Complex Dynamics in Circular and Deformed Bilayer Graphene-Inspired Billiards with Anisotropy and Strain
Abstract
:1. Introduction
2. Circular and Deformed Billiards in Anisotropic Materials
2.1. Lyapunov Exponents as Characteristics of the Billiard’s Dynamics
2.2. Deviation from Circular Geometry in Real and Momentum Space
2.3. Influence of the Interplay Between the Deformation of the Cavity and Fermi Line
3. Strain as a Source of Irregular Anisotropy
3.1. Modeling of Uniaxially Strained Graphene-Type Media
3.2. Mesoscopic Electron Dynamics in Strained Graphene-Based Media
4. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akkermans, E.; Montambaux, G. Mesoscopic Physics of Electrons and Photons; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Stöckmann, H.J. Quantum Chaos: An Introduction; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Nöckel, J.U.; Stone, A.D. Ray and wave chaos in asymmetric resonant optical cavities. Nature 1997, 385, 45–47. [Google Scholar] [CrossRef]
- Hentschel, M.; Richter, K. Quantum chaos in optical systems: The annular billiard. Phys. Rev. E 2002, 66, 056207. [Google Scholar] [CrossRef] [PubMed]
- Nyakiti, L.; Myers-Ward, R.L.; Wheeler, V.D.; Imhoff, E.A.; Bezares, F.; Chun, H.; Caldwell, J.D.; Friedman, A.L.; Matis, B.R.; Baldwin, J.W.; et al. Bilayer Graphene Grown on 4H-SiC (0001) Step-Free Mesas. Nano Lett. 2012, 12, 1749–1756. [Google Scholar] [CrossRef]
- Pakdehi, D.M.; Pierz, K.; Wundrack, S.; Aprojanz, J.; Nguyen, T.T.N.; Dziomba, T.; Hohls, F.; Bakin, A.; Stosch, R.; Tegenkamp, C.; et al. Homogeneous Large-Area Quasi-Free-Standing Monolayer and Bilayer Graphene on SiC. ACS Appl. Nano Mater. 2019, 2, 844–852. [Google Scholar] [CrossRef]
- Ciuk, T.; Pyrzanowska, B.; Jagiello, J.; Dobrowolski, A.; Czolak, D.; Szary, M.J. Quasi-free-standing epitaxial graphene on 4H-SiC(0001) as a two-dimensional reference standard for Kelvin Probe Force Microscopy. Appl. Surf. Sci. 2024, 675, 160958. [Google Scholar] [CrossRef]
- Banszerus, L.; Schmitz, M.; Engels, S.; Goldsche, M.; Watanabe, K.; Taniguchi, T.; Beschoten, B.; Stampfer, C. Ballistic Transport Exceeding 28 Mm in CVD Grown Graphene. Nano Lett. 2016, 16, 1387–1391. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Wallbank, J.R.; Gallagher, P.; Watanabe, K.; Taniguchi, T.; Fal’ko, V.I.; Goldhaber-Gordon, D. Ballistic Miniband Conduction in a Graphene Superlattice. Science 2016, 353, 1526–1529. [Google Scholar] [CrossRef] [PubMed]
- Gold, C.; Knothe, A.; Kurzmann, A.; Garcia-Ruiz, A.; Watanabe, K.; Taniguchi, T.; Fal’ko, V.; Ensslin, K.; Ihn, T. Coherent Jetting from a Gate-Defined Channel in Bilayer Graphene. Phys. Rev. Lett. 2021, 127, 046801. [Google Scholar] [CrossRef]
- Berdyugin, A.I.; Tsim, B.; Kumaravadivel, P.; Xu, S.G.; Ceferino, A.; Knothe, A.; Kumar, R.K.; Taniguchi, T.; Watanabe, K.; Geim, A.K.; et al. Minibands in Twisted Bilayer Graphene Probed by Magnetic Focusing. Sci. Adv. 2020, 6, eaay7838. [Google Scholar] [CrossRef] [PubMed]
- Seiler, A.M.; Jacobsen, N.; Statz, M.; Fernandez, N.; Falorsi, F.; Watanabe, K.; Taniguchi, T.; Dong, Z.; Levitov, L.S.; Weitz, R.T. Probing the tunable multi-cone band structure in Bernal bilayer graphene. Nat. Commun. 2024, 15, 3133. [Google Scholar] [CrossRef] [PubMed]
- Seiler, A.M.; Statz, M.; Weimer, I.; Jacobsen, N.; Watanabe, K.; Taniguchi, T.; Dong, Z.; Levitov, L.S.; Weitz, R.T. Interaction-Driven Quasi-Insulating Ground States of Gapped Electron-Doped Bilayer Graphene. Phys. Rev. Lett. 2024, 133, 066301. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Davydova, M.; Ogunnaike, O.; Levitov, L.S. Isospin- and momentum-polarized orders in bilayer graphene. Phys. Rev. B 2023, 107, 075108. [Google Scholar] [CrossRef]
- Dong, Z.; Lee, P.A.; Levitov, L.S. Charge and spin density wave orders in field-biased Bernal bilayer graphene. arXiv 2024, arXiv:2404.18073. [Google Scholar]
- Weitz, R.; Allen, M.T.; Feldman, B.E.; Martin, J.; Yacoby, A. Broken-Symmetry States in Doubly Gated Suspended Bilayer Graphene. Science 2010, 330, 812. [Google Scholar] [CrossRef]
- Bao, W.; Velasco, J., Jr.; Zhang, F.; Jing, L.; Standley, B.; Smirnov, D.; Bockrath, M.; MacDonald, A.H.; Lau, C.N. Evidence for a spontaneous gapped state in ultraclean bilayer graphene. Proc. Natl. Acad. Sci. USA 2012, 109, 10802–10805. [Google Scholar] [CrossRef]
- Velasco, J.; Jing, L.; Bao, W.; Lee, Y.; Kratz, P.; Aji, V.; Bockrath, M.; Lau, C.N.; Varma, C.; Stillwell, R.; et al. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nat. Nanotechnol. 2012, 7, 156. [Google Scholar] [CrossRef]
- Jiang, X.C.; Song, Z.Y.; Ruan, Z.; Zhang, Y.Z. Spontaneous charge-ordered state in Bernal-stacked bilayer graphene. Phys. Res. Rev. 2024, 6, 013255. [Google Scholar] [CrossRef]
- Koh, J.M.; Thomson, A.; Alicea, J.; Lantagne-Hurtubise, E. Symmetry-broken metallic orders in spin-orbit-coupled Bernal bilayer graphene. Phys. Rev. B 2024, 110, 245118. [Google Scholar] [CrossRef]
- Seemann, L.; Knothe, A.; Hentschel, M. Gate-tunable regular and chaotic electron dynamics in ballistic bilayer graphene cavities. Phys. Rev. B 2023, 107, 205404. [Google Scholar] [CrossRef]
- Seemann, L.; Knothe, A.; Hentschel, M. Steering internal and outgoing electron dynamics in bilayer graphene cavities by cavity design. New J. Phys. 2024, 26, 103045. [Google Scholar] [CrossRef]
- Liu, T.; Li, J.H.; Zhu, X.; Guo, H.; Lu, H.Z.; Xie, X.C. Dispersions and magnetism of strian-induced pseudo Landau levels in Bernal-stacked bilayer graphene. arXiv 2024, arXiv:2410.21921. [Google Scholar]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef]
- Eckmann, J.P.; Ruelle, D. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 1985, 57, 617–656. [Google Scholar] [CrossRef]
- Chierchia, L.; Mather, J.N. Kolmogorov-Arnold-Moser theory. Scholarpedia 2010, 5, 2123. [Google Scholar] [CrossRef]
- Liu, M.H.; Bundesmann, J.; Richter, K. Spin-dependent Klein tunneling in graphene: Role of Rashba spin-orbit coupling. Phys. Rev. B 2012, 85, 085406. [Google Scholar] [CrossRef]
- Naumis, G.G.; Barraza-Lopez, S.; Oliva-Leyva, M.; Terrones, H. Electronic and optical properties of strained graphene and other strained 2D materials: A review. Rep. Prog. Phys. 2017, 80, 096501. [Google Scholar] [CrossRef] [PubMed]
- Midtvedt, D.; Lewenkopf, C.H.; Croy, A. Strain–displacement relations for strain engineering in single-layer 2d materials. 2D Mater. 2016, 3, 011005. [Google Scholar] [CrossRef]
- Röhrl, J.; Hundhausen, M.; Emtsev, K.V.; Seyller, T.; Graupner, R.; Ley, L. Raman spectra of epitaxial graphene on SiC(0001). Appl. Phys. Lett. 2008, 92. [Google Scholar] [CrossRef]
- Schrepfer, J.K.; Chen, S.C.; Liu, M.H.; Richter, K.; Hentschel, M. Dirac Fermion Optics and Directed Emission from Single- and Bilayer Graphene Cavities. Phys. Rev. B 2021, 104, 155436. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seemann, L.; Lukin, J.; Häßler, M.; Gemming, S.; Hentschel, M. Complex Dynamics in Circular and Deformed Bilayer Graphene-Inspired Billiards with Anisotropy and Strain. Symmetry 2025, 17, 202. https://doi.org/10.3390/sym17020202
Seemann L, Lukin J, Häßler M, Gemming S, Hentschel M. Complex Dynamics in Circular and Deformed Bilayer Graphene-Inspired Billiards with Anisotropy and Strain. Symmetry. 2025; 17(2):202. https://doi.org/10.3390/sym17020202
Chicago/Turabian StyleSeemann, Lukas, Jana Lukin, Max Häßler, Sibylle Gemming, and Martina Hentschel. 2025. "Complex Dynamics in Circular and Deformed Bilayer Graphene-Inspired Billiards with Anisotropy and Strain" Symmetry 17, no. 2: 202. https://doi.org/10.3390/sym17020202
APA StyleSeemann, L., Lukin, J., Häßler, M., Gemming, S., & Hentschel, M. (2025). Complex Dynamics in Circular and Deformed Bilayer Graphene-Inspired Billiards with Anisotropy and Strain. Symmetry, 17(2), 202. https://doi.org/10.3390/sym17020202