A Geometric Berry Phase Angle Induced in Im-3m H3S at 200 GPa by Ultra-Fast Laser Pulses
Abstract
:1. Introduction
2. Theoretical Background
3. Computational Details
- The ‘carrier’ wave, starting at time t = 0 fs with an initial phase set to the desired CEP angle ϕ, defined to be the vector [sin(ωt + ϕ), sin(ωt + ϕ + π/2) ] in the (y, z) polarization plane with selected laser pulse excitation frequency ω.
- An ‘envelope’ of amplitude corresponding to a single laser pulse as a half-cycle ‘sine-squared’ function Epeak sin2(ωenvt), also starting at time t = 0 with phase = 0° and peak field amplitude Epeak = 200 × 10−4 a.u. and with ωenv selected to result in a half-cycle, i.e., single laser pulse, duration of 10.0 fs.
- A ‘polarization’ factor of +1 or −1, applied uniquely to the Ez-field component. This yielded an electric field E vector, which turned either clockwise {CW, [+1} and right-handed (R) or counter-clockwise {CCW, [−1} and left-handed (S) in the (y, z) plane of polarization where the NG-QTAIM R and S chirality assignments are denoted by a bold font. Given the short (10.0 fs) duration of the pulse, a ‘field broadening’ approach to constructing the time-evolving superposition of excited states was employed: in the special case of a ‘sin2’ amplitude envelope function pulse of duration ΔT the energetic ‘broadening’ was induced by the field is ΔE = ħ/ΔT. Such short duration pulses are energetically broad, hence also unselective. Therefore, a carrier frequency (excitation energy) of frequency ω = 0.350 a.u. for the ultra-fast laser pulse was thus chosen to cover a relatively broad range of possible lower-lying excited states.
4. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, J.; Yong, X.; Liu, H.; Lu, S. Prediction of Enhanced Superconductivity in Cyclo-H12Bi/Pb Involving a Resonant Hydrogen Structure. Phys. Rev. B 2024, 110, 224507. [Google Scholar] [CrossRef]
- Drozdov, A.P.; Eremets, M.I.; Troyan, I.A.; Ksenofontov, V.; Shylin, S.I. Conventional Superconductivity at 203 Kelvin at High Pressures in the Sulfur Hydride System. Nature 2015, 525, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.E.; Marsiglio, F. Evidence Against Superconductivity in Flux Trapping Experiments on Hydrides Under High Pressure. J. Supercond. Nov. Magn. 2022, 35, 3141–3145. [Google Scholar] [CrossRef]
- Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of Superconductivity. Phys. Rev. 1957, 108, 1175–1204. [Google Scholar] [CrossRef]
- van de Bund, S.; Ackland, G.J. Competition between Superconductivity and Molecularization in the Quantum Nuclear Behavior of Lanthanum Hydride. Phys. Rev. B 2023, 108, 184102. [Google Scholar] [CrossRef]
- Seeyangnok, J.; Hassan, M.M.U.; Pinsook, U.; Ackland, G.J. Superconductivity and Electron Self-Energy in Tungsten-Sulfur-Hydride Monolayer. 2D Mater. 2024, 11, 025020. [Google Scholar] [CrossRef]
- Hirsch, J.E. Superconducting Materials: Judge and Jury of BCS-Electron–Phonon Theory. Appl. Phys. Lett. 2022, 121, 080501. [Google Scholar] [CrossRef]
- Hirsch, J.E. Superconducting Materials: The Whole Story. J. Supercond. Nov. Magn. 2020, 33, 61–68. [Google Scholar] [CrossRef]
- Hirsch, J.E. Hole Superconductivity. Phys. Lett. A 1989, 134, 451–455. [Google Scholar] [CrossRef]
- Koizumi, H. Supercurrent and Electromotive Force Generations by the Berry Connection from Many-Body Wave Functions. J. Phys. Math. Theor. 2023, 56, 185301. [Google Scholar] [CrossRef]
- Hirsch, J.E. Momentum of Superconducting Electrons and the Explanation of the Meissner Effect. Phys. Rev. B 2017, 95, 014503. [Google Scholar] [CrossRef]
- Berry, M.V. Quantal Phase Factors Accompanying Adiabatic Changes. Proc. R. Soc. Lond. Math. Phys. Sci. 1997, 392, 45–57. [Google Scholar] [CrossRef]
- Mottonen, M.; Vartiainen, J.J.; Pekola, J.P. Experimental Determination of the Berry Phase in a Superconducting Charge Pump. Phys. Rev. Lett. 2008, 100, 177201. [Google Scholar] [CrossRef] [PubMed]
- Cavalleri, A. Photo-Induced Superconductivity. Contemp. Phys. 2018, 59, 31–46. [Google Scholar] [CrossRef]
- Mi, X.P.; Lu, H.; Xu, T.; Früchtl, H.; van Mourik, T.; Paterson, M.J.; Kirk, S.R.; Jenkins, S. Response of the Mechanical and Chiral Character of Ethane to Ultra-Fast Laser Pulses. J. Comput. Chem. 2023, 45, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Kirk, S.R.; Jenkins, S. Tools for Overcoming Reliance on Energy-Based Measures in Chemistry: A Tutorial Review. Chem. Soc. Rev. 2023, 52, 5861–5874. [Google Scholar] [CrossRef]
- Jenkins, S.; Kirk, S.R. Next Generation Quantum Theory of Atoms in Molecules: From Stereochemistry to Photochemistry and Molecular Devices, Lecture Notes in Chemistry, 1st ed.; Springer Nature: Singapore, 2023; ISBN 978-981-99-0328-3. [Google Scholar]
- Koch, D.; Pavanello, M.; Shao, X.; Ihara, M.; Ayers, P.W.; Matta, C.F.; Jenkins, S.; Manzhos, S. The Analysis of Electron Densities: From Basics to Emergent Applications. Chem. Rev. 2024, 124, 12661–12737. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Peng Mi, X.; Zhou, X.; Hong, G.; Xu, T.; Früchtl, H.; van Mourik, T.; Paterson, M.J.; Kirk, S.R.; Jenkins, S. Ultra-Fast Laser Pulses as a Probe of Electron Dynamics: A next Generation QTAIM Perspective. Chem. Phys. Lett. 2023, 835, 141018. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory, 1st Paperback ed.; Clarendon Press: Oxford, UK; New York, NY, USA, 1994; ISBN 978-0-19-855865-1. [Google Scholar]
- Lu, H.; Azizi, A.; Mi, X.; Yu, W.; Peng, Y.; Xu, T.; Früchtl, H.; van Mourik, T.; Kirk, S.R.; Jenkins, S. Scoring Molecular Wires Subject to an Ultra-Fast Laser Pulse for Molecular Electronic Devices. J. Comput. Chem. 2023, 44, 1776–1785. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lu, H.; Wang, K.; Zhai, Y.; Lunin, V.; Sercel, P.C.; Beard, M.C. Tuning Spin-Polarized Lifetime in Two-Dimensional Metal–Halide Perovskite through Exciton Binding Energy. J. Am. Chem. Soc. 2021, 143, 19438–19445. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H.; Zhai, Y.; Lu, H.; Pan, X.; Xiao, C.; Gaulding, E.A.; Harvey, S.P.; Berry, J.J.; Vardeny, Z.V.; Luther, J.M.; et al. Chiral-Induced Spin Selectivity Enables a Room-Temperature Spin Light-Emitting Diode. Science 2021, 371, 1129–1133. [Google Scholar] [CrossRef] [PubMed]
- Frenking, G. The Chemical Bond—An Entrance Door of Chemistry to the Neighboring Sciences and to Philosophy. Isr. J. Chem. 2022, 62, e202100070. [Google Scholar] [CrossRef]
- Dey, D.; Ray, D.; Tiwari, A.K. Controlling Electron Dynamics with Carrier-Envelope Phases of a Laser Pulse. J. Phys. Chem. A 2019, 123, 4702–4707. [Google Scholar] [CrossRef] [PubMed]
- Ishii, N.; Kaneshima, K.; Kitano, K.; Kanai, T.; Watanabe, S.; Itatani, J. Carrier-Envelope Phase-Dependent High Harmonic Generation in the Water Window Using Few-Cycle Infrared Pulses. Nat. Commun. 2014, 5, 3331. [Google Scholar] [CrossRef]
- Lan, P.; Takahashi, E.J.; Liu, K.; Fu, Y.; Midorikawa, K. Carrier Envelope Phase Dependence of Electron Localization in the Multicycle Regime. New J. Phys. 2013, 15, 063023. [Google Scholar] [CrossRef]
- Lefebvre, C.; Gagnon, D.; Fillion-Gourdeau, F.; MacLean, S. Carrier-Envelope Phase Effects in Graphene. JOSA B 2018, 35, 958–966. [Google Scholar] [CrossRef]
- Yang, W.; Zurbenko, I. Kolmogorov–Zurbenko Filters. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 340–351. [Google Scholar] [CrossRef]
- Johnson, C.K.; Burnett, M.; Dunbar, W. Crystallographic Topology and Its Applications. In Proceedings of the Crystallographic Computing 7, Bellingham WA, USA, 17–22 August 1996; International Union of Crystallography: Bellingham WA, USA, 1996; pp. 1–25. [Google Scholar]
- Szarek, P.; Sueda, Y.; Tachibana, A. Electronic Stress Tensor Description of Chemical Bonds Using Nonclassical Bond Order Concept. J. Chem. Phys. 2008, 129, 094102. [Google Scholar] [CrossRef]
- Harper, K.C.; Sigman, M.S. Three-Dimensional Correlation of Steric and Electronic Free Energy Relationships Guides Asymmetric Propargylation. Science 2011, 333, 1875–1878. [Google Scholar] [CrossRef] [PubMed]
- Garner, M.H.; Corminboeuf, C. Helical Electronic Transitions of Spiroconjugated Molecules. Chem. Commun. 2021, 57, 6408–6411. [Google Scholar] [CrossRef] [PubMed]
- Xing, H.; Azizi, A.; Momen, R.; Xu, T.; Kirk, S.R.; Jenkins, S. Chirality–Helicity of Cumulenes: A Non-Scalar Charge Density Derived Perspective. Int. J. Quantum Chem. 2022, 122, e26884. [Google Scholar] [CrossRef]
- Tian, T.; Xu, T.; Kirk, S.R.; Rongde, I.T.; Tan, Y.B.; Manzhos, S.; Shigeta, Y.; Jenkins, S. Intramolecular Mode Coupling of the Isotopomers of Water: A Non-Scalar Charge Density-Derived Perspective. Phys. Chem. Chem. Phys. 2020, 22, 2509–2520. [Google Scholar] [CrossRef] [PubMed]
- Bulaevski, L.N.; Rusinov, A.I.; Kulić, M. Helical Order of Spins in Superconductors. Solid State Commun. 1979, 30, 59–63. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First Principles Methods Using CASTEP. Z. Für Krist.—Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef]
- Bartók, A.P.; Yates, J.R. Regularized SCAN Functional. J. Chem. Phys. 2019, 150, 161101. [Google Scholar] [CrossRef] [PubMed]
- Tancogne-Dejean, N.; Oliveira, M.J.T.; Andrade, X.; Appel, H.; Borca, C.H.; Le Breton, G.; Buchholz, F.; Castro, A.; Corni, S.; Correa, A.A.; et al. Octopus, a Computational Framework for Exploring Light-Driven Phenomena and Quantum Dynamics in Extended and Finite Systems. J. Chem. Phys. 2020, 152, 124119. [Google Scholar] [CrossRef] [PubMed]
- Otero-de-la-Roza, A.; Johnson, E.R.; Luaña, V. Critic2: A Program for Real-Space Analysis of Quantum Chemical Interactions in Solids. Comput. Phys. Commun. 2014, 185, 1007–1018. [Google Scholar] [CrossRef]
- Otero-de-la-Roza, A. Finding Critical Points and Reconstruction of Electron Densities on Grids. J. Chem. Phys. 2022, 156, 224116. [Google Scholar] [CrossRef]
- Kirk, S.R.; Jenkins, S. QuantVec. 2021. Available online: https://doi.org/10.5281/zenodo.5553686 (accessed on 21 December 2024).
- Kirk, S.R.; Jenkins, S. Beyond Energetic and Scalar Measures: Next Generation Quantum Theory of Atoms in Molecules. WIREs Comput. Mol. Sci. 2022, 12, e1611. [Google Scholar] [CrossRef]
- Clark, K.; Hassanien, A. Superconductivity in Just Four Pairs of (BETS)2GaCl4 Molecules. Nat. Nanotechnol. 2010, 5, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Naaman, R.; Waldeck, D.H. Spintronics and Chirality: Spin Selectivity in Electron Transport Through Chiral Molecules. Annu. Rev. Phys. Chem. 2015, 66, 263–281. [Google Scholar] [CrossRef] [PubMed]
- Naaman, R.; Paltiel, Y. Chiral Molecules and the Electron Spin. Nat. Rev. Chem. 2019, 3, 250–260. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, M.; Ren, S.; Hao, X.; Qin, W. Magnetic and Electric Control of Circularly Polarized Emission through Tuning Chirality-Generated Orbital Angular Momentum in Organic Helical Polymeric Nanofibers. Adv. Mater. 2019, 31, 1904857. [Google Scholar] [CrossRef] [PubMed]
- Kan, Y.; Andersen, S.K.H.; Ding, F.; Kumar, S.; Zhao, C.; Bozhevolnyi, S.I. Metasurface-Enabled Generation of Circularly Polarized Single Photons. Adv. Mater. 2020, 32, 1907832. [Google Scholar] [CrossRef]
- Long, G.; Jiang, C. Spin Control in Reduced-Dimensional Chiral Perovskites. Nat. Photonics 2018, 12, 528–533. [Google Scholar] [CrossRef]
(a) | ||
---|---|---|
ϕ | {F, C, A} | Chelicity |
0° | {−0.00020785, −0.00131086[R], 0.00479936} | −0.000006 |
30° | {−0.00164093, 0.00357259[S], −0.00568488} | 0.000020 |
60° | {0.00001563, −0.00029957[R], −0.00508324} | −0.000002 |
90° | {0.00089116, −0.00092710[R], −0.00387651} | −0.000004 |
120° | {0.00048556, −0.00059968[R], −0.00163054} | −0.000001 |
150° | {0.00048844, 0.00085479[S], −0.00002236} | 0.000000 |
180° | {−0.00042580, −0.00355555[R], −0.00312646} | −0.000011 |
(b) | ||
ϕ | {F,C, A} | Chelicity |
0° | {−0.00141764, −0.00039934[R], −0.00003510} | −0.000000 |
30° | {0.00406894, 0.00384703[S], −0.00092194} | 0.000004 |
60° | {0.00356699, 0.00273614[S], −0.00096778} | 0.000003 |
90° | {0.00361266, −0.00117082[R], 0.00119853} | −0.000001 |
120° | {−0.00440098, −0.00844341[R], 0.00028270} | −0.000002 |
150° | {−0.00079749, −0.00118301[R], −0.00056539} | −0.000001 |
180° | {−0.00160549, −0.00094371[R], −0.00061383} | −0.000001 |
(a) | ||
---|---|---|
ϕ | {F, C, A} | Chelicity |
0° | {0.00395620, 0.00068954[S], −0.00541317} | 0.00000 |
30° | {0.00343817, 0.00045152[S], −0.00484821} | 0.00000 |
60° | {−0.00241064, 0.00262590[S], −0.00545623} | 0.00001 |
90° | {−0.00407532, −0.00284361[R], −0.00488540} | −0.00001 |
120° | {−0.00611005, −0.00015849[R], −0.00263417} | −0.00000 |
150° | {−0.00683875, −0.00328675[R], −0.00251966} | −0.00001 |
180° | {−0.00546774, −0.00130459[R], −0.00275087} | −0.00000 |
(b) | ||
ϕ | {F,C, A} | Chelicity |
0° | {−0.00034367, −0.00320850[R], −0.03242285} | −0.00010 |
30° | {0.00137164, 0.00074987[S], −0.03190550} | 0.00002 |
60° | {−0.00192498, 0.00374808[S], −0.03208291} | 0.00012 |
90° | {−0.00240857, 0.00045161[S], −0.02964950} | 0.00001 |
120° | {−0.00262345, 0.00028611[S], −0.03944482} | 0.00001 |
150° | {−0.00403366, −0.00326675[R], −0.05167981} | −0.00017 |
180° | {−0.00096860, −0.00348057[R], −0.04446884} | −0.00016 |
(a) | ||
---|---|---|
ϕ | {F, C, A} | Chelicity |
0° | {15.36881044, −14.1175355[R], 0.04852940} | −0.68512 |
30° | {0.39218615, −2.01422662[R], 0.18215077} | −0.36689 |
60° | {0.79557267, −2.49460523[R], −0.02143174} | −0.05346 |
90° | {0.29057790, −1.85751870[R], −0.08630643} | −0.16032 |
120° | {−0.03259674, −0.43128741[R], 0.03124769} | −0.01348 |
150° | {0.14292926, −0.34667352[R], 0.17702022} | −0.06137 |
180° | {−14.91095652, 13.3962577[S], −0.15900106} | 2.13002 |
(b) | ||
ϕ | {F,C, A} | Chelicity |
0° | {0.02449043, −0.01165811[R], −0.00350769} | −0.00004 |
30° | {−0.01882514, 0.00855684[S], −0.00096604} | 0.00001 |
60° | {−0.02982649, −0.05461642[R], 0.00031557} | −0.00002 |
90° | {−0.03078349, −0.00723467[R], 0.00461964} | −0.00003 |
120° | {0.00291624, −0.01300193[R], 0.00413865} | −0.00005 |
150° | {−0.03170038, 0.00312240[S], 0.00225964} | 0.00001 |
180° | {0.46458456, −0.46008490[R], 0.00312497} | 0.00144 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, G.; Zhou, X.; He, H.; Xu, T.; Früchtl, H.; van Mourik, T.; Zhai, Y.; Kirk, S.R.; Jenkins, S. A Geometric Berry Phase Angle Induced in Im-3m H3S at 200 GPa by Ultra-Fast Laser Pulses. Symmetry 2025, 17, 299. https://doi.org/10.3390/sym17020299
Hong G, Zhou X, He H, Xu T, Früchtl H, van Mourik T, Zhai Y, Kirk SR, Jenkins S. A Geometric Berry Phase Angle Induced in Im-3m H3S at 200 GPa by Ultra-Fast Laser Pulses. Symmetry. 2025; 17(2):299. https://doi.org/10.3390/sym17020299
Chicago/Turabian StyleHong, Genwei, Xinjie Zhou, Huan He, Tianlv Xu, Herbert Früchtl, Tanja van Mourik, Yaxin Zhai, Steven R. Kirk, and Samantha Jenkins. 2025. "A Geometric Berry Phase Angle Induced in Im-3m H3S at 200 GPa by Ultra-Fast Laser Pulses" Symmetry 17, no. 2: 299. https://doi.org/10.3390/sym17020299
APA StyleHong, G., Zhou, X., He, H., Xu, T., Früchtl, H., van Mourik, T., Zhai, Y., Kirk, S. R., & Jenkins, S. (2025). A Geometric Berry Phase Angle Induced in Im-3m H3S at 200 GPa by Ultra-Fast Laser Pulses. Symmetry, 17(2), 299. https://doi.org/10.3390/sym17020299