Vibrational Spectra of R and S Methyl Para Tolyl Sulfoxide and Their Racemic Mixture in the Solid–Liquid State and in Water Solution
Abstract
1. Introduction
2. Experimental
3. Computational Details
4. Results and Discussion
4.1. Calculated Structures
4.2. FTIR and Raman Spectra of Solid Compounds
4.3. Raman Spectra of Liquid Compounds
4.4. Raman Spectrum of Metoso in Aqueous Solution
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ciavardini, A.; Rondino, F.; Paladini, A.; Speranza, M.; Fornarini, S.; Satta, M.; Piccirillo, S. The effect of fluorine substitution on chiral recognition: Interplay of CH…π, OH…π and CH…F interactions in gas-phase complexes of 1-aryl-1-ethanol with butan-2-ol. Phys. Chem. Chem. Phys. 2013, 15, 19360–19370. [Google Scholar] [CrossRef]
- Filippi, A.; Fraschetti, C.; Piccirillo, S.; Rondino, F.; Botta, B.; D’Acquarica, I.; Calcaterra, A.; Speranza, M. Chirality effects on the IRMPD spectra of basket resorcinarene/nucleoside complexes. Chem. Eur. J. 2012, 18, 8320–8328. [Google Scholar] [CrossRef]
- Speranza, M.; Rondino, F.; Satta, M.; Paladini, A.; Giardini, A.; Catone, D.; Piccirillo, S. Molecular and supramolecular chirality: R2PI spectroscopy as a tool for the gas-phase recognition of chiral systems of biological interest. Chirality 2009, 21, 119–144. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, A.; Mukherjee, A.; Myerson, A.S. Thermochemistry of racemic and enantiopure organic crystals for predicting en-antiomer separation. Cryst. Growth Des. 2017, 17, 4676–4686. [Google Scholar] [CrossRef]
- Fujii, I. Crystal structures of racemic and enantiopure synephrine correlated with physicochemical properties from IR spec-troscopy and thermal analysis. Acta Crystallogr. Sect. C 2018, 74, 1531–1539. [Google Scholar] [CrossRef]
- Parcheta, M.; Świsłocka, R.; Świderski, G.; Matejczyk, M.; Lewandowski, W. Spectroscopic characterization and antioxidant properties of mandelic acid and its derivatives in a theoretical and experimental approach. Materials 2022, 15, 5413. [Google Scholar] [CrossRef]
- Barańska, H.; Kuduk-Jaworska, J.; Szostak, R.; Romaniewska, A. Vibrational spectra of racemic and enantiomeric malic acids. J. Raman Spectrosc. 2003, 34, 68–76. [Google Scholar] [CrossRef]
- Aviv, H.; Nemtsov, I.; Mastai, Y.; Tischler, Y.R. Characterization of Crystal Chirality in Amino Acids Using Low-Frequency Raman Spectroscopy. J. Phys. Chem. A 2017, 121, 7882–7888. [Google Scholar] [CrossRef]
- McCreery Research Group. Available online: https://www.chem.ualberta.ca/~mccreery/ramanmaterials.html (accessed on 1 January 2025).
- Mayerhöfer, T.G.; Costa, W.D.; Popp, J. A simplified, effective ATR correction method for spectral identification. Spectro-Chim. Acta Part A Mol. Biomol. Spectrosc. 2025, 341, 126425. [Google Scholar] [CrossRef] [PubMed]
- Neese, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system—Version 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Bannwarth, C.; Caldeweyher, E.; Ehlert, S.; Hansen, A.; Pracht, P.; Seibert, J.; Spicher, S.; Grimme, S. Extended tight-binding quantum chemistry methods. WIREs Comput. Mol. Sci. 2021, 11, 1493. [Google Scholar] [CrossRef]
- Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652−1671. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Papajak, E.; Truhlar, D.G. Convergent Partially Augmented Basis Sets for Post-Hartree−Fock Calculations of Molecular Prop-erties and Reaction Barrier Heights. J. Chem. Theory Comput. 2011, 7, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chem. Phys. 2009, 356, 98–109. [Google Scholar] [CrossRef]
- Stoychev, G.L.; Auer, A.A.; Neese, F. Automatic Generation of Auxiliary Basis Sets. J. Chem. Theory Comput. 2017, 13, 554–562. [Google Scholar] [CrossRef]
- Garcia-Ratés, M.; Neese, F. Effect of the Solute Cavity on the Solvation Energy and its Derivatives within the Framework of the Gaussian Charge Scheme. J. Comput. Chem. 2020, 41, 922–939. [Google Scholar] [CrossRef]
- Marble, C.B.; Xu, X.; Petrov, G.I.; Wang, D.; Yakovleva, V.V. New Insights into a Hydrogen Bond: Hyper-Raman Spectroscopy of DMSO-Water Solution. Phys. Chem. Chem. Phys. 2021, 23, 24047–24051. [Google Scholar] [CrossRef]
- Wallace, V.M.; Dhumal, N.R.; Zehentbauer, F.M.; Kim, H.J.; Kiefer, J. Revisiting the Aqueous Solutions of Dimethyl Sulfoxide by Spectroscopy in the Mid- and Near Infrared: Experiments and Car−Parrinello Simulations. J. Phys. Chem. B 2015, 119, 14780−14789. [Google Scholar] [CrossRef]
- Noack, K.; Kiefer, J. Concentration-Dependent Hydrogen-Bonding Effects on the Dimethyl Sulfoxide Vibrational Structure in the Presence of Water, Methanol, and Ethanol. Chem. Phys. Chem. 2010, 11, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.; Rajesh, K.; Stanton, J.F.; Baiz, C.R. Quantifying Hydrogen-Bond Populations in Dimethyl Sulfoxide/Water Mixtures Angew. Chem. Int. Ed. 2017, 56, 11375–11379. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.I.; Baiz, C.R. Crowding Stabilizes DMSO−Water Hydrogen-Bonding Interactions. J. Phys. Chem. B 2018, 122, 5984−5990. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Cao, X.; Wang, C.; Wang, S.; Sun, C. Investigation of hydrogen bonding in Water/DMSO binary mixtures by Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 228, 117704. [Google Scholar] [CrossRef]
- Mrazkova, E.; Pavel Hobza, P. Hydration of Sulfo and Methyl Groups in Dimethyl Sulfoxide Is Accompanied by the Formation of Red-Shifted Hydrogen Bonds and Improper Blue-Shifted Hydrogen Bonds: An ab Initio Quantum Chemical Study. J. Phys. Chem. A 2003, 107, 1032–1039. [Google Scholar] [CrossRef]







| Description | R-Metoso | Racemic Mixture | |||||
|---|---|---|---|---|---|---|---|
| IR | Raman | IR | Raman | ||||
| Solid 292 K | Solid 292 K | Liquid 348 K | Solid 292 K | Solid 292 K | Liquid 318 K | Solution 10−1 M in H2O 292 K | |
| Caromatic-H str | 3051(m) | 3058(vs) | 3058(s) | 3051(m) | 3058(vs) | 3058(vs) | 3070(s) |
| Caromatic-H str | 3038(w) | 3048(vs) | 3048(s) | 3037(m) | 3048 (vs) | sh | 3053 (sh) |
| CS-H asym str | 3019(m) | 3024(w) | 3024(w) | 3021(m) | 3024(w) | ||
| Cpmetyl-H asym str | 2996(m) | 3000(s,sh) | 2996(m) | 3000(s) | 3013(m) | ||
| Cpmetyl-H asym str | 2988(m) | 2993(s) | 3000(s) | 2990(sh) | 2993(s) | 3003(s) | |
| Cpmetyl-H asym str | shoulder | 2982(sh) | 2993(sh) | sh | 2982(sh) | sh | |
| Cpmetyl-H asym str | 2954(m) | 2957(w) | 2954(m) | 2957(w) | |||
| CS-H sym str | 2921 (w) | 2926(s) | 2926(s) | 2922 (m) | 2926(s) | ||
| Cpmetyl-H sym str | 2904 (m) | 2907(vs) | 2907(vs) | 2907(m) | 2907(vs) | 2915(vvs) | 2928 (vs) |
| 2875(w) | 2871(m) | 2871(m) | 2871(m) | 2874(s) | 2875 (vw) | ||
| in plane Caromatic-H bending | 1663(w) | 1655(w) | |||||
| in plane Caromatic-H bending | 1594(w) | 1596(s) | 1599(vs) | 1596(m) | 1592(s) | 1593(s) | 1598(vs) |
| in plane Caromatic-H bending | 1540(vw) | 1578(sh) | 1582(sh) | 1569(sh) | |||
| CpmetylH3 rocking/twisting | 1492(m) | 1496(vw) | 1497(vw) | 1494(s) | 1492(vw) | ||
| CpmetylH3 rocking/twisting | 1451(w) | 1451(vw) | 1458(w) | 1451(m) | 1450(vw) | 1446(w) | |
| CpmetylH3 bending sym and asym | 1401(m) | 1403–1424(w) | 1406–1425(w) | 1403–1420(m) | 1403–1420(w) | 1405(w) | |
| CpmetylH3 umbrella | 1385(m) | 1382(w) | 1386(s) | 1386(m sh) | 1380(w) | 1375(m) | 1382(m) |
| CSH3 3 umbrella | 1297(m) | 1304(w) | 1304(m) | 1298(m) | 1303(w) | 1302(w) | 1313(vvw) |
| Cpmetyl-H scissoring | 1208(w) | 1210(s) | 1215(s) | 1209(m) | 1208(s) | 1208(s) | 1213(m) |
| Cpmetyl-H scissoring + C-CH3 stretch | 1177(w) | 1180(m) | 1178(w) | 1178(m) | 1178(w) | ||
| In plane C-H scissoring | 1148(m) | 1147(vvw) | |||||
| Caromatic-S stretching | 1115(vw) | 1116(w) | |||||
| aromatic C-C breath + CpmetylH3 rock | 1086(s) | 1087(vs) | 1091(vvs) | 1087(s) | 1085(vs) | 1085(vs) | 1089(vs) |
| S-O stretch + ring breath | 1039(vs) | 1037(m) | 1044(vw) | 1037(vvs) | 1038(w) | 1042(w) | 983–1030 |
| out of plane C-H arom + S-CH3 rock | 1011(m) | 1014(ssh) | |||||
| out of plane C-H arom + S-CH3 rock | 970(m) | sh | |||||
| S-CH3 rock | 947(m) | 950(vw) | 954(s) | 949(w) | |||
| out of plane Carom-H (sym) | 813(vs) | 818(m) | 812(sh) | 809(s) | 810(sh) | 809(sh) | |
| C-C arom breathing | 796(s) | 798(s) | 794(s) | 795(s) | 799(s) | ||
| out of plane CaromH (asym) | 706(w) | 705(w) | 705(sh) | ||||
| S-CH3 stretch | 684(m) | 690(vs) | 684(s) | 683(m) | 687(vs) | 681(s) | 695(s) |
| C-CH3 stretch | 633(w) | 637(m) | 639(s) | 633(w) | 635(m) | 635(m) | 634(m) |
| Carom-SCH3 stretch | 614(m) | 619(m) | 622(w) | 615(m) | 617(m) | 618(sh) | |
| Ring butterfly | 504(s) | 510(vw) | 504(vs) | 507(vw) | |||
| Asym ring stretch | 460(m) | 464(vw) | 460(m) | 462(vw) | 462(vvw) | ||
| C-S-O bending | 374(s) | 375(m) | 374(m) | 373(m) | 382(m) | ||
| C-C-CH3 3 bending | 364(sh) | 363(m) | |||||
| mixed | 338(w) | 335(w) | |||||
| C-S-C bending | 296(m) | 295(s) | 293(s) | 292(m) | 296(m) | ||
| C-CH3 torsion | 220(m) | 218(m) | 215(m) | 211(m) | 212(m) | ||
| C-SOCH3 torsion | 176(vw) | 176(vw) | |||||
| animation S5 | 109(s) | 109(s) | |||||
| animation S4 | 84(w) | 84 (vvw) | |||||
| animation S3 | 65(s) | 65(s) | |||||
| animation S2 | 42(vs) | 42(vs) | |||||
| animation S1 | shoulder | 24(s) | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rondino, F.; Falconieri, M.; Gagliardi, S.; Satta, M.; Piccirillo, S.; Bodo, E. Vibrational Spectra of R and S Methyl Para Tolyl Sulfoxide and Their Racemic Mixture in the Solid–Liquid State and in Water Solution. Symmetry 2026, 18, 17. https://doi.org/10.3390/sym18010017
Rondino F, Falconieri M, Gagliardi S, Satta M, Piccirillo S, Bodo E. Vibrational Spectra of R and S Methyl Para Tolyl Sulfoxide and Their Racemic Mixture in the Solid–Liquid State and in Water Solution. Symmetry. 2026; 18(1):17. https://doi.org/10.3390/sym18010017
Chicago/Turabian StyleRondino, Flaminia, Mauro Falconieri, Serena Gagliardi, Mauro Satta, Susanna Piccirillo, and Enrico Bodo. 2026. "Vibrational Spectra of R and S Methyl Para Tolyl Sulfoxide and Their Racemic Mixture in the Solid–Liquid State and in Water Solution" Symmetry 18, no. 1: 17. https://doi.org/10.3390/sym18010017
APA StyleRondino, F., Falconieri, M., Gagliardi, S., Satta, M., Piccirillo, S., & Bodo, E. (2026). Vibrational Spectra of R and S Methyl Para Tolyl Sulfoxide and Their Racemic Mixture in the Solid–Liquid State and in Water Solution. Symmetry, 18(1), 17. https://doi.org/10.3390/sym18010017

