101 | 6.78 × 101 | 4.12 × 101 | 6.45 × 101 | 4.94 × 101 | 8.03 × 101 | |
| Mean | 1.20 × 103 | 1.85 × 103 | 1.06 × 103 | 1.90 × 103 | 8.58 × 102 | 1.01 × 103 | 1.18 × 103 | 1.65 × 103 | 1.14 × 103 | 7.99 × 102 | |
| Std | 1.12 × 102 | 1.33 × 102 | 9.30 × 101 | 1.59 × 102 | 6.71 × 101 | 8.05 × 101 | 2.81 × 102 | 1.42 × 102 | 1.57 × 102 | 4.85 × 101 | |
| Mean | 6.40 × 102 | 6.94 × 102 | 6.32 × 102 | 6.17 × 102 | 6.12 × 102 | 6.30 × 102 | 6.19 × 102 | 6.82 × 102 | 6.37 × 102 | 6.16 × 102 | |
| Std | 5.58 × 100 | 6.67 × 100 | 6.70 × 100 | 5.42 × 100 | 2.74 × 100 | 5.66 × 100 | 6.06 × 100 | 8.01 × 100 | 8.91 × 100 | 5.18 × 100 | |
| Mean | 2.04 × 103 | 3.63 × 103 | 1.70 × 103 | 2.28 × 103 | 1.65 × 103 | 1.53 × 103 | 2.09 × 103 | 3.62 × 103 | 1.84 × 103 | 1.32 × 103 | |
| Std | 1.32 × 102 | 3.49 × 102 | 2.76 × 102 | 1.84 × 102 | 3.03 × 102 | 1.16 × 102 | 1.04 × 102 | 4.48 × 102 | 1.97 × 102 | 1.21 × 102 | |
| Mean | 1.48 × 103 | 2.28 × 103 | 1.36 × 103 | 2.20 × 103 | 1.15 × 103 | 1.31 × 103 | 1.43 × 103 | 2.03 × 103 | 1.41 × 103 | 1.12 × 103 | |
| Std | 6.85 × 101 | 9.68 × 101 | 7.58 × 101 | 1.12 × 102 | 4.37 × 101 | 8.29 × 101 | 2.01 × 102 | 1.02 × 102 | 1.20 × 102 | 7.34 × 101 | |
| Mean | 3.41 × 104 | 5.72 × 104 | 5.32 × 104 | 5.01 × 104 | 1.83 × 104 | 2.52 × 104 | 2.37 × 104 | 6.76 × 104 | 1.64 × 104 | 5.99 × 103 | |
| Std | 1.22 × 104 | 9.29 × 103 | 2.14 × 104 | 6.91 × 103 | 5.16 × 103 | 8.78 × 103 | 1.07 × 104 | 1.68 × 104 | 5.94 × 103 | 2.75 × 103 | |
| Mean | 1.70 × 104 | 2.76 × 104 | 1.56 × 104 | 1.53 × 104 | 3.19 × 104 | 1.61 × 104 | 1.86 × 104 | 2.17 × 104 | 1.58 × 104 | 1.47 × 104 | |
| Std | 5.13 × 103 | 1.68 × 103 | 1.67 × 103 | 1.52 × 103 | 5.24 × 102 | 1.27 × 103 | 6.08 × 103 | 2.31 × 103 | 1.47 × 103 | 1.18 × 103 | |
| Mean | 6.51 × 104 | 6.47 × 104 | 1.48 × 104 | 1.17 × 105 | 1.06 × 104 | 4.23 × 103 | 1.45 × 105 | 5.19 × 103 | 5.97 × 103 | 2.21 × 103 | |
| Std | 1.39 × 104 | 4.47 × 104 | 1.26 × 104 | 2.98 × 104 | 4.12 × 103 | 6.04 × 102 | 5.63 × 104 | 7.30 × 102 | 2.85 × 103 | 2.52 × 102 | |
| Mean | 9.24 × 109 | 8.15 × 109 | 1.46 × 1010 | 6.97 × 107 | 2.46 × 108 | 4.38 × 108 | 3.99 × 107 | 3.61 × 108 | 1.94 × 107 | 4.69 × 105 | |
| Std | 4.88 × 109 | 5.85 × 109 | 1.20 × 1010 | 2.08 × 107 | 6.47 × 108 | 1.81 × 108 | 2.58 × 107 | 9.80 × 107 | 1.07 × 107 | 1.78 × 105 | |
| Mean | 1.32 × 109 | 4.01 × 108 | 2.07 × 109 | 9.51 × 104 | 4.84 × 105 | 2.26 × 105 | 1.26 × 104 | 6.53 × 104 | 1.51 × 104 | 1.76 × 104 | |
| Std | 1.51 × 109 | 2.36 × 108 | 2.67 × 109 | 7.27 × 104 | 2.39 × 106 | 3.87 × 105 | 8.96 × 103 | 1.55 × 104 | 1.21 × 104 | 1.14 × 104 | |
| Mean | 7.09 × 106 | 1.34 × 107 | 2.41 × 106 | 8.34 × 106 | 4.30 × 105 | 2.58 × 106 | 7.19 × 105 | 2.54 × 106 | 1.27 × 106 | 9.26 × 104 | |
| Std | 3.53 × 106 | 2.09 × 107 | 2.22 × 106 | 3.40 × 106 | 2.51 × 105 | 1.47 × 106 | 3.99 × 105 | 2.96 × 105 | 7.03 × 105 | 4.75 × 104 | |
| Mean | 1.56 × 108 | 7.01 × 107 | 5.04 × 108 | 5.82 × 104 | 6.53 × 104 | 1.68 × 105 | 4.18 × 103 | 5.32 × 104 | 7.12 × 103 | 9.64 × 103 | |
| Std | 2.38 × 108 | 6.96 × 107 | 8.00 × 108 | 7.06 × 104 | 3.21 × 105 | 4.42 × 105 | 3.27 × 103 | 1.65 × 104 | 5.78 × 103 | 8.61 × 103 | |
| Mean | 6.16 × 103 | 1.17 × 104 | 6.33 × 103 | 6.61 × 103 | 5.19 × 103 | 6.58 × 103 | 5.67 × 103 | 8.43 × 103 | 5.90 × 103 | 4.90 × 103 | |
| Std | 5.80 × 102 | 1.85 × 103 | 7.44 × 102 | 6.69 × 102 | 1.82 × 103 | 6.99 × 102 | 1.07 × 103 | 9.90 × 102 | 9.47 × 102 | 5.48 × 102 | |
| Mean | 5.23 × 103 | 1.08 × 104 | 6.16 × 103 | 6.31 × 103 | 5.02 × 103 | 5.72 × 103 | 4.92 × 103 | 6.66 × 103 | 5.15 × 103 | 4.51 × 103 | |
| Std | 8.97 × 102 | 7.36 × 103 | 1.09 × 103 | 7.16 × 102 | 1.20 × 103 | 5.12 × 102 | 8.18 × 102 | 5.74 × 102 | 6.32 × 102 | 4.64 × 102 | |
| Mean | 6.18 × 106 | 1.31 × 107 | 7.11 × 106 | 8.06 × 106 | 1.14 × 106 | 5.02 × 106 | 3.04 × 106 | 3.32 × 106 | 2.43 × 106 | 1.71 × 105 | |
| Std | 5.80 × 106 | 1.10 × 107 | 4.56 × 106 | 3.35 × 106 | 5.21 × 105 | 2.59 × 106 | 3.15 × 106 | 8.60 × 105 | 1.08 × 106 | 7.66 × 104 | |
| Mean | 2.65 × 108 | 1.93 × 108 | 3.15 × 108 | 4.89 × 104 | 2.51 × 105 | 1.64 × 106 | 6.42 × 103 | 1.22 × 107 | 1.01 × 104 | 1.24 × 104 | |
| Std | 3.36 × 108 | 2.31 × 108 | 4.92 × 108 | 2.24 × 104 | 8.52 × 105 | 9.36 × 105 | 3.70 × 103 | 6.44 × 106 | 1.01 × 104 | 1.37 × 104 | |
| Mean | 4.80 × 103 | 6.18 × 103 | 5.24 × 103 | 5.86 × 103 | 6.60 × 103 | 5.32 × 103 | 4.98 × 103 | 6.06 × 103 | 4.90 × 103 | 4.48 × 103 | |
| Std | 8.25 × 102 | 5.46 × 102 | 8.52 × 102 | 6.80 × 102 | 9.46 × 102 | 4.24 × 102 | 1.04 × 103 | 6.37 × 102 | 5.10 × 102 | 4.74 × 102 | |
| Mean | 3.00 × 103 | 4.12 × 103 | 3.14 × 103 | 4.01 × 103 | 2.69 × 103 | 2.86 × 103 | 2.85 × 103 | 3.73 × 103 | 2.96 × 103 | 2.63 × 103 | |
| Std | 1.22 × 102 | 1.83 × 102 | 1.20 × 102 | 1.36 × 102 | 5.88 × 101 | 7.79 × 101 | 1.46 × 102 | 2.77 × 102 | 1.12 × 102 | 6.43 × 101 | |
| Mean | 1.96 × 104 | 2.99 × 104 | 1.84 × 104 | 1.80 × 104 | 3.38 × 104 | 1.83 × 104 | 1.94 × 104 | 2.47 × 104 | 1.82 × 104 | 1.72 × 104 | |
| Std | 3.02 × 103 | 2.04 × 103 | 1.49 × 103 | 1.34 × 103 | 5.32 × 102 | 1.38 × 103 | 5.47 × 103 | 1.80 × 103 | 1.46 × 103 | 1.21 × 103 | |
| Mean | 3.65 × 103 | 5.34 × 103 | 4.73 × 103 | 4.04 × 103 | 3.29 × 103 | 3.38 × 103 | 3.30 × 103 | 5.61 × 103 | 3.39 × 103 | 3.14 × 103 | |
| Std | 1.39 × 102 | 3.24 × 102 | 3.33 × 102 | 1.38 × 102 | 9.09 × 101 | 8.05 × 101 | 6.27 × 101 | 5.32 × 102 | 9.65 × 101 | 4.17 × 101 | |
| Mean | 4.27 × 103 | 6.78 × 103 | 6.00 × 103 | 5.63 × 103 | 3.88 × 103 | 3.88 × 103 | 3.72 × 103 | 6.91 × 103 | 3.90 × 103 | 3.62 × 103 | |
| Std | 1.22 × 102 | 6.13 × 102 | 5.07 × 102 | 3.13 × 102 | 1.76 × 102 | 1.20 × 102 | 9.70 × 101 | 5.51 × 102 | 1.38 × 102 | 5.43 × 101 | |
| Mean | 7.02 × 103 | 8.34 × 103 | 4.88 × 103 | 3.49 × 103 | 3.57 × 103 | 3.50 × 103 | 3.45 × 103 | 3.49 × 103 | 3.39 × 103 | 3.26 × 103 | |
| Std | 1.16 × 103 | 1.74 × 103 | 1.08 × 103 | 4.27 × 101 | 8.86 × 101 | 7.44 × 101 | 7.51 × 101 | 5.25 × 101 | 4.97 × 101 | 7.36 × 101 | |
| Mean | 1.54 × 104 | 3.47 × 104 | 1.88 × 104 | 2.53 × 104 | 1.19 × 104 | 1.22 × 104 | 1.02 × 104 | 3.41 × 104 | 1.26 × 104 | 9.62 × 103 | |
| Std | 1.12 × 103 | 5.05 × 103 | 3.52 × 103 | 2.31 × 103 | 1.25 × 103 | 8.88 × 102 | 5.59 × 102 | 4.44 × 103 | 1.22 × 103 | 8.18 × 102 | |
| Mean | 4.12 × 103 | 4.87 × 103 | 4.24 × 103 | 4.29 × 103 | 3.60 × 103 | 3.72 × 103 | 3.47 × 103 | 6.27 × 103 | 3.57 × 103 | 3.64 × 103 | |
| Std | 1.23 × 102 | 4.72 × 102 | 4.14 × 102 | 2.76 × 102 | 7.17 × 101 | 7.01 × 101 | 5.79 × 101 | 6.87 × 102 | 8.66 × 101 | 1.10 × 102 | |
| Mean | 8.87 × 103 | 9.82 × 103 | 9.00 × 103 | 3.53 × 103 | 3.82 × 103 | 3.58 × 103 | 3.48 × 103 | 3.53 × 103 | 3.56 × 103 | 4.56 × 103 | |
| Std | 1.13 × 103 | 2.27 × 103 | 3.12 × 103 | 3.57 × 101 | 2.74 × 102 | 4.15 × 101 | 4.86 × 101 | 3.96 × 101 | 2.75 × 102 | 3.69 × 103 | |
| Mean | 8.50 × 103 | 1.59 × 104 | 7.49 × 103 | 8.21 × 103 | 5.83 × 103 | 8.19 × 103 | 6.50 × 103 | 1.18 × 104 | 6.82 × 103 | 6.08 × 103 | |
| Std | 8.69 × 102 | 2.88 × 103 | 7.24 × 102 | 5.58 × 102 | 4.81 × 102 | 5.48 × 102 | 5.13 × 102 | 1.65 × 103 | 5.23 × 102 | 5.33 × 102 | |
| Mean | 1.67 × 109 | 6.60 × 108 | 1.28 × 109 | 2.34 × 105 | 4.11 × 105 | 3.06 × 107 | 4.61 × 104 | 4.79 × 107 | 5.02 × 104 | 1.02 × 104 | |
| Std | 1.66 × 109 | 4.70 × 108 | 1.32 × 109 | 1.18 × 105 | 1.51 × 106 | 1.36 × 107 | 7.23 × 104 | 1.58 × 107 | 3.19 × 104 | 3.62 × 103 | |
| Rank First | 0 | 0 | 0 | 0 | 2 | 0 | 5 | 0 | 0 | 22 |
| Function | GWO | TOC | PSO | GA | DE | RIME | SAO | VO | PGA | ALDPGA | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Mean | 9.88 × 109 | 4.30 × 109 | 7.11 × 109 | 8.44 × 105 | 2.96 × 108 | 5.13 × 105 | 4.95 × 103 | 1.26 × 105 | 9.33 × 103 | 6.06 × 103 | |
| Std | 3.91 × 109 | 1.93 × 109 | 4.98 × 109 | 3.14 × 105 | 4.99 × 108 | 1.32 × 105 | 7.05 × 103 | 6.14 × 104 | 9.94 × 103 | 6.85 × 103 | |
| Mean | 8.07 × 103 | 1.24 × 104 | 7.01 × 103 | 7.84 × 103 | 1.45 × 104 | 7.26 × 103 | 6.91 × 103 | 9.98 × 103 | 8.03 × 103 | 7.44 × 103 | |
| Std | 2.34 × 103 | 1.24 × 103 | 7.86 × 102 | 7.78 × 102 | 1.77 × 103 | 9.97 × 102 | 1.11 × 103 | 9.01 × 102 | 1.06 × 103 | 7.74 × 102 | |
| Mean | 1.09 × 103 | 1.73 × 103 | 9.58 × 102 | 1.17 × 103 | 9.69 × 102 | 9.50 × 102 | 1.17 × 103 | 1.76 × 103 | 1.03 × 103 | 8.65 × 102 | |
| Std | 6.93 × 101 | 1.62 × 102 | 6.93 × 101 | 8.11 × 101 | 1.12 × 102 | 4.94 × 101 | 5.16 × 101 | 2.05 × 102 | 6.63 × 101 | 3.70 × 101 | |
| Mean | 1.90 × 103 | 1.91 × 103 | 1.91 × 103 | 1.90 × 103 | 2.17 × 103 | 1.92 × 103 | 1.94 × 103 | 1.92 × 103 | 1.92 × 103 | 1.91 × 103 | |
| Std | 5.97 × 10−14 | 2.12 × 101 | 2.00 × 100 | 6.19 × 10−1 | 1.35 × 103 | 4.79 × 100 | 3.49 × 100 | 7.58 × 100 | 5.94 × 100 | 1.90 × 100 | |
| Mean | 8.90 × 106 | 1.18 × 107 | 4.87 × 106 | 6.48 × 106 | 3.61 × 105 | 2.19 × 106 | 4.57 × 105 | 7.71 × 105 | 9.45 × 105 | 5.21 × 104 | |
| Std | 8.30 × 106 | 9.49 × 106 | 4.96 × 106 | 3.02 × 106 | 2.00 × 105 | 9.86 × 105 | 2.17 × 105 | 3.73 × 105 | 5.13 × 105 | 2.93 × 104 | |
| Mean | 2.85 × 103 | 5.09 × 103 | 2.79 × 103 | 3.14 × 103 | 2.97 × 103 | 2.81 × 103 | 2.58 × 103 | 4.54 × 103 | 3.24 × 103 | 2.38 × 103 | |
| Std | 4.86 × 102 | 7.09 × 102 | 4.14 × 102 | 3.95 × 102 | 9.88 × 102 | 2.59 × 102 | 3.67 × 102 | 5.93 × 102 | 4.58 × 102 | 3.28 × 102 | |
| Mean | 4.81 × 106 | 4.65 × 106 | 2.01 × 106 | 7.94 × 106 | 2.33 × 105 | 1.23 × 106 | 2.62 × 105 | 4.76 × 105 | 6.45 × 105 | 4.11 × 104 | |
| Std | 4.25 × 106 | 8.58 × 106 | 3.26 × 106 | 4.87 × 106 | 1.34 × 105 | 6.16 × 105 | 1.54 × 105 | 1.67 × 105 | 4.05 × 105 | 4.32 × 104 | |
| Mean | 9.14 × 103 | 1.42 × 104 | 9.00 × 103 | 9.78 × 103 | 1.55 × 104 | 9.00 × 103 | 8.31 × 103 | 1.16 × 104 | 9.58 × 103 | 9.02 × 103 | |
| Std | 9.42 × 102 | 1.20 × 103 | 9.17 × 102 | 6.39 × 102 | 1.48 × 103 | 7.28 × 102 | 1.15 × 103 | 1.04 × 103 | 1.07 × 103 | 9.50 × 102 | |
| Mean | 3.17 × 103 | 3.89 × 103 | 3.52 × 103 | 4.03 × 103 | 3.03 × 103 | 3.12 × 103 | 3.05 × 103 | 4.01 × 103 | 3.06 × 103 | 3.00 × 103 | |
| Std | 9.39 × 101 | 2.23 × 102 | 1.76 × 102 | 1.79 × 102 | 7.71 × 101 | 5.50 × 101 | 3.30 × 101 | 2.80 × 102 | 3.47 × 101 | 2.15 × 101 | |
| Mean | 3.75 × 103 | 3.83 × 103 | 3.33 × 103 | 3.09 × 103 | 3.07 × 103 | 3.07 × 103 | 3.02 × 103 | 3.09 × 103 | 3.05 × 103 | 3.03 × 103 | |
| Std | 3.28 × 102 | 3.30 × 102 | 5.31 × 102 | 2.80 × 101 | 3.52 × 101 | 2.76 × 101 | 3.66 × 101 | 2.51 × 101 | 3.96 × 101 | 3.84 × 101 | |
| Rank First | 1 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 5 |
| Function | GWO | TOC | PSO | GA | DE | RIME | SAO | VO | PGA | ALDPGA | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Mean | 5.20 × 1010 | 4.52 × 1010 | 4.04 × 1010 | 9.20 × 106 | 1.86 × 109 | 1.29 × 107 | 3.20 × 108 | 2.02 × 106 | 9.83 × 104 | 7.35 × 103 | |
| Std | 9.97 × 109 | 1.58 × 1010 | 1.62 × 1010 | 4.58 × 106 | 1.99 × 109 | 5.19 × 106 | 7.94 × 108 | 5.14 × 105 | 4.06 × 105 | 9.01 × 103 | |
| Mean | 1.71 × 104 | 2.77 × 104 | 1.55 × 104 | 1.57 × 104 | 3.21 × 104 | 1.64 × 104 | 1.96 × 104 | 2.22 × 104 | 1.63 × 104 | 1.53 × 104 | |
| Std | 4.17 × 103 | 2.49 × 103 | 1.55 × 103 | 1.06 × 103 | 6.31 × 102 | 1.52 × 103 | 6.54 × 103 | 2.20 × 103 | 1.45 × 103 | 1.32 × 103 | |
| Mean | 2.04 × 103 | 3.63 × 103 | 1.70 × 103 | 2.28 × 103 | 1.65 × 103 | 1.53 × 103 | 2.09 × 103 | 3.62 × 103 | 1.84 × 103 | 1.32 × 103 | |
| Std | 1.32 × 102 | 3.49 × 102 | 2.76 × 102 | 1.84 × 102 | 3.03 × 102 | 1.16 × 102 | 1.04 × 102 | 4.48 × 102 | 1.97 × 102 | 1.21 × 102 | |
| Mean | 1.90 × 103 | 1.92 × 103 | 2.00 × 104 | 1.91 × 103 | 2.37 × 103 | 1.99 × 103 | 2.53 × 103 | 1.94 × 103 | 1.95 × 103 | 1.91 × 103 | |
| Std | 1.58 × 10−13 | 3.71 × 101 | 5.25 × 104 | 1.16 × 100 | 1.14 × 103 | 1.27 × 101 | 3.53 × 102 | 2.30 × 101 | 1.27 × 101 | 5.71 × 100 | |
| Mean | 5.07 × 107 | 9.11 × 107 | 2.93 × 107 | 4.25 × 107 | 3.17 × 106 | 1.05 × 107 | 5.11 × 106 | 1.05 × 107 | 5.02 × 106 | 2.94 × 105 | |
| Std | 2.72 × 107 | 6.28 × 107 | 2.67 × 107 | 1.37 × 107 | 1.24 × 106 | 2.55 × 106 | 2.23 × 106 | 2.64 × 106 | 2.43 × 106 | 1.53 × 105 | |
| Mean | 5.32 × 103 | 1.42 × 104 | 5.69 × 103 | 5.98 × 103 | 4.82 × 103 | 5.99 × 103 | 5.04 × 103 | 9.07 × 103 | 5.97 × 103 | 4.72 × 103 | |
| Std | 6.69 × 102 | 2.89 × 103 | 7.88 × 102 | 7.99 × 102 | 1.94 × 103 | 7.04 × 102 | 1.56 × 103 | 1.56 × 103 | 7.33 × 102 | 6.03 × 102 | |
| Mean | 1.96 × 107 | 2.58 × 107 | 1.04 × 107 | 1.63 × 107 | 2.05 × 106 | 7.38 × 106 | 2.05 × 106 | 6.02 × 106 | 2.84 × 106 | 9.19 × 104 | |
| Std | 1.03 × 107 | 1.11 × 107 | 6.68 × 106 | 4.51 × 106 | 6.68 × 105 | 2.78 × 106 | 8.38 × 105 | 1.88 × 106 | 1.41 × 106 | 5.11 × 104 | |
| Mean | 1.96 × 104 | 2.99 × 104 | 1.84 × 104 | 1.80 × 104 | 3.38 × 104 | 1.83 × 104 | 1.94 × 104 | 2.47 × 104 | 1.82 × 104 | 1.72 × 104 | |
| Std | 3.02 × 103 | 2.04 × 103 | 1.49 × 103 | 1.34 × 103 | 5.32 × 102 | 1.38 × 103 | 5.47 × 103 | 1.80 × 103 | 1.46 × 103 | 1.21 × 103 | |
| Mean | 4.27 × 103 | 6.78 × 103 | 6.00 × 103 | 5.63 × 103 | 3.88 × 103 | 3.88 × 103 | 3.72 × 103 | 6.91 × 103 | 3.90 × 103 | 3.62 × 103 | |
| Std | 1.22 × 102 | 6.13 × 102 | 5.07 × 102 | 3.13 × 102 | 1.76 × 102 | 1.20 × 102 | 9.70 × 101 | 5.51 × 102 | 1.38 × 102 | 5.43 × 101 | |
| Mean | 7.02 × 103 | 8.34 × 103 | 4.88 × 103 | 3.49 × 103 | 3.57 × 103 | 3.50 × 103 | 3.45 × 103 | 3.49 × 103 | 3.39 × 103 | 3.26 × 103 | |
| Std | 1.16 × 103 | 1.74 × 103 | 1.08 × 103 | 4.27 × 101 | 8.86 × 101 | 7.44 × 101 | 7.51 × 101 | 5.25 × 101 | 4.97 × 101 | 7.36 × 101 | |
| Rank First | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 |
| Function | GWO | TOC | PSO | GA | DE | RIME | SAO | VO | PGA | ALDPGA | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Mean | 9.85 × 103 | 9.70 × 103 | 1.64 × 103 | 5.76 × 104 | 4.90 × 102 | 3.00 × 102 | 1.37 × 104 | 3.00 × 102 | 5.14 × 102 | 3.00 × 102 | |
| Std | 4.96 × 103 | 1.53 × 104 | 3.58 × 103 | 2.01 × 104 | 7.53 × 102 | 2.26 × 10−1 | 9.39 × 103 | 4.06 × 10−2 | 6.44 × 102 | 1.02 × 10−9 | |
| Mean | 4.99 × 102 | 5.06 × 102 | 4.66 × 102 | 4.55 × 102 | 4.47 × 102 | 4.56 × 102 | 4.47 × 102 | 4.57 × 102 | 4.49 × 102 | 4.47 × 102 | |
| Std | 4.35 × 101 | 6.93 × 101 | 2.40 × 101 | 1.14 × 101 | 1.78 × 101 | 1.82 × 101 | 1.45 × 101 | 1.11 × 101 | 1.56 × 101 | 8.97 × 100 | |
| Mean | 6.04 × 102 | 6.38 × 102 | 6.02 × 102 | 6.02 × 102 | 6.00 × 102 | 6.00 × 102 | 6.00 × 102 | 6.50 × 102 | 6.00 × 102 | 6.00 × 102 | |
| Std | 3.12 × 100 | 1.23 × 101 | 3.21 × 100 | 2.69 × 100 | 1.15 × 10−1 | 3.51 × 10−1 | 2.42 × 10−1 | 1.50 × 101 | 7.26 × 10−1 | 7.44 × 10−2 | |
| Mean | 8.50 × 102 | 8.87 × 102 | 8.41 × 102 | 9.24 × 102 | 8.25 × 102 | 8.57 × 102 | 8.35 × 102 | 8.97 × 102 | 8.49 × 102 | 8.32 × 102 | |
| Std | 1.84 × 101 | 2.48 × 101 | 1.16 × 101 | 2.27 × 101 | 1.47 × 101 | 1.96 × 101 | 1.15 × 101 | 2.27 × 101 | 1.80 × 101 | 1.39 × 101 | |
| Mean | 1.13 × 103 | 1.40 × 103 | 9.39 × 102 | 4.08 × 103 | 9.01 × 102 | 9.61 × 102 | 9.01 × 102 | 2.25 × 103 | 9.09 × 102 | 9.00 × 102 | |
| Std | 1.95 × 102 | 3.06 × 102 | 8.57 × 101 | 9.69 × 102 | 1.38 × 100 | 1.70 × 102 | 1.28 × 100 | 6.59 × 102 | 1.30 × 101 | 6.75 × 10−1 | |
| Mean | 3.35 × 106 | 7.46 × 104 | 1.56 × 105 | 1.23 × 104 | 8.67 × 103 | 8.84 × 103 | 4.62 × 103 | 5.78 × 103 | 8.83 × 103 | 7.70 × 103 | |
| Std | 8.16 × 106 | 2.71 × 105 | 4.52 × 105 | 8.31 × 103 | 6.98 × 103 | 6.23 × 103 | 3.85 × 103 | 4.90 × 103 | 7.10 × 103 | 6.55 × 103 | |
| Mean | 2.08 × 103 | 2.14 × 103 | 2.05 × 103 | 2.14 × 103 | 2.03 × 103 | 2.07 × 103 | 2.06 × 103 | 2.13 × 103 | 2.07 × 103 | 2.04 × 103 | |
| Std | 4.07 × 101 | 5.72 × 101 | 3.19 × 101 | 9.66 × 101 | 1.13 × 101 | 5.22 × 101 | 3.59 × 101 | 3.97 × 101 | 3.22 × 101 | 1.50 × 101 | |
| Mean | 2.26 × 103 | 2.32 × 103 | 2.28 × 103 | 2.38 × 103 | 2.23 × 103 | 2.24 × 103 | 2.25 × 103 | 2.34 × 103 | 2.23 × 103 | 2.22 × 103 | |
| Std | 5.19 × 101 | 8.71 × 101 | 7.27 × 101 | 1.38 × 102 | 2.22 × 101 | 4.79 × 101 | 4.91 × 101 | 9.65 × 101 | 7.93 × 100 | 3.09 × 100 | |
| Mean | 2.52 × 103 | 2.51 × 103 | 2.53 × 103 | 2.50 × 103 | 2.48 × 103 | 2.48 × 103 | 2.48 × 103 | 2.48 × 103 | 2.48 × 103 | 2.48 × 103 | |
| Std | 2.54 × 101 | 3.80 × 101 | 5.74 × 101 | 5.84 × 100 | 1.70 × 100 | 3.65 × 10−2 | 8.12 × 10−12 | 6.09 × 10−2 | 5.89 × 10−2 | 8.44 × 10−7 | |
| Mean | 3.39 × 103 | 4.99 × 103 | 2.88 × 103 | 3.29 × 103 | 2.81 × 103 | 2.64 × 103 | 3.26 × 103 | 5.16 × 103 | 2.91 × 103 | 2.55 × 103 | |
| Std | 5.77 × 102 | 1.26 × 103 | 3.46 × 102 | 2.72 × 102 | 2.97 × 102 | 1.43 × 102 | 7.64 × 102 | 1.09 × 103 | 6.87 × 102 | 1.67 × 102 | |
| Mean | 3.46 × 103 | 3.42 × 103 | 3.53 × 103 | 2.99 × 103 | 2.95 × 103 | 2.88 × 103 | 2.95 × 103 | 3.23 × 103 | 2.93 × 103 | 2.90 × 103 | |
| Std | 3.30 × 102 | 7.44 × 102 | 5.80 × 102 | 4.60 × 102 | 1.79 × 102 | 1.36 × 102 | 1.85 × 102 | 1.35 × 103 | 4.50 × 101 | 6.15 × 101 | |
| Mean | 2.96 × 103 | 3.04 × 103 | 3.00 × 103 | 3.15 × 103 | 2.95 × 103 | 2.96 × 103 | 2.95 × 103 | 3.20 × 103 | 2.95 × 103 | 2.94 × 103 | |
| Std | 1.88 × 101 | 6.47 × 101 | 3.56 × 101 | 1.26 × 102 | 1.66 × 101 | 1.89 × 101 | 1.15 × 101 | 1.51 × 102 | 8.14 × 100 | 9.28 × 100 | |
| Rank First | 0 | 0 | 0 | 0 | 2 | 1 | 3 | 0 | 0 | 6 |
| Function | PGA | ALDPGA | ||||
|---|---|---|---|---|---|---|
| Best | Mean | Std | Best | Mean | Std | |
| 1.40 × 103 () | 9.83 × 104 () | 4.06 × 105 () | 1.00 × 102 () | 7.35 × 103 () | 9.01 × 103 () | |
| 2.62 × 105 () | 3.05 × 105 () | 3.20 × 104 () | 3.00 × 102 () | 5.98 × 102 () | 7.47 × 102 () | |
| 6.11 × 102 (−) | 7.09 × 102 (−) | 4.94 × 101 (+) | 4.00 × 102 (+) | 5.66 × 102 (+) | 8.03 × 101 (−) | |
| 8.72 × 102 (−) | 1.14 × 103 (−) | 1.57 × 102 (−) | 7.04 × 102 (+) | 7.99 × 102 (+) | 4.85 × 101 (+) | |
| 6.24 × 102 (−) | 6.37 × 102 (−) | 8.91 × 100 (−) | 6.06 × 102 (+) | 6.16 × 102 (+) | 5.18 × 100 (+) | |
| 1.50 × 103 (−) | 1.84 × 103 (−) | 1.97 × 102 (−) | 1.11 × 103 (+) | 1.32 × 103 (+) | 1.21 × 102 (+) | |
| 1.23 × 103 (−) | 1.41 × 103 (−) | 1.20 × 102 (−) | 1.00 × 103 (+) | 1.12 × 103 (+) | 7.34 × 101 (+) | |
| 5.83 × 103 (−) | 1.64 × 104 (−) | 5.94 × 103 (−) | 3.08 × 103 (+) | 5.99 × 103 (+) | 2.75 × 103 (+) | |
| 1.30 × 104 (−) | 1.58 × 104 (−) | 1.47 × 103 (−) | 1.20 × 104 (+) | 1.47 × 104 (+) | 1.18 × 103 (+) | |
| 2.55 × 103 (−) | 5.97 × 103 (−) | 2.85 × 103 () | 1.64 × 103 (+) | 2.21 × 103 (−) | 2.52 × 102 () | |
| 4.25 × 106 () | 1.94 × 107 () | 1.07 × 107 () | 1.33 × 105 () | 4.69 × 105 () | 1.78 × 105 () | |
| 3.33 × 103 (+) | 1.51 × 104 (+) | 1.21 × 104 (−) | 5.07 × 103 (−) | 1.76 × 104 (−) | 1.14 × 104 (+) | |
| 2.13 × 105 () | 1.27 × 106 () | 7.03 × 105 () | 1.70 × 104 () | 9.26 × 104 () | 4.75 × 104 () | |
| 2.14 × 103 (+) | 7.12 × 103 (+) | 5.78 × 103 (+) | 2.15 × 103 (−) | 9.64 × 103 (−) | 8.61 × 103 (−) | |
| 3.93 × 103 (−) | 5.90 × 103 (−) | 9.47 × 102 (−) | 3.69 × 103 (+) | 4.90 × 103 (+) | 5.48 × 102 (+) | |
| 3.99 × 103 (−) | 5.15 × 103 (−) | 6.32 × 102 (−) | 3.49 × 103 (+) | 4.51 × 103 (+) | 4.64 × 102 (+) | |
| 6.51 × 105 () | 2.43 × 106 () | 1.08 × 106 () | 5.68 × 104 () | 1.71 × 105 () | 7.66 × 104 () | |
| 2.22 × 103 (−) | 1.01 × 104 (+) | 1.01 × 104 (+) | 2.21 × 103 (+) | 1.24 × 104 (+) | 1.37 × 104 (−) | |
| 3.73 × 103 (−) | 4.90 × 103 (−) | 5.10 × 102 (−) | 3.44 × 103 (+) | 4.48 × 103 (+) | 4.74 × 102 (+) | |
| 2.75 × 103 (−) | 2.96 × 103 (−) | 1.12 × 102 (−) | 2.51 × 103 (+) | 2.63 × 103 (+) | 6.43 × 101 (+) | |
| 1.47 × 104 (+) | 1.82 × 104 (−) | 1.46 × 103 (−) | 1.51 × 104 (−) | 1.72 × 104 (+) | 1.21 × 103 (+) | |
| 3.17 × 103 (−) | 3.39 × 103 (−) | 9.65 × 101 (−) | 3.06 × 103 (+) | 3.14 × 103 (+) | 4.17 × 101 (+) | |
| 3.68 × 103 (−) | 3.90 × 103 (−) | 1.38 × 102 (−) | 3.54 × 103 (+) | 3.62 × 103 (+) | 5.43 × 101 (+) | |
| 3.32 × 103 (−) | 3.39 × 103 (−) | 4.97 × 101 (+) | 3.13 × 103 (+) | 3.26 × 103 (+) | 7.36 × 101 (−) | |
| 1.04 × 104 (−) | 1.26 × 104 (−) | 1.22 × 103 (−) | 8.08 × 103 (+) | 9.62 × 103 (+) | 8.18 × 102 (+) | |
| 3.45 × 103 (−) | 3.57 × 103 (+) | 8.66 × 101 (+) | 3.42 × 103 (+) | 3.64 × 103 (−) | 1.10 × 102 (−) | |
| 3.40 × 103 (−) | 3.56 × 103 (+) | 2.75 × 102 () | 3.10 × 103 (+) | 4.56 × 103 (−) | 3.69 × 103 () | |
| 5.93 × 103 (−) | 6.82 × 103 (−) | 5.23 × 102 (+) | 5.03 × 103 (+) | 6.08 × 103 (+) | 5.33 × 102 (−) | |
| 9.67 × 103 (−) | 5.02 × 104 (−) | 3.19 × 104 (−) | 6.74 × 103 (+) | 1.02 × 104 (+) | 3.62 × 103 (+) | |
| Comparison | ||||||||
|---|---|---|---|---|---|---|---|---|
| ALDPGA vs. GWO | 435 | 0 | 2.56 × 10−6 | 2.31 × 10−5 | 7.69 × 10−6 | true | true | true |
| ALDPGA vs. TOC | 435 | 0 | 2.56 × 10−6 | 2.31 × 10−5 | 7.69 × 10−6 | true | true | true |
| ALDPGA vs. PSO | 435 | 0 | 2.56 × 10−6 | 2.31 × 10−5 | 7.69 × 10−6 | true | true | true |
| ALDPGA vs. GA | 426 | 9 | 6.53 × 10−6 | 3.27 × 10−5 | 1.18 × 10−5 | true | true | true |
| ALDPGA vs. DE | 410 | 25 | 3.15 × 10−5 | 9.44 × 10−5 | 4.05 × 10−5 | true | true | true |
| ALDPGA vs. RIME | 423 | 12 | 8.85 × 10−6 | 3.54 × 10−5 | 1.33 × 10−5 | true | true | true |
| ALDPGA vs. SAO | 354 | 81 | 3.16 × 10−3 | 4.12 × 10−3 | 3.16 × 10−3 | true | true | true |
| ALDPGA vs. VO | 429 | 6 | 4.80 × 10−6 | 2.88 × 10−5 | 1.08 × 10−5 | true | true | true |
| ALDPGA vs. PGA | 360 | 75 | 2.06 × 10−3 | 4.12 × 10−3 | 2.32 × 10−3 | true | true | true |
| Algorithm | MeanRank |
|---|---|
| ALDPGA | 1.5862 |
| PGA | 3.5517 |
| SAO | 3.8276 |
| DE | 4.5862 |
| RIME | 4.9655 |
| GA | 6.3793 |
| GWO | 7.0000 |
| PSO | 7.0000 |
| VO | 7.0000 |
| TOC | 9.1034 |
| LowerCI | Diff | UpperCI | |||
|---|---|---|---|---|---|
| ALDPGA | TOC | −1.01 × 101 | −7.52 × 100 | −4.92 × 100 | 1.46 × 10−19 |
| ALDPGA | GWO | −8.01 × 100 | −5.41 × 100 | −2.82 × 100 | 4.42 × 10−10 |
| ALDPGA | PSO | −8.01 × 100 | −5.41 × 100 | −2.82 × 100 | 4.42 × 10−10 |
| ALDPGA | VO | −8.01 × 100 | −5.41 × 100 | −2.82 × 100 | 4.42 × 10−10 |
| ALDPGA | GA | −7.39 × 100 | −4.79 × 100 | −2.20 × 100 | 7.46 × 10−8 |
| ALDPGA | RIME | −5.97 × 100 | −3.38 × 100 | −7.87 × 10−1 | 9.61 × 10−4 |
| ALDPGA | DE | −5.59 × 100 | −3.00 × 100 | −4.07 × 10−1 | 7.26 × 10−3 |
| ALDPGA | SAO | −4.83 × 100 | −2.24 × 100 | 3.51 × 10−1 | 2.17 × 10−1 |
| ALDPGA | PGA | −4.56 × 100 | −1.97 × 100 | 6.27 × 10−1 | 6.05 × 10−1 |
| Function | ALDPGA_1 | ALDPGA_2 | ALDPGA_3 | PGA | ALDPGA | |
|---|---|---|---|---|---|---|
| Mean | 1.19 × 104 | 1.04 × 104 | 7.48 × 103 | 9.83 × 104 | 7.35 × 103 | |
| Std | 1.63 × 104 | 1.58 × 104 | 9.22 × 103 | 4.06 × 105 | 9.01 × 103 | |
| Mean | 1.82 × 104 | 2.39 × 105 | 5.41 × 102 | 3.05 × 105 | 5.98 × 102 | |
| Std | 9.51 × 103 | 2.04 × 104 | 2.55 × 102 | 3.20 × 104 | 7.47 × 102 | |
| Mean | 6.77 × 102 | 7.19 × 102 | 5.73 × 102 | 7.09 × 102 | 5.66 × 102 | |
| Std | 5.65 × 101 | 5.20 × 101 | 7.60 × 101 | 4.94 × 101 | 8.03 × 101 | |
| Mean | 8.06 × 102 | 1.19 × 103 | 7.99 × 102 | 1.14 × 103 | 7.99 × 102 | |
| Std | 5.07 × 101 | 1.17 × 102 | 4.85 × 101 | 1.57 × 102 | 4.85 × 101 | |
| Mean | 6.14 × 102 | 6.50 × 102 | 6.22 × 102 | 6.37 × 102 | 6.16 × 102 | |
| Std | 5.98 × 100 | 1.07 × 101 | 5.15 × 100 | 8.91 × 100 | 5.18 × 100 | |
| Mean | 1.30 × 103 | 2.09 × 103 | 1.33 × 103 | 1.84 × 103 | 1.32 × 103 | |
| Std | 1.14 × 102 | 1.85 × 102 | 1.34 × 102 | 1.97 × 102 | 1.21 × 102 | |
| Mean | 1.12 × 103 | 1.48 × 103 | 1.12 × 103 | 1.41 × 103 | 1.12 × 103 | |
| Std | 5.03 × 101 | 1.02 × 102 | 7.34 × 101 | 1.20 × 102 | 7.34 × 101 | |
| Mean | 6.12 × 103 | 2.16 × 104 | 6.01 × 103 | 1.64 × 104 | 5.99 × 103 | |
| Std | 2.27 × 103 | 6.80 × 103 | 2.76 × 103 | 5.94 × 103 | 2.75 × 103 | |
| Mean | 1.55 × 104 | 1.58 × 104 | 1.47 × 104 | 1.58 × 104 | 1.47 × 104 | |
| Std | 1.10 × 103 | 1.40 × 103 | 1.19 × 103 | 1.47 × 103 | 1.18 × 103 | |
| Mean | 2.01 × 103 | 2.87 × 103 | 2.21 × 103 | 5.97 × 103 | 2.21 × 103 | |
| Std | 3.19 × 102 | 6.40 × 102 | 2.52 × 102 | 2.85 × 103 | 2.52 × 102 | |
| Mean | 7.53 × 106 | 1.71 × 107 | 7.19 × 105 | 1.94 × 107 | 4.69 × 105 | |
| Std | 7.90 × 106 | 1.16 × 107 | 2.14 × 105 | 1.07 × 107 | 1.78 × 105 | |
| Mean | 1.57 × 104 | 2.04 × 104 | 1.75 × 104 | 1.51 × 104 | 1.76 × 104 | |
| Std | 1.72 × 104 | 1.19 × 104 | 1.14 × 104 | 1.21 × 104 | 1.14 × 104 | |
| Mean | 1.94 × 105 | 1.08 × 106 | 9.68 × 104 | 1.27 × 106 | 9.26 × 104 | |
| Std | 1.04 × 105 | 6.09 × 105 | 4.72 × 104 | 7.03 × 105 | 4.75 × 104 | |
| Mean | 1.12 × 104 | 6.97 × 103 | 9.66 × 103 | 7.12 × 103 | 9.64 × 103 | |
| Std | 1.09 × 104 | 4.54 × 103 | 8.65 × 103 | 5.78 × 103 | 8.61 × 103 | |
| Mean | 5.00 × 103 | 6.01 × 103 | 4.90 × 103 | 5.90 × 103 | 4.90 × 103 | |
| Std | 6.36 × 102 | 8.27 × 102 | 5.50 × 102 | 9.47 × 102 | 5.48 × 102 | |
| Mean | 4.81 × 103 | 5.27 × 103 | 4.52 × 103 | 5.15 × 103 | 4.51 × 103 | |
| Std | 5.29 × 102 | 7.31 × 102 | 4.65 × 102 | 6.32 × 102 | 4.64 × 102 | |
| Mean | 2.47 × 105 | 2.75 × 106 | 1.72 × 105 | 2.43 × 106 | 1.71 × 105 | |
| Std | 1.16 × 105 | 1.78 × 106 | 8.32 × 104 | 1.08 × 106 | 7.66 × 104 | |
| Mean | 1.19 × 104 | 7.26 × 103 | 1.25 × 104 | 1.01 × 104 | 1.24 × 104 | |
| Std | 1.30 × 104 | 5.57 × 103 | 1.38 × 104 | 1.01 × 104 | 1.37 × 104 | |
| Mean | 4.93 × 103 | 5.31 × 103 | 4.49 × 103 | 4.90 × 103 | 4.48 × 103 | |
| Std | 4.83 × 102 | 6.39 × 102 | 4.75 × 102 | 5.10 × 102 | 4.74 × 102 | |
| Mean | 2.63 × 103 | 2.99 × 103 | 2.63 × 103 | 2.96 × 103 | 2.63 × 103 | |
| Std | 4.56 × 101 | 1.10 × 102 | 6.43 × 101 | 1.12 × 102 | 6.43 × 101 | |
| Mean | 1.81 × 104 | 1.82 × 104 | 1.72 × 104 | 1.82 × 104 | 1.72 × 104 | |
| Std | 1.30 × 103 | 1.32 × 103 | 1.19 × 103 | 1.46 × 103 | 1.21 × 103 | |
| Mean | 3.15 × 103 | 3.45 × 103 | 3.14 × 103 | 3.39 × 103 | 3.14 × 103 | |
| Std | 4.60 × 101 | 7.92 × 101 | 4.24 × 101 | 9.65 × 101 | 4.17 × 101 | |
| Mean | 3.60 × 103 | 3.99 × 103 | 3.62 × 103 | 3.90 × 103 | 3.62 × 103 | |
| Std | 5.42 × 101 | 1.30 × 102 | 5.43 × 101 | 1.38 × 102 | 5.43 × 101 | |
| Mean | 3.32 × 103 | 3.35 × 103 | 3.26 × 103 | 3.39 × 103 | 3.26 × 103 | |
| Std | 4.77 × 101 | 6.53 × 101 | 7.37 × 101 | 4.97 × 101 | 7.36 × 101 | |
| Mean | 9.27 × 103 | 1.33 × 104 | 9.62 × 103 | 1.26 × 104 | 9.62 × 103 | |
| Std | 6.58 × 102 | 9.80 × 102 | 8.18 × 102 | 1.22 × 103 | 8.18 × 102 | |
| Mean | 3.65 × 103 | 3.62 × 103 | 3.64 × 103 | 3.57 × 103 | 3.64 × 103 | |
| Std | 9.15 × 101 | 9.12 × 101 | 1.07 × 102 | 8.66 × 101 | 1.10 × 102 | |
| Mean | 6.30 × 103 | 3.46 × 103 | 4.56 × 103 | 3.56 × 103 | 4.56 × 103 | |
| Std | 5.33 × 103 | 3.74 × 101 | 3.69 × 103 | 2.75 × 102 | 3.69 × 103 | |
| Mean | 6.28 × 103 | 7.29 × 103 | 6.08 × 103 | 6.82 × 103 | 6.08 × 103 | |
| Std | 5.04 × 102 | 5.96 × 102 | 5.29 × 102 | 5.23 × 102 | 5.33 × 102 | |
| Mean | 2.83 × 104 | 5.05 × 104 | 1.02 × 104 | 5.02 × 104 | 1.02 × 104 | |
| Std | 1.73 × 104 | 5.53 × 104 | 3.63 × 103 | 3.19 × 104 | 3.62 × 103 | |
| Rank First | 5 | 3 | 4 | 2 | 15 |
| GWO | TOC | PSO | GA | DE | RIME | SAO | VO | PGA | ALDPGA | |
|---|---|---|---|---|---|---|---|---|---|---|
| Best | 0.013 | 0.013 | 0.013 | 0.013 | 0.013 | 0.013 | 0.013 | 0.013 | 0.013 | 0.013 |
| Mean | 0.013 | 0.013 | 0.013 | 0.015 | 0.013 | 0.017 | 0.014 | 0.015 | 0.013 | 0.013 |
| Std | 0.000 | 0.003 | 0.000 | 0.002 | 0.000 | 0.002 | 0.001 | 0.002 | 0.000 | 0.000 |
| Worst | 0.013 | 0.030 | 0.014 | 0.021 | 0.013 | 0.018 | 0.018 | 0.018 | 0.014 | 0.013 |
| X1 | 0.051 | 0.052 | 0.053 | 0.062 | 0.052 | 0.067 | 0.057 | 0.062 | 0.052 | 0.052 |
| X2 | 0.334 | 0.375 | 0.394 | 0.632 | 0.357 | 0.851 | 0.520 | 0.680 | 0.363 | 0.370 |
| X3 | 12.857 | 11.995 | 9.838 | 4.904 | 11.281 | 3.019 | 7.318 | 4.154 | 11.615 | 10.933 |
| GWO | TOC | PSO | GA | DE | RIME | SAO | VO | PGA | ALDPGA | |
|---|---|---|---|---|---|---|---|---|---|---|
| Best | 263.896 | 263.896 | 263.896 | 263.897 | 263.896 | 263.901 | 263.896 | 263.896 | 263.896 | 263.896 |
| Mean | 263.897 | 263.896 | 263.896 | 266.287 | 263.896 | 265.257 | 263.955 | 263.909 | 263.900 | 263.898 |
| Std | 0.001 | 0.000 | 0.000 | 2.973 | 0.000 | 2.116 | 0.156 | 0.010 | 0.008 | 0.004 |
| Worst | 263.899 | 263.897 | 263.896 | 273.974 | 263.896 | 272.508 | 264.732 | 263.936 | 263.938 | 263.915 |
| X1 | 0.789 | 0.789 | 0.789 | 0.798 | 0.789 | 0.801 | 0.789 | 0.788 | 0.788 | 0.790 |
| X2 | 0.408 | 0.408 | 0.408 | 0.406 | 0.408 | 0.388 | 0.407 | 0.410 | 0.409 | 0.406 |
| GWO | TOC | PSO | GA | DE | RIME | SAO | VO | PGA | ALDPGA | |
|---|---|---|---|---|---|---|---|---|---|---|
| Best | 1.340 | 1.340 | 1.340 | 1.356 | 1.340 | 1.342 | 1.340 | 1.340 | 1.340 | 1.340 |
| Mean | 1.340 | 1.340 | 1.340 | 1.615 | 1.340 | 1.434 | 1.340 | 1.340 | 1.340 | 1.340 |
| Std | 0.000 | 0.000 | 0.000 | 0.209 | 0.000 | 0.099 | 0.000 | 0.000 | 0.000 | 0.000 |
| Worst | 1.340 | 1.340 | 1.340 | 2.056 | 1.340 | 1.667 | 1.340 | 1.340 | 1.340 | 1.340 |
| X1 | 6.018 | 6.018 | 6.016 | 7.345 | 6.015 | 6.083 | 6.016 | 6.016 | 6.013 | 6.015 |
| X2 | 5.310 | 5.314 | 5.309 | 6.699 | 5.310 | 5.665 | 5.309 | 5.308 | 5.305 | 5.307 |
| X3 | 4.495 | 4.492 | 4.495 | 5.115 | 4.494 | 5.028 | 4.494 | 4.494 | 4.501 | 4.496 |
| X4 | 3.499 | 3.501 | 3.502 | 4.115 | 3.502 | 3.827 | 3.502 | 3.500 | 3.501 | 3.502 |
| X5 | 2.152 | 2.150 | 2.153 | 2.607 | 2.152 | 2.383 | 2.153 | 2.156 | 2.154 | 2.154 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xie, Y.; Li, W.; Qin, B.; Gao, S. An Enhanced Plant Growth Algorithm with Adam Learning, Lévy Flight, and Dynamic Stage Control. Symmetry 2026, 18, 64. https://doi.org/10.3390/sym18010064
Xie Y, Li W, Qin B, Gao S. An Enhanced Plant Growth Algorithm with Adam Learning, Lévy Flight, and Dynamic Stage Control. Symmetry. 2026; 18(1):64. https://doi.org/10.3390/sym18010064
Chicago/Turabian StyleXie, Yuhang, Wei Li, Bin Qin, and Shang Gao. 2026. "An Enhanced Plant Growth Algorithm with Adam Learning, Lévy Flight, and Dynamic Stage Control" Symmetry 18, no. 1: 64. https://doi.org/10.3390/sym18010064
APA StyleXie, Y., Li, W., Qin, B., & Gao, S. (2026). An Enhanced Plant Growth Algorithm with Adam Learning, Lévy Flight, and Dynamic Stage Control. Symmetry, 18(1), 64. https://doi.org/10.3390/sym18010064
