Next Article in Journal
Asymptotic and Oscillatory Properties for Even-Order Nonlinear Neutral Differential Equations with Damping Term
Previous Article in Journal
A Dual-Layer Symmetric Multi-Robot Path Planning System Based on an Improved Neural Network-DWA Algorithm
Previous Article in Special Issue
Criteria of Oscillation for Second-Order Mixed Nonlinearities in Dynamic Equations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Positive Periodic Solutions of Non-Autonomous Predator-Prey System with Stage-Structured Predator on Time Scales

1
School of Mathematics and Statistics, Huaiyin Normal University, Huaian 223300, China
2
Jiyang College, Zhejiang Agriculture and Forestry University, Zhuji 311800, China
*
Authors to whom correspondence should be addressed.
Symmetry 2025, 17(1), 86; https://doi.org/10.3390/sym17010086
Submission received: 11 December 2024 / Revised: 25 December 2024 / Accepted: 27 December 2024 / Published: 8 January 2025

Abstract

:
In this note, we investigate the existence and asymptotic property of positive periodic solutions to non-autonomous predator-prey system with stage-structured predator on time scales. Via Schauder’s fixed theorem, easily verifiable sufficient existence conditions of positive periodic solutions for the considered system are obtained. We also study asymptotic property of positive periodic solutions on the basis of existence conditions. Due to the symmetry of periodic solutions, the results of this paper have a certain impact on the study of symmetry. It should be pointed out that the system we are studying is built on arbitrary time scale, so our results generalize the results of existing continuous or discrete systems. Furthermore, we develop Schauder’s fixed theorem for studying the delay system on time scales.

1. Introduction

In 2011, Zeng [1] studied a predator-prey system with stage structure for predator on time scales as follows:
u 1 Δ ( t ) = r ( t ) a ( t ) e u 1 ( t γ ( t ) ) b 1 ( t ) e u 1 ( t ) + u 2 ( t ) m 2 ( t ) e 2 u 2 ( t ) + e 2 u 1 ( t ) b 2 ( t ) e u 3 ( t ) α 1 ( t ) + α 2 ( t ) e u 1 ( t ) + α 3 ( t ) e u 3 ( t ) u 2 Δ ( t ) = c 1 ( t ) e 2 u 1 ( t γ ( t ) ) m 2 ( t ) e 2 u 2 ( t γ ( t ) ) + e 2 u 1 ( t γ ( t ) ) d 1 ( t ) f ( t ) u 3 Δ ( t ) = f ( t ) e u 2 ( t ) u 3 ( t ) + c 2 ( t ) e u 1 ( t γ ( t ) ) α 1 ( t ) + α 2 ( t ) e u 1 ( t γ ( t ) ) + α 3 ( t ) e u 3 ( t γ ( t ) ) d 2 ( t ) ,
where t T which is a time scale. In [1], using Mawhin’s continuation theorem and inequality techniques, the authors obtained the existence of positive periodic solutions for system (1). Choose T = R . If we set z i ( t ) = exp ( u i ( t ) ) , i = 1 , 2 , 3 , then system (1) reduces to
z 1 ( t ) = r ( t ) z 1 ( t ) a ( t ) z 1 ( t ) z 1 ( t γ ( t ) ) b 1 ( t ) z 1 2 ( t ) z 2 ( t ) m 2 ( t ) z 2 2 ( t ) + z 1 2 ( t ) b 2 ( t ) z 1 ( t ) z 3 ( t ) α 1 ( t ) + α 2 ( t ) z 1 ( t ) + α 3 ( t ) z 3 ( t ) z 2 ( t ) = [ d 1 ( t ) + f ( t ) ] z 2 ( t ) + c 1 ( t ) z 1 2 ( t γ ( t ) ) z 2 ( t ) m 2 ( t ) z 2 2 ( t γ ( t ) ) + z 1 2 ( t γ ( t ) ) z 3 ( t ) = d 2 ( t ) z 3 ( t ) + f ( t ) z 2 ( t ) + c 2 ( t ) z 1 ( t γ ( t ) ) z 3 ( t ) α 1 ( t ) + α 2 ( t ) z 1 ( t γ ( t ) ) + α 3 ( t ) z 3 ( t γ ( t ) ) .
We find that if system (1) exists a periodic solution u i ( t ) , then system (2) exists a periodic solution z i ( t ) = exp ( u i ( t ) ) , i = 1 , 2 , 3 . However, the positive periodic solution of system (2) is represented by e exponential functions, not general positive functions. A natural question is how to obtain the general form of the positive periodic solution for system (2)? Therefore, this paper is aim to study the following predator-prey system with stage-structured predator on time scales:
z 1 Δ ( t ) = r ( t ) z 1 ( σ ( t ) ) a ( t ) z 1 ( t ) z 1 ( t γ ( t ) ) b 1 ( t ) z 1 2 ( t ) z 2 ( t ) m 2 ( t ) z 2 2 ( t ) + z 1 2 ( t ) b 2 ( t ) z 1 ( t ) z 3 ( t ) α 1 ( t ) + α 2 ( t ) z 1 ( t ) + α 3 ( t ) z 3 ( t ) z 2 Δ ( t ) = [ d 1 ( t ) + f ( t ) ] z 2 ( σ ( t ) ) + c 1 ( t ) z 1 2 ( t γ ( t ) ) z 2 ( t ) m 2 ( t ) z 2 2 ( t γ ( t ) ) + z 1 2 ( t γ ( t ) ) z 3 Δ ( t ) = d 2 ( t ) z 3 ( σ ( t ) ) + f ( t ) z 2 ( t ) + c 2 ( t ) z 1 ( t γ ( t ) ) z 3 ( t ) α 1 ( t ) + α 2 ( t ) z 1 ( t γ ( t ) ) + α 3 ( t ) z 3 ( t γ ( t ) ) ,
where t T which is a periodic time sale (see Definitions 3 and 4), Δ is the delta (or Hilger) derivative, all the parameters are rd-continuous positive ω periodic functions, the delay γ : T T + = [ 0 , ) T is rd-continuous ω periodic function. z 1 , z 2 and z 3 denote the densities of prey, immature and mature predators, respectively; r denotes the prey intrinsic growth rate; r a is the carrying capacity of the prey; b i , c i and d i denote the capture rate, the conversion rate and the death rate of immature and mature predators, respectively, where i = 1 , 2 ; m denotes half capturing saturation; f is the transformation of juveniles to adults; b 1 ( t ) z 1 2 ( t ) z 2 ( t ) m 2 ( t ) z 2 2 ( t ) + z 1 2 ( t ) is called Holling III functional response; b 2 ( t ) z 1 ( t ) z 3 ( t ) α 1 ( t ) + α 2 ( t ) z 1 ( t ) + α 3 ( t ) z 3 ( t ) stands for Beddington-DeAngelis response. Obviously, for T = R , if system (3) exists a positive periodic solution z ( t ) = ( z 1 ( t ) , z 2 ( t ) , z 3 ( t ) ) T , then system (1) exists a positive periodic solution u ( t ) = ( ln z 1 ( t ) , ln z 2 ( t ) , ln z 3 ( t ) ) T .
Generally, the continuity theorem based on Gaines and Mawhin’ coincidence degree theory can easily obtain the existence of periodic solutions to system (3), but cannot conveniently obtain the existence of positive periodic solutions. This paper is devoted to study the existence of positive periodic solutions to system (3) by using Schauder’s fixed theorem.
In the previous works, many researchers deal with the existence of periodic solutions to continuous or discrete predator-prey systems. In [2], based on the bifurcation theory and the slow-fast analysis method, the authors explored the existence and the equilibrium of the autonomous predator-prey model. For predator-prey systems with Holling functional response, see [3,4,5,6]; for predator-prey systems with Beddington-DeAngelis response, see [7,8,9,10,11]; for predator-prey systems with stage-structure, see [12,13,14,15,16]. In recent years, the predator-prey systems on time scales have been concerned by many authors, see [17,18,19,20,21].
The main contributions of this paper are listed as follows:
(1)
We first consider a predator-prey system with stage-structured predator on time scales and obtain the existence of positive periodic solutions which are general positive functions, which is different from corresponding ones in [1].
(2)
We develop Schauder’s fixed-point theorem for investigating dynamic systems on time scales.
(3)
System (3) unifies discrete and continuous systems which can improve and generalize the existing results.
The remaining structure of the paper are organized as follows: Section 2 gives the basic definitions and theories for time scales. In Section 3, some existence results of positive periodic solution of system (3) are given. In Section 4 we examines asymptotic property of system (3). Section 5 contains an example for verifying the main results. Finally, we provide some conclusions.

2. Preliminaries

A time scale T is a nonempty closed subset of R . The specific meanings of the following symbols can be found in book [22]: backward jump operator ρ , the forward jump operator σ and the graininess function μ ( t ) . A function f : T R is regressive if 1 + μ ( t ) f ( t ) 0 for all t T k holds. The set of regressive and rd-continuous functions f is denoted by R ( T , R ) . A function f : T R is positive regressive if 1 + μ ( t ) f ( t ) > 0 for all t T k holds. The set of positive regressive and rd-continuous functions f is denoted by R + ( T , R ) . The interval [ x , y ] T means [ x , y ] T . The intervals ( x , y ] T , ( x , y ) T and [ x , y ) T are defined similarly. C r d ( [ a , ) T ) denotes the set of all rd-continuous functions on [ a , ) T . For s , t T , the exponential function e δ ( t , s ) is defined by e δ ( t , s ) = exp s t ξ μ ( τ ) ( δ ( τ ) ) Δ τ , where
ξ μ ( τ ) ( δ ( τ ) ) = 1 μ ( τ ) L o g ( 1 + μ ( τ ) δ ( τ ) ) , μ ( τ ) > 0 , δ ( τ ) , μ ( τ ) = 0 .
Lemma 1
([22]). Let ϕ , ψ R . Then
[1] 
e 0 ( t , s ) 1  and  e ϕ ( t , t ) 1 ;
[2] 
e ϕ ( ρ ( t ) , s ) = ( 1 μ ( t ) ϕ ( t ) ) e ϕ ( t , s ) ;
[3] 
e ϕ ( t , s ) e ψ ( t , s ) = e ϕ ψ ( t , s ) .
[4] 
e ϕ ( t , s ) = 1 e ϕ ( s , t ) = e ϕ ( s , t ) ;
[5] 
e ϕ ( t , s ) e ϕ ( s , r ) = e ϕ ( t , r ) ,
where for all t T k ,
( ϕ ψ ) ( t ) = ϕ ( t ) + ψ ( t ) + μ ( t ) ϕ ( t ) ψ ( t )
and
( ϕ ) ( t ) = ϕ ( t ) 1 + μ ( t ) ϕ ( t ) .
Definition 1
([22]). Assume that f : T R is a function. For t T , define f Δ ( t ) to be the number (provided it exists) with the property that given any ε > 0 , there is a neighborhood U of t such that
| f ( σ ( t ) ) f ( s ) f Δ ( t ) ( σ ( t ) s ) | ε | σ ( t ) s | for all s U .
In this case, f Δ ( t ) is called the delta (or Hilger) derivative.
Definition 2
([22]). A function G : T R is called a delta-antiderivative of g : T R if G Δ ( t ) = g ( t ) holds for all t T k . For this case we define the integral of g by
a t g ( s ) Δ s = G ( t ) G ( a ) .
Definition 3
([23]). A time scale T is periodic if there exists ω > 0 for each v T such that v ± ω T . For T R , the smallest positive ω is the period of time scale.
Definition 4
([23]). Let T R be a periodic time scale with the period ω. The function f : T R is periodic with period T if there exists a natural number n such that T = n ω , f ( v ± T ) = f ( v ) for each v T . When T = R , f is a periodic function if κ is the smallest positive number such that f ( v ± κ ) = f ( v ) for each v T .
Obviously, if T is a periodic time scale with period ω , then σ ( t + n ω ) = σ ( t ) + n ω , where n Z . Thus, the graininess function μ satisfies μ ( t + n ω ) = σ ( t + n ω ) ( t + n ω ) = σ ( t ) t = μ ( t ) and so μ is a periodic function with period ω .
Lemma 2
([24]). For a nonnegative function g, where g R + , we have
1 s t g ( u ) Δ u e g ( t , s ) exp s t g ( u ) Δ u for all t s .
For a nonnegative function g, where g R + , we have
1 + s t g ( u ) Δ u e g ( t , s ) exp s t g ( u ) Δ u for all t s .
Lemma 3
(Schauder’s fixed point theorem [25]). Let K be a closed, convex and nonempty subset of Banach space B . Let Υ : K K be a continuous mapping such that Υ K is a relatively compact subset of B . Then Υ has at least one fixed point in K .

3. Existence of Positive Periodic Solutions

Let P ω = { ( u 1 , u 2 , u 3 ) T : ( u 1 , u 2 , u 3 ) T ( t + ω ) = ( u 1 , u 2 , u 3 ) T ( t ) } , where u 1 , u 2 and u 3 are r d continuous functions on T endowed with the norm
| | ( u 1 , u 2 , u 3 ) T | | = max { sup t [ 0 , ω ] T | u i ( t ) | , i = 1 , 2 , 3 } .
For L 1 , L 2 > 0 , let
P ω ( L 1 , L 2 ) = { z = ( z 1 , z 2 , z 3 ) T P ω : L 1 z i ( t ) L 2 , i = 1 , 2 , 3 , t T } .
Obviously, P ω ( L 1 , L 2 ) is bounded, closed, and convex subset of P ω .
Lemma 4.
Assume that r ( t ) = r 1 ( t ) + r 2 ( t ) , where r 1 ( t ) , r 2 ( t ) > 0 are r d continuous ω periodic functions. Let r 1 , d 1 , d 2 R + , and z = ( z 1 , z 2 , z 3 ) T P ω ( L 1 , L 2 ) . System (1.3) exists a periodic solution z = ( z 1 , z 2 , z 3 ) T P ω ( L 1 , L 2 ) if only if
z 1 ( t ) = 1 e ( r 1 ) ( t , t ω ) 1 t ω t [ a ( s ) z 1 ( s ) z 1 ( s γ ( s ) ) + b 1 ( s ) z 1 2 ( s ) z 2 ( s ) m 2 ( s ) z 2 2 ( s ) + z 1 2 ( s ) + b 2 ( s ) z 1 ( s ) z 3 ( s ) α 1 ( s ) + α 2 ( s ) z 1 ( s ) + α 3 ( s ) z 3 ( s ) r 2 ( t ) z 1 ( σ ( s ) ) ] e ( r 1 ) ( t , s ) Δ s , z 2 ( t ) = 1 e ( d 1 ) ( t , t ω ) 1 t ω t [ ( 2 d 1 ( s ) + f ( s ) ) z 2 ( σ ( s ) ) c 1 ( s ) z 1 2 ( s γ ( s ) ) z 2 ( s ) m 2 ( s ) z 2 2 ( s γ ( s ) ) + z 1 2 ( s γ ( s ) ) ] e ( d 1 ) ( t , s ) Δ s , z 3 ( t ) = 1 e ( d 2 ) ( t , t ω ) 1 t ω t [ 2 d 2 ( s ) z 3 ( σ ( s ) ) f ( s ) z 2 ( s ) c 2 ( s ) z 1 ( s γ ( s ) ) z 3 ( s ) α 1 ( s ) + α 2 ( s ) z 1 ( t γ ( s ) ) + α 3 ( s ) z 3 ( s γ ( s ) ) ] e ( d 2 ) ( t , s ) Δ s .
Proof. 
The proof of Lemma 4 is similar to the proof of Lemma 3.2 in [26]. For the convenience of readers, we provide a simple proof. Let
F ( t ) = a ( t ) z 1 ( t ) z 1 ( t γ ( t ) ) b 1 ( t ) z 1 2 ( t ) z 2 ( t ) m 2 ( t ) z 2 2 ( t ) + z 1 2 ( t ) b 2 ( t ) z 1 ( t ) z 3 ( t ) α 1 ( t ) + α 2 ( t ) z 1 ( t ) + α 3 ( t ) z 3 ( t ) .
From the first equation of system (3), we have
z 1 Δ ( t ) r 1 ( t ) z 1 ( σ ( t ) ) = r 2 ( t ) z 1 ( σ ( t ) ) + F ( t ) .
Multiply both sides of the above equation by e r 1 ( t , 0 ) and then integrate from t ω to t, then
t ω t [ e r 1 ( s , 0 ) z 1 ( s ) ] Δ Δ s = t ω t [ r 2 ( s ) z 1 ( σ ( t ) ) + F ( s ) ] e r 1 ( s , 0 ) Δ s .
Thus,
e r 1 ( t , 0 ) z 1 ( t ) e r 1 ( t ω , 0 ) z 1 ( t ω ) = t ω t [ r 2 ( s ) z 1 ( σ ( t ) ) + F ( s ) ] e r 1 ( s , 0 ) Δ s .
Dividing both sides of the above equation by e r 1 ( t , 0 ) , we have
z 1 ( t ) = 1 e ( r 1 ) ( t , t ω ) 1 t ω t [ r 2 ( s ) z 1 ( σ ( t ) ) F ( s ) ] e ( r 1 ) ( t , s ) Δ s .
The proof of z 2 ( t ) and z 3 ( t ) is similar to the above proof. □
Remark 1.
Since ( r 1 ) = r 1 1 μ r 1 > 0 , by Lemma 2, we have e ( r 1 ) ( t , t ω ) 1 > 0 . Similarly, we can obtain that
e ( d 1 ) ( t , t ω ) 1 > 0 and e ( d 2 ) ( t , t ω ) 1 > 0 .
Remark 2.
We claim that e p ( t , t ω ) does not depend on t, where p R + . In fact, from the definition of e p ( t , s ) , we have
e p ( t , t ω ) = exp t ω t l o g ( 1 + ( p ( s ) ) μ ( s ) ) μ ( s ) Δ s = exp ( t ω 0 l o g ( 1 + ( p ( s ) ) μ ( s ) ) μ ( s ) Δ s + 0 ω l o g ( 1 + ( p ( s ) ) μ ( s ) ) μ ( s ) Δ s + ω t l o g ( 1 + ( p ( s ) ) μ ( s ) ) μ ( s ) Δ s ) .
Using the periodicity of p and μ, let s = u ω , we have
t ω 0 l o g ( 1 + ( p ( s ) ) μ ( s ) ) μ ( s ) Δ s = t ω l o g ( 1 + ( p ( u ) ) μ ( u ) ) μ ( u ) Δ u .
Thus,
e p ( t , t ω ) = exp 0 ω l o g ( 1 + ( p ( s ) ) μ ( s ) ) μ ( s ) Δ s .
Therefore, e p ( t , t ω ) does not depend on t.
Remark 3.
For all t s and s [ t ω , t ] T , by Lemma 2 we have
e ( r 1 ) ( t , s ) exp s t r 1 ( u ) 1 μ ( u ) r 1 ( u ) Δ u exp 0 ω r 1 ( u ) 1 μ ( u ) r 1 ( u ) Δ u = η 2 ,
e ( r 1 ) ( t , s ) 1 + s t r 1 ( u ) 1 μ ( u ) r 1 ( u ) Δ u 1 + 0 ω r 1 ( u ) 1 μ ( u ) r 1 ( u ) Δ u = η 1 ,
e ( d 1 ) ( t , s ) exp s t d 1 ( u ) 1 μ ( u ) d 1 ( u ) Δ u exp 0 ω d 1 ( u ) 1 μ ( u ) d 1 ( u ) Δ u = η 3 ,
e ( d 1 ) ( t , s ) 1 + s t d 1 ( u ) 1 μ ( u ) d 1 ( u ) Δ u 1 + 0 ω d 1 ( u ) 1 μ ( u ) d 1 ( u ) Δ u = η 4 ,
e ( d 2 ) ( t , s ) exp s t d 2 ( u ) 1 μ ( u ) d 2 ( u ) Δ u exp 0 ω d 2 ( u ) 1 μ ( u ) d 2 ( u ) Δ u = η 5 ,
e ( d 2 ) ( t , s ) 1 + s t d 2 ( u ) 1 μ ( u ) d 2 ( u ) Δ u 1 + 0 ω d 2 ( u ) 1 μ ( u ) d 2 ( u ) Δ u = η 6 .
Let a ( t ) C r d ( T , R ) be a bounded function, denote
a + = sup t T | a ( t ) | , a = inf t T | a ( t ) | .
Throughout this paper, we need the following assumption:
(H1) For z = ( z 1 , z 2 , z 3 ) T P ω ( L 1 , L 2 ) , the below inequalities are satisfied
r 2 ( t ) z 1 a + L 2 2 + b 1 + L 2 2 m 1 L 1 2 + L 1 2 + b 2 + L 2 α 1 + α 2 L 1 + α 3 L 1 L 2 λ 1 ω η 2 ,
r 2 ( t ) z 1 a L 1 2 + b 1 + L 1 2 m 1 + L 2 2 + L 2 2 + b 2 L 1 α 1 + + α 2 + L 2 + α 3 + L 2 L 1 λ 1 ω η 1 > 0 ,
( 2 d 1 ( t ) + f ( t ) ) z 2 c 1 + L 2 3 ( m ) 2 L 1 2 + L 1 2 + L 1 λ 2 ω η 3 ,
( 2 d 1 ( t ) + f ( t ) ) z 2 c 1 L 1 3 ( m + ) 2 L 2 2 + L 2 2 + L 2 λ 2 ω η 4 ,
2 d 2 ( t ) z 3 f + L 2 + c 2 + L 2 2 α 1 + α 2 L 1 + α 3 L 1 + L 1 λ 3 ω η 5 ,
2 d 2 ( t ) z 3 f L 1 + c 2 L 1 2 α 1 + + α 2 + L 2 + α 3 + L 2 + L 2 λ 3 ω η 6 ,
where η i , i = 1 , 2 , , 6 is defined by Remark 3, λ i , i = 1 , 2 , 3 is defined by (6). For assumption ( H 1 ), it indicates that z P ω ( L 1 , L 2 ) must satisfy certain constraints, which are determined by the coefficients of the system (3), so that system (3) has a positive periodic solution.
For z = ( z 1 , z 2 , z 3 ) T P ω ( L 1 , L 2 ) , define the mapping F : P ω ( L 1 , L 2 ) P ω by
( F z ) ( t ) = ( ( F z 1 ) ( t ) , ( F z 2 ) ( t ) , ( F z 3 ) ( t ) ) T , t T ,
where
( F z 1 ) ( t ) = 1 e ( r 1 ) ( t , t ω ) 1 t ω t [ a ( s ) z 1 ( s ) z 1 ( s γ ( s ) ) + b 1 ( s ) z 1 2 ( s ) z 2 ( s ) m 2 ( s ) z 2 2 ( s ) + z 1 2 ( s ) + b 2 ( s ) z 1 ( s ) z 3 ( s ) α 1 ( s ) + α 2 ( s ) z 1 ( s ) + α 3 ( s ) z 3 ( s ) r 2 ( t ) z 1 ( σ ( s ) ) ] e ( r 1 ) ( t , s ) Δ s , ( F z 2 ) ( t ) = 1 e ( d 1 ) ( t , t ω ) 1 t ω t [ ( 2 d 1 ( s ) + f ( s ) ) z 2 ( σ ( s ) ) c 1 ( s ) z 1 2 ( s γ ( s ) ) z 2 ( s ) m 2 ( s ) z 2 2 ( s γ ( s ) ) + z 1 2 ( s γ ( s ) ) ] e ( d 1 ) ( t , s ) Δ s , ( F z 3 ) ( t ) = 1 e ( d 2 ) ( t , t ω ) 1 t ω t [ 2 d 2 ( s ) z 3 ( σ ( s ) ) f ( s ) z 2 ( s ) c 2 ( s ) z 1 ( s γ ( s ) ) z 3 ( s ) α 1 ( s ) + α 2 ( s ) z 1 ( t γ ( s ) ) + α 3 ( s ) z 3 ( s γ ( s ) ) ] e ( d 2 ) ( t , s ) Δ s .
Theorem 1.
Suppose that assumption (H1) holds. Then system (3) has at least one positive ω periodic solution on P ω ( L 1 , L 2 ) , where L 1 and L 2 are given positive constants satisfying assumption (H1).
Proof. 
From Remarks 1 and 2, let
1 e ( r 1 ) ( t , t ω ) 1 = λ 1 , 1 e ( d 1 ) ( t , t ω ) 1 = λ 2 , 1 e ( d 2 ) ( t , t ω ) 1 = λ 3 ,
where λ i > 0 are constants, i = 1 , 2 , 3 . It is clear from Lemma 4 that ( F z i ) ( t + ω ) = ( F z i ) ( t ) ( i = 1 , 2 , 3 ) . Therefore, ( F z ) ( t + ω ) = ( F z ) ( t ) . For z = ( z 1 , z 2 , z 3 ) T P ω ( L 1 , L 2 ) , in view of system (5) and assumption (H1), we have
( F z 1 ) ( t ) λ 1 ω η 2 ( a + L 2 2 + b 1 + L 2 3 m 1 L 1 2 + L 1 2 + b 2 + L 2 2 α 1 + α 2 L 1 + α 3 L 1 a + L 2 2 b 1 + L 2 2 m 1 L 1 2 + L 1 2 b 2 + L 2 α 1 + α 2 L 1 + α 3 L 1 + L 2 λ 1 ω η 2 ) = L 2 ,
( F z 1 ) ( t ) λ 1 ω η 1 ( a L 1 2 + b 1 + L 1 2 m 1 + L 2 2 + L 2 2 + b 2 L 1 2 α 1 + + α 2 + L 2 + α 3 + L 2 a L 1 2 b 1 + L 1 2 m 1 + L 2 2 + L 2 2 b 2 L 1 α 1 + + α 2 + L 2 + α 3 + L 2 + L 1 λ 1 ω η 1 ) = L 1 ,
( F z 2 ) ( t ) λ 2 ω η 4 c 1 L 1 3 ( m + ) 2 L 2 2 + L 2 2 + L 2 λ 2 ω η 4 c 1 L 1 3 ( m + ) 2 L 2 2 + L 2 2 = L 2 ,
( F z 2 ) ( t ) λ 2 ω η 3 c 1 + L 2 3 ( m ) 2 L 1 2 + L 1 2 + L 1 λ 2 ω η 3 c 1 + L 2 3 ( m ) 2 L 1 2 + L 1 2 = L 1 ,
( F z 3 ) ( t ) λ 3 ω η 6 f L 1 + c 2 L 1 2 α 1 + + α 2 + L 2 + α 3 + L 2 + L 2 λ 3 ω η 6 f L 1 + c 2 L 1 2 α 1 + + α 2 + L 2 = α 3 + L 2 = L 2 ,
( F z 3 ) ( t ) λ 3 ω η 5 f + L 2 + c 2 + L 2 2 α 1 + α 2 L 1 + α 3 L 1 + L 1 λ 3 ω η 5 f + L 2 c 2 + L 2 2 α 1 + α 2 L 1 + α 3 L 1 = L 1 .
Thus, F maps P ω ( L 1 , L 2 ) into itself, i.e., F ( P ω ( L 1 , L 2 ) ) P ω ( L 1 , L 2 ) . Now we show that F is continuous. Let { ( z 1 l , z 2 l , z 3 l ) T } be a sequence in P ω ( L 1 , L 2 ) such that
lim l | | ( z 1 l , z 2 l , z 3 l ) T ( z 1 , z 2 , z 3 ) T | | = 0 .
Since P ω ( L 1 , L 2 ) is closed, then ( z 1 , z 2 , z 3 ) T P ω ( L 1 , L 2 ) . Then by the definition of F we have
| | F ( z 1 l , z 2 l , z 3 l ) T F ( z 1 , z 2 , z 3 ) T | | = max { sup | ( F z i l ) ( t ) ( F z i ) ( t ) | , i = 1 , 2 , 3 , t [ 0 , ω ] T } .
From (5) and (7), we have
| ( F z 1 l ) ( t ) ( F z 1 ) ( t ) | λ 1 η 2 t ω t | a ( s ) z 1 l ( s ) z 1 l ( s γ ( s ) ) a ( s ) z 1 ( s ) z 1 ( s γ ( s ) ) | Δ s + λ 1 η 2 t ω t | b 1 ( s ) ( z 1 l ) 2 ( s ) z 2 l ( s ) m 2 ( s ) ( z 2 l ) 2 ( s ) + ( z 1 l ) 2 ( s ) b 1 ( s ) z 1 2 ( s ) z 2 ( s ) m 2 ( s ) z 2 2 ( s ) + z 1 2 ( s ) | Δ s + λ 1 η 2 t ω t | b 2 ( s ) z 1 l ( s ) z 3 l ( s ) α 1 ( s ) + α 2 ( s ) z 1 l ( s ) + α 3 ( s ) z 3 l ( s ) b 2 ( s ) z 1 ( s ) z 3 ( s ) α 1 ( s ) + α 2 ( s ) z 1 ( s ) + α 3 ( s ) z 3 ( s ) | Δ s + λ 1 η 2 t ω t | r 2 ( s ) z 1 l ( σ ( s ) ) r 2 ( s ) z 1 ( σ ( s ) ) | Δ s 0 as l .
Similar to the above proof, we have
| ( F z 2 l ) ( t ) ( F z 2 ) ( t ) | 0 as l
and
| ( F z 3 l ) ( t ) ( F z 3 ) ( t ) | 0 as l .
It follows by (8)–(11) that
| | F ( z 1 l , z 2 l , z 3 l ) T F ( z 1 , z 2 , z 3 ) T | | 0 as l .
This proves that F is a continuous map. To show that the map F is completely continuous, we will prove that F ( P ω ( L 1 , L 2 ) ) is relatively compact. We have proved that F ( P ω ( L 1 , L 2 ) ) is uniformly bounded. It is easy to see that | ( F z i ) Δ ( t ) | D , where i = 1 , 2 , 3 and D > 0 is a constant. Therefore, F ( P ω ( L 1 , L 2 ) ) is equicontinuous, and by Arzela-Ascoli’s theorem, it is relatively compact. Based on Schauder’s fixed point theorem, F has at least one fixed point on P ω ( L 1 , L 2 ) and these fixed points are positive periodic solutions of system (3). □

4. Asymptotic Property of Positive Periodic Solutions

In this section, we will give the boundary of the difference between the two positive periodic solutions of system (3).
Theorem 2.
If all the conditions of Theorem 1 hold, and for given positive constant ε, there exists a positive constant δ = δ ( ε ) such that | | z ( 0 ) z ˜ ( 0 ) | | δ . Then, we have
| | z ( t ) z ˜ ( t ) | | ε for all t [ 0 , ) T ,
where ε > Λ 1 * and Λ 1 * is defined by (20), z ( t ) = ( z 1 ( t ) , z 2 ( t ) , z 3 ( t ) ) T is a positive periodic solution of system (3), z ˜ ( t ) = ( z ˜ 1 ( t ) , z ˜ 2 ( t ) , z ˜ 3 ( t ) ) T is another solution of system (3).
Proof. 
Since all the conditions of Theorem 1 hold, system (3) exists a positive periodic solution z ( t ) = ( z 1 ( t ) , z 2 ( t ) , z 3 ( t ) ) T P ω ( L 1 , L 2 ) . Let z ˜ ( t ) = ( z ˜ 1 ( t ) , z ˜ 2 ( t ) , z ˜ 3 ( t ) ) T P ω ( L 1 , L 2 ) be another solution of system (3). Using Theorem 1, we obtain that
| z 1 ( t ) z ˜ 1 ( t ) | λ 1 a + η 2 t ω t | z 1 ( s ) z 1 ( s γ ( s ) ) z ˜ 1 ( s ) z ˜ 1 ( s γ ( s ) ) | Δ s + λ 1 b 1 + η 2 t ω t | z 1 2 ( s ) z 2 ( s ) m 2 ( s ) z 2 2 ( s ) + z 1 2 ( s ) z ˜ 1 2 ( s ) z ˜ 2 ( s ) m 2 ( s ) z ˜ 2 2 ( s ) + z ˜ 1 2 ( s ) | Δ s + λ 1 b 2 + η 2 t ω t | z 1 ( s ) z 3 ( s ) α 1 ( s ) + α 2 ( s ) z 1 ( s ) + α 3 ( s ) z 3 ( s ) z ˜ 1 ( s ) z ˜ 3 ( s ) α 1 ( s ) + α 2 ( s ) z ˜ 1 ( s ) + α 3 ( s ) z ˜ 3 ( s ) | Δ s + λ 1 r 2 + η 2 t ω t | z 1 ( σ ( s ) ) z ˜ 1 ( σ ( s ) ) | Δ s .
In view of assumption (H1), we get
| z 1 ( s ) z 1 ( s γ ( s ) ) z ˜ 1 ( s ) z ˜ 1 ( s γ ( s ) ) | Δ s 2 L 2 2 + 2 L 2 + | z 1 ( 0 ) z ˜ 1 ( 0 ) | ,
| z 1 2 ( s γ ( s ) ) z 2 ( s ) m 2 ( s ) z 2 2 ( s γ ( s ) ) + z 1 2 ( s γ ( s ) ) z ˜ 1 2 ( s γ ( s ) ) z ˜ 2 ( s ) m 2 ( s ) z ˜ 2 2 ( s γ ( s ) ) + z ˜ 1 2 ( s γ ( s ) ) | 2 L 2 3 ( m ) 2 L 1 2 + L 1 2 + 2 L 2 + | z 1 ( 0 ) z ˜ 1 ( 0 ) | ,
| z 1 ( s ) z 3 ( s ) α 1 ( s ) + α 2 ( s ) z 1 ( s ) + α 3 ( s ) z 3 ( s ) z ˜ 1 ( s ) z ˜ 3 ( s ) α 1 ( s ) + α 2 ( s ) z ˜ 1 ( s ) + α 3 ( s ) z ˜ 3 ( s ) | 2 L 2 2 α 1 + α 2 L 1 + α 3 L 1 + 2 L 2 + | z 1 ( 0 ) z ˜ 1 ( 0 ) | ,
| z 1 ( σ ( s ) ) z ˜ 1 ( σ ( s ) ) | 4 L 2 + | z 1 ( 0 ) z ˜ 1 ( 0 ) | .
From (12)–(16), we have
| z 1 ( t ) z ˜ 1 ( t ) | Λ 1 + Λ 2 | z 1 ( 0 ) z ˜ 1 ( 0 ) | ,
Λ 1 = λ 1 a + η 2 ω ( 2 L 2 2 + 2 L 2 ) + λ 1 b 1 + η 2 ω 2 L 2 3 ( m ) 2 L 1 2 + L 1 2 + 2 L 2 + λ 1 b 2 + η 2 ω 2 L 2 2 α 1 + α 2 L 1 + α 3 L 1 + 2 L 2 + 4 L 2 λ 1 r 2 + η 2 ω ,
Λ 2 = λ 1 a + η 2 ω + λ 1 b 1 + η 2 ω + λ 1 b 2 + η 2 ω + λ 1 r 2 + η 2 ω .
We also have
| z 2 ( t ) z ˜ 2 ( t ) | λ 2 η 4 t ω t | c 1 ( s ) z 1 2 ( s γ ( s ) ) z 2 ( s ) m 2 ( s ) z 2 2 ( s γ ( s ) ) + z 1 2 ( s γ ( s ) ) c 1 ( s ) z ˜ 1 2 ( s γ ( s ) ) z ˜ 2 ( s ) m 2 ( s ) z ˜ 2 2 ( s γ ( s ) ) + z ˜ 1 2 ( s γ ( s ) ) | Δ s + λ 2 η 4 t ω t | ( 2 d 1 ( s ) + f ( s ) ) z 2 ( σ ( s ) ) ( 2 d ˜ 1 ( s ) + f ˜ ( s ) ) z ˜ 2 ( σ ( s ) ) | Δ s Λ 3 + Λ 4 | z 2 ( 0 ) z ˜ 2 ( 0 ) | ,
where
Λ 3 = 2 λ 2 η 4 ω c 1 + L 2 3 ( m ) 2 L 1 2 + L 1 2 + 2 L 2 + ( 2 d 1 + + f + ) L 2 , Λ 4 = 2 λ 2 η 4 ω ,
and
| z 3 ( t ) z ˜ 3 ( t ) | λ 3 η 6 t ω t | f ( s ) z 2 f ( s ) z ˜ 2 | Δ s + λ 3 η 6 t ω t | 2 d 2 ( s ) z 3 ( σ ( s ) ) 2 d ˜ 2 ( s ) z ˜ 3 ( σ ( s ) ) | Δ s + λ 3 η 6 t ω t | c 2 ( s ) z 1 ( s γ ( s ) ) z 3 ( s ) α 1 ( s ) + α 2 ( s ) z 1 ( t γ ( s ) ) + α 3 ( s ) z 3 ( s γ ( s ) ) c 2 ( s ) z ˜ 1 ( s γ ( s ) ) z ˜ 3 ( s ) α 1 ( s ) + α 2 ( s ) z ˜ 1 ( t γ ( s ) ) + α 3 ( s ) z ˜ 3 ( s γ ( s ) ) | Δ s Λ 5 + Λ 6 | z 3 ( 0 ) z ˜ 3 ( 0 ) | ,
where
Λ 5 = 2 λ 3 η 6 ω f + L 2 + 3 L 2 + c 2 + L 2 2 α 1 + α 2 L 1 + α 3 L 1 + d 2 + L 2 , Λ 6 = 3 λ 3 η 6 ω .
From (17)–(19), we have
| | z ( t ) z ˜ ( t ) | | Λ 1 * + Λ 2 * | | z ( 0 ) z ˜ ( 0 ) | | ,
where
Λ 1 * = max Λ 1 , Λ 3 , Λ 5 , Λ 2 * = max Λ 2 , Λ 4 , Λ 6 .
Choosing δ ε Λ 1 * Λ 2 * , we have
| | z ( t ) z ˜ ( t ) | | ε for all t [ 0 , ) T .

5. An Example

When T = R , then system (3) is changed into the following system:
z 1 ( t ) = r ( t ) z 1 ( t ) a ( t ) z 1 ( t ) z 1 ( t γ ( t ) ) b 1 ( t ) z 1 2 ( t ) z 2 ( t ) m 2 ( t ) z 2 2 ( t ) + z 1 2 ( t ) b 2 ( t ) z 1 ( t ) z 3 ( t ) α 1 ( t ) + α 2 ( t ) z 1 ( t ) + α 3 ( t ) z 3 ( t ) z 2 ( t ) = [ d 1 ( t ) + f ( t ) ] z 2 ( t ) + c 1 ( t ) z 1 2 ( t γ ( t ) ) z 2 ( t ) m 2 ( t ) z 2 2 ( t γ ( t ) ) + z 1 2 ( t γ ( t ) ) z 3 ( t ) = d 2 ( t ) z 3 ( t ) + f ( t ) z 2 ( t ) + c 2 ( t ) z 1 ( t γ ( t ) ) z 3 ( t ) α 1 ( t ) + α 2 ( t ) z 1 ( t γ ( t ) ) + α 3 ( t ) z 3 ( t γ ( t ) ) ,
where t R . Let
r ( t ) = r 1 ( t ) + r 2 ( t ) , r 1 ( t ) = 4.5 + sin 20 π 7 t , r 2 ( t ) = 4.5 + cos 20 π 7 t , a ( t ) = 1 + 0.5 sin 20 π 7 t ,
b 1 ( t ) = 0.5 + 0.2 cos 20 π 7 t , b 2 ( t ) = 0.4 + 0.1 sin 20 π 7 t ,
d 1 ( t ) = f ( t ) = 0.2 + 0.1 cos 20 π 7 t , c 1 ( t ) = c 2 ( t ) = 0.7 + 0.2 cos 20 π 7 t , m ( t ) = 0.5 + 0.3 sin 20 π 7 t ,
d 2 ( t ) = 0.3 + 0.1 sin 20 π 7 t , α 1 ( t ) = 5 + sin 20 π 7 t 100 , α 2 ( t ) = 3 + sin 20 π 7 t 100 ,
α 3 ( t ) = 4 + sin 20 π 7 t 100 , γ ( t ) = 10 + 2 cos 20 π 7 t .
By simple calculation, we have
ω = 0.7 , λ 1 0.04 , λ 2 6.67 , λ 3 4.17 ,
η 1 4.15 , η 2 23.34 , η 3 1.14 , η 4 1.15 , η 5 1.21 , η 6 1.24 ,
a + = 1.5 , a = 0.5 , b 1 + = 0.7 , b 1 = 0.5 , b 2 + = 0.5 , b 2 = 0.3 ,
c 1 + = c 2 + = 0.9 , c 1 = c 2 = 0.5 , m + = 0.8 , m = 0.2 , d 1 + = f + = 0.3 , d 1 = f = 0.1 ,
α 1 + = 0.06 , α 1 = 0.04 , α 2 + = 0.04 , α 2 = 0.02 , α 3 + = 0.05 , α 3 = 0.03 .
Choosing L 1 = 20 , L 2 = 100 , we get
r 2 ( t ) z 1 a + L 2 2 + b 1 + L 2 2 m 1 L 1 2 + L 1 2 + b 2 + L 2 α 1 + α 2 L 1 + α 3 L 1 L 2 λ 1 ω η 2 1.67 × 10 4 ,
r 2 ( t ) z 1 a L 1 2 + b 1 + L 1 2 m 1 + L 2 2 + L 2 2 + b 2 L 1 α 1 + + α 2 + L 2 + α 3 + L 2 L 1 λ 1 ω η 1 42 ,
( 2 d 1 ( t ) + f ( t ) ) z 2 c 1 + L 2 3 ( m ) 2 L 1 2 + L 1 2 + L 1 λ 2 ω η 3 1.89 × 10 3 ,
( 2 d 1 ( t ) + f ( t ) ) z 2 c 1 L 1 3 ( m + ) 2 L 2 2 + L 2 2 + L 2 λ 2 ω η 4 18.52 ,
2 d 2 ( t ) z 3 f + L 2 + c 2 + L 2 2 α 1 + α 2 L 1 + α 3 L 1 + L 1 λ 3 ω η 5 9.05 × 10 3 ,
2 d 2 ( t ) z 3 f L 1 + c 2 L 1 2 α 1 + + α 2 + L 2 + α 3 + L 2 + L 2 λ 3 ω η 6 70.02 .
So all conditions of Theorems 1 and 2 are satisfied, then system (21) has a positive periodic solution. From Figure 1, we find that system (21) exists a positive periodic solution with the period ω = 0.7 .
When T = Z , then system (3) is changed into the following system:
Δ z 1 ( k ) = r ( k ) z 1 ( k + 1 ) a ( k ) z 1 ( k ) z 1 ( k γ ( k ) ) b 1 ( k ) z 1 2 ( k ) z 2 ( k ) m 2 ( k ) z 2 2 ( k ) + z 1 2 ( k ) b 2 ( k ) z 1 ( k ) z 3 ( k ) α 1 ( k ) + α 2 ( k ) z 1 ( k ) + α 3 ( k ) z 3 ( k ) Δ z 2 ( k ) = [ d 1 ( k ) + f ( k ) ] z 2 ( k + 1 ) + c 1 ( k ) z 1 2 ( k γ ( k ) ) z 2 ( k ) m 2 ( k ) z 2 2 ( k γ ( k ) ) + z 1 2 ( k γ ( k ) ) Δ z 3 ( k ) = d 2 ( k ) z 3 ( k + 1 ) + f ( k ) z 2 ( k ) + c 2 ( k ) z 1 ( k γ ( k ) ) z 3 ( k ) α 1 ( k ) + α 2 ( k ) z 1 ( k γ ( k ) ) + α 3 ( k ) z 3 ( k γ ( k ) ) ,
where k Z , Δ z i ( k ) = z i ( k + 1 ) z i ( k ) , i = 1 , 2 , 3 . Let
r ( k ) = r 1 ( k ) + r 2 ( k ) , r 1 ( k ) = 4 + sin 20 π 9 k , r 2 ( k ) = 4 + cos 20 π 9 k , a ( k ) = 1.2 + 0.6 cos 20 π 9 k ,
b 1 ( k ) = 0.4 + 0.2 cos 20 π 9 k , b 2 ( k ) = 0.3 + 0.1 sin 20 π 9 k ,
d 1 ( k ) = f ( k ) = 0.3 + 0.1 sin 20 π 9 k , c 1 ( k ) = c 2 ( k ) = 0.6 + 0.2 sin 20 π 9 k , m ( k ) = 0.4 + 0.3 cos 20 π 9 k ,
d 2 ( k ) = 0.2 + 0.1 cos 20 π 9 k , α 1 ( k ) = 4 + sin 20 π 9 k 100 , α 2 ( k ) = 3 + sin 20 π 9 k 100 ,
α 3 ( k ) = 2 + cos 20 π 9 k 100 , γ ( k ) = 5 + 2 cos 20 π 9 k .
By simple calculation, we have
ω = 0.9 , λ 1 0.03 , λ 2 5.27 , λ 3 4.54 ,
η 1 4.6 , η 2 36.6 , η 3 1.27 , η 4 1.31 , η 5 1.18 , η 6 1.19 ,
a + = 1.8 , a = 0.6 , b 1 + = 0.6 , b 1 = 0.2 , b 2 + = 0.4 , b 2 = 0.2 ,
c 1 + = c 2 + = 0.8 , c 1 = c 2 = 0.4 , m + = 0.7 , m = 0.1 , d 1 + = f + = 0.4 , d 1 = f = 0.2 ,
α 1 + = 0.05 , α 1 = 0.03 , α 2 + = 0.04 , α 2 = 0.02 , α 3 + = 0.01 , α 3 = 0.01 .
Choosing L 1 = 15 , L 2 = 100 , we get
r 2 ( k ) z 1 a + L 2 2 + b 1 + L 2 2 m 1 L 1 2 + L 1 2 + b 2 + L 2 α 1 + α 2 L 1 + α 3 L 1 L 2 λ 1 ω η 2 1.81 × 10 4 ,
r 2 ( k ) z 1 a L 1 2 + b 1 + L 1 2 m 1 + L 2 2 + L 2 2 + b 2 L 1 α 1 + + α 2 + L 2 + α 3 + L 2 L 1 λ 1 ω η 1 10.25 ,
( 2 d 1 ( k ) + f ( k ) ) z 2 c 1 + L 2 3 ( m ) 2 L 1 2 + L 1 2 + L 1 λ 2 ω η 3 3.52 × 10 3 ,
( 2 d 1 ( k ) + f ( k ) ) z 2 c 1 L 1 3 ( m + ) 2 L 2 2 + L 2 2 + L 2 λ 2 ω η 4 16.07 ,
2 d 2 ( k ) z 3 f + L 2 + c 2 + L 2 2 α 1 + α 2 L 1 + α 3 L 1 + L 1 λ 3 ω η 5 1.67 × 10 4 ,
2 d 2 ( k ) z 3 f L 1 + c 2 L 1 2 α 1 + + α 2 + L 2 + α 3 + L 2 + L 2 λ 3 ω η 6 25.03 .
So all conditions of Theorems 1 and 2 are satisfied, then system (22) has a positive periodic solution. From Figure 2, we find that system (22) exists a positive periodic solution with the period ω = 0.9 .

6. Conclusions

The predator-prey system is a well-known differential dynamic system. The research of the dynamic behaviour and properties of this system can provide a theoretical and practical basis for population biology. In this paper, we deal with a non-autonomous predator-prey system with stage-structured predator on time scales. Firstly, using Schauder’s fixed theorem and the theory of calculus on time scales, we obtain existence of positive periodic solution. Then, by some inequalities technique, the asymptotic property of the positive periodic solution is obtained. Finally, we give an numerical example for verifying the correctness of our results. In the future, we will explore the dynamic properties for neutral-type predator-prey system with stage-structured predator on time scales.

Author Contributions

Conceptualization, J.G.; Methodology, X.L. and T.W.; Formal analysis, X.L.; Writing—original draft, B.D.; Writing—review and editing, J.G.; Funding acquisition, X.L. and T.W. All authors have read and agreed to the published version of the manuscript.

Funding

This work is supported by the Doctor Training Program of Jiyang College, Zhejiang Agriculture and Forestry University (RC2022D03), Qinglan Project of Jiangsu Province of China (2022), Huai’an City Science and Technology Project (HAB202357).

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Zeng, Z. Periodic solutions for a delayed predator-prey system with stage-structured predator on time scales. Comput. Math. Appl. 2011, 61, 3298–3311. [Google Scholar] [CrossRef]
  2. Zhang, K.; Yu, C.; Wang, H.; Li, X. Multiscale Effects of Predator-Prey Systems with Holling-III Functional Response. Int. J. Bifurc. Chaos 2024, 34, 2450072. [Google Scholar] [CrossRef]
  3. Souna, F.; Tiwari, P.; Menacer, B. A predator-prey system with prey social behavior and generalized Holling III functional response: Role of predator-taxis on spatial patterns. Math. Methods Appl. Sci. 2023, 46, 13991–14006. [Google Scholar] [CrossRef]
  4. Skalski, G.; Gilliam, J. Functional responses with predator interference: Viable alternatives to the Holling II model. Ecology 2001, 82, 3083–3092. [Google Scholar] [CrossRef]
  5. Lv, Y.; Du, Z. Existence and global attractivity of a positive periodic solution to a Lotka-Volterra model with mutual interference and Holling III type functional response. Nonlinear Anal. Real World Appl. 2011, 12, 3654–3664. [Google Scholar] [CrossRef]
  6. Yousef, A.; Rida, S.; Arafat, S. Analytical bifurcation behaviors of a host-parasitoid model with Holling type III functional response. J. Egypt. Math. Soc. 2023, 31, 2. [Google Scholar] [CrossRef]
  7. Yan, X.; Zhang, C. Spatiotemporal Dynamics in a Diffusive Predator-Prey System with Beddington-DeAngelis Functional Response. Qual. Theory Dyn. Syst. 2022, 21, 166–214. [Google Scholar] [CrossRef]
  8. Mulugeta, B.; Yu, L.; Yuan, Q.; Ren, J. Bifurcation analysis of a predator-prey model with strong Allee effect and Beddington-DeAngelis functional response. Discret. Contin. Dyn. Syst. Ser. 2023, 28, 1938–1963. [Google Scholar] [CrossRef]
  9. Luo, D.; Wang, Q. Global bifurcation for a Beddington-DeAngelis and Tanner predator-prey reaction-diffusion system with prey-taxis. Math. Methods Appl. Sci. 2024, 47, 1711–1727. [Google Scholar] [CrossRef]
  10. Yang, J. Persistence and periodic measure of a stochastic predator-prey model with Beddington-DeAngelis functional response. Int. J. Biomath. 2023, 16, 2250116. [Google Scholar] [CrossRef]
  11. Lin, G.; Hong, Y. Delay induced oscillation in predator-prey system with Beddington-DeAngelis functional response. Appl. Math. Comput. 2007, 190, 1296–1311. [Google Scholar] [CrossRef]
  12. Gourley, S.; Kuang, Y. A stage structured predator-prey model and its dependence on through-stage delay and death rate. J. Math. Biol. 2004, 49, 188–200. [Google Scholar] [CrossRef] [PubMed]
  13. Kar, T.; Pahar, U. Modelling and analysis of a prey-predator system with stage-structure and harvesting. Nonlinear Anal. RWA 2007, 8, 601–609. [Google Scholar] [CrossRef]
  14. Song, X.; Chen, L. Modelling and analysis of a single species system with stage structure and harvesting, Math. Comput. Modelling 2002, 36, 67–82. [Google Scholar]
  15. Li, J.; Liu, X.; Wei, C. The impact of role reversal on the dynamics of predator-prey model with stage structure. Appl. Math. Model. 2022, 104, 339–357. [Google Scholar] [CrossRef]
  16. Wang, W.; Chen, L. A predator-prey system with stage-structure for predator. Comput. Math. Appl. 1997, 33, 83–91. [Google Scholar] [CrossRef]
  17. Fang, H.; Wang, Y. Four periodic solutions for a food-limited twospecies Gilpin-Ayala type predator-prey system with harvesting terms on time scales. Adv. Differ. Eq. 2013, 1, 278. [Google Scholar] [CrossRef]
  18. Chen, X. Periodicity in a nonlinear predator-prey system on time scales with state-dependent delays. Appl. Math. Comput. 2008, 196, 118–128. [Google Scholar] [CrossRef]
  19. Kumar, A.; Malik, M.; Kang, Y. Dynamics for a hybrid non-autonomous prey-predator system with generalist predator and impulsive conditions on time scales. Int. J. Biomath. 2023, 16, 2250067. [Google Scholar] [CrossRef]
  20. Yun, K.; Wedekin, L. Dynamics of a intraguild predation model with generalist or specialist predator. J. Math. Biol. 2013, 5, 18932589. [Google Scholar]
  21. Lakshmikantham, V.; Vatsala, A. Hybrid system on time scales. J. Comput. Appl. Math. 2002, 141, 227–235. [Google Scholar] [CrossRef]
  22. Bohner, M.; Peterson, A. Dynamic Equations on Time Scales, An Introduction with Applications; Birkhäuser Boston: Cambridge, MA, USA, 2001. [Google Scholar]
  23. Kaufmann, E.; Raffoul, Y. Periodic solutions for a neutral nonlinear dynamical equation on a time scale. J. Math. Anal. Appl. 2006, 319, 315–325. [Google Scholar] [CrossRef]
  24. Adivar, M.; Bohner, E. Halanay type inequalities on time scales with applications. Nonlinear Anal. 2011, 74, 7519–7531. [Google Scholar] [CrossRef]
  25. Smart, D. Fixed Points Theorems; Cambridge University Press: Cambridge, UK, 1980. [Google Scholar]
  26. Ardjouni, A.; Djoudi, A. Existence of periodic solutions for nonlinear neutral dynamic equations with variable delay on a time scale, Commun. Nonlinear Sci. Numer. Simulat. 2012, 17, 3061–3069. [Google Scholar] [CrossRef]
Figure 1. Positive periodic solution of system (21).
Figure 1. Positive periodic solution of system (21).
Symmetry 17 00086 g001
Figure 2. Positive periodic solution of system (22).
Figure 2. Positive periodic solution of system (22).
Symmetry 17 00086 g002
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Ge, J.; Li, X.; Du, B.; Wang, T. Positive Periodic Solutions of Non-Autonomous Predator-Prey System with Stage-Structured Predator on Time Scales. Symmetry 2025, 17, 86. https://doi.org/10.3390/sym17010086

AMA Style

Ge J, Li X, Du B, Wang T. Positive Periodic Solutions of Non-Autonomous Predator-Prey System with Stage-Structured Predator on Time Scales. Symmetry. 2025; 17(1):86. https://doi.org/10.3390/sym17010086

Chicago/Turabian Style

Ge, Jing, Xiaoliang Li, Bo Du, and Tao Wang. 2025. "Positive Periodic Solutions of Non-Autonomous Predator-Prey System with Stage-Structured Predator on Time Scales" Symmetry 17, no. 1: 86. https://doi.org/10.3390/sym17010086

APA Style

Ge, J., Li, X., Du, B., & Wang, T. (2025). Positive Periodic Solutions of Non-Autonomous Predator-Prey System with Stage-Structured Predator on Time Scales. Symmetry, 17(1), 86. https://doi.org/10.3390/sym17010086

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop