On Certain Fourth-Order Linear Recursive Sequences
Abstract
:1. Introduction
2. Preliminaries
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilton, P.; Pedersen, J. Symmetry in mathematics. Comput. Math. Appl. 1986, 12, 315–328. [Google Scholar] [CrossRef]
- Caratelli, D.; Natalini, P.; Ricci, P.E. Fractional Bernoulli and Euler Numbers and Related Fractional Polynomials—A Symmetry in Number Theory. Symmetry 2023, 15, 1900. [Google Scholar] [CrossRef]
- Bencherif, F.; Boumahdi, R.; Garici, T. Symmetric identity for polynomial sequences satisfying (x) = (n+1)An(x). Commun. Math. 2021, 29, 343–355. [Google Scholar] [CrossRef]
- Bród, D.; Rubajczyk, M.; Szynal-Liana, A. A new hybrid generalization of balancing polynomials. Symmetry 2024, 16, 1397. [Google Scholar] [CrossRef]
- Zhang, C.; Khan, W.A.; Kızılateş, C. On (p, q)-Fibonacci and (p, q)-Lucas Polynomials Associated with Changhee Numbers and Their Properties. Symmetry 2023, 15, 851. [Google Scholar] [CrossRef]
- Shapiro, D.B. Divisibility properties for integer sequences. Integers 2023, 23, A57. [Google Scholar] [CrossRef]
- Van der Poorten, A.J. Some facts that should be better known, especially about rational functions. In Number Theory and Applications; Mollin, R.A., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989; pp. 497–528. [Google Scholar]
- Martin, O.; Odlyzko, A.M.; Wolfram, S. Algebraic properties of cellular automata. Commun. Math. Phys. 1984, 93, 219–258. [Google Scholar] [CrossRef]
- Becker, P.G. k-regular power series and Mahler-type functional equations. J. Number Theory 1994, 49, 269–286. [Google Scholar] [CrossRef]
- Lipshitz, L.; Van der Poorten, A.J. Rational functions, diagonals, automata and arithmetic. In Number Theory; Mollin, R.A., Ed.; de Gruyter: Berlin, Germany, 1990; pp. 339–358. [Google Scholar] [CrossRef]
- Niederreiter, H. New methods for pseudorandom number and pseudorandom vector generation. In Proceedings of the 24th Conference on Winter Simulation, Arlington, VA, USA, 13–16 December 1992; pp. 264–269. [Google Scholar]
- Tezuka, S. Uniform Random Numbers; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar] [CrossRef]
- Everest, G.; Van der Poorten, A.J.; Shparlinski, I.; Ward, T. Recurrence Sequences; Mathematical Surveys and Monographs; American Mathematical Society: Providence, RI, USA, 2003. [Google Scholar] [CrossRef]
- Mignotte, M. Propriétés arithmétiques des suites récurrentes linéaires. Théor. Nombres Besancon 1989, 1, 1–29. [Google Scholar] [CrossRef]
- Mikhalev, V.; Nechaev, A.A. Linear recurring sequences over modules. Acta Appl. Math. 1996, 42, 161–202. [Google Scholar] [CrossRef]
- Myerson, G.; Van der Poorten, A.J. Some problems concerning recurrence sequences. Amer. Math. Mon. 1995, 102, 698–705. [Google Scholar] [CrossRef]
- Shparlinski, I.E. Finite Fields: Theory and Computation. The Meeting Point of Number Theory, Computer Science, Coding Theory and Cryptography; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999. [Google Scholar] [CrossRef]
- Tijdeman, R. Some applications of Diophantine approximation. In Surveys in Number Theory: Papers from The Millennial Conference on Number Theory; Bennett, M.A., Berndt, B.C., Boston, N., Diamond, H.G., Hildebrand, A.J., Philipp, W., Eds.; CRC Press: New York, NY, USA, 2002; pp. 261–284. [Google Scholar] [CrossRef]
- Szakács, T. k-order linear recursive sequences and the golden ratio. Fibonacci Quart. 2017, 55, 186–191. [Google Scholar] [CrossRef]
- Hoggatt, V.E. Fibonacci and Lucas Numbers; Houghton Mifflin Company: Farmersville, CA, USA, 1969. [Google Scholar]
- Vajda, S. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications; Ellis Horwood Limited Publisher: West Sussex, UK, 1989. [Google Scholar]
- Koshy, T. Fibonacci and Lucas Numbers with Applications; John Wiley: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Koshy, T. Pell and Pell-Lucas Numbers with Applications; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Lu, F.; Jiang, Z. The sum and product of Fibonacci numbers and Lucas numbers, Pell numbers and Pell-Lucas numbers representation by matrix method. WSEAS Trans. Math. 2013, 12, 449–458. [Google Scholar]
- Adegbindin, C.; Luca, F.; Togbé, A. Pell and Pell-Lucas numbers as sums of two repdigits. Bull. Malays. Math. Sci. Soc. 2020, 43, 125–1271. [Google Scholar] [CrossRef]
- Halıcı, S.; Daşdemir, A. On some relationships among Pell, Pell-Lucas and modified Pell sequences. Sak. Univ. J. Sci. 2010, 14, 141–145. [Google Scholar]
- Edjeou, B.; Faye, B. Pell and Pell-Lucas numbers as difference of two repdigits. Afr. Mat. 2023, 34, 70. [Google Scholar] [CrossRef]
- Altassan, A.; Alan, M. Mersenne numbers in generalized Lucas sequences. Proc. Bulg. Acad. Sci. 2024, 77, 3–10. [Google Scholar] [CrossRef]
- Rihane, S.E.; Tchammou, E.B.; Togbé, A. Pell-Lucas numbers as sum of same power of consecutive Pell numbers. Mediterr. J. Math. 2022, 19, 252. [Google Scholar] [CrossRef]
- Alan, M. On concatenations of Fibonacci and Lucas numbers. Bull. Iran. Math. Soc. 2022, 48, 2725–2741. [Google Scholar] [CrossRef]
- Özkan, E.; Akkuş, H. Copper ratio obtained by generalizing the Fibonacci sequence. AIP Adv. 2024, 14, 075207. [Google Scholar] [CrossRef]
- Behera, A.; Panda, G.K. On the square roots of triangular numbers. Fibonacci Quart. 1999, 37, 98–105. [Google Scholar] [CrossRef]
- Panda, G.K. Some fascinating properties of balancing numbers. Congr. Numer. 2009, 194, 185–189. [Google Scholar]
- Asci, M.; Yakar, M. On bivariate balancing polynomials. JP J. Algebr. Number Theory Appl. 2020, 46, 97–108. [Google Scholar] [CrossRef]
- Kang, H. The power sum of balancing polynomials and their divisible properties. AIMS Math. 2024, 9, 2684–2694. [Google Scholar] [CrossRef]
- Karadeniz-Gözeri, G. On Pell, Pell-Lucas, and balancing numbers. J. Inequal. Appl. 2018, 2018, 3. [Google Scholar] [CrossRef]
- Karadeniz-Gözeri, G.; Özkoç, A.; Tekcan, A. Some algebraic relations on balancing numbers. Util. Math. 2017, 103, 217–236. [Google Scholar]
- Liptai, K. Fibonacci balancing numbers. Fibonacci Quart. 2004, 42, 330–340. [Google Scholar] [CrossRef]
- Liptai, K. Lucas balancing numbers. Acta Math. Univ. Ostrav. 2006, 14, 43–47. [Google Scholar]
- Liptai, K.; Luca, F.; Pinter, A.; Szalay, L. Generalized balancing numbers. Indag. Math. 2009, 20, 87–100. [Google Scholar] [CrossRef]
- Rayaguru, S.G.; Bravo, J.J. Balancing and Lucas-balancing numbers which are concatenation of three repdigits. Bol. Soc. Mat. Mex. 2023, 29, 57. [Google Scholar] [CrossRef]
- Panda, G.K.; Ray, P.K. Cobalancing numbers and cobalancers. Int. J. Math. Math. Sci. 2005, 8, 1189–2000. [Google Scholar] [CrossRef]
- Panda, G.K.; Ray, P.K. Some links of balancing and cobalancing numbers with Pell and associated Pell numbers. Bull. Inst. Math. Acad. Sin. 2011, 6, 41–72. [Google Scholar]
- Elizalde, S.L. On solving third, fourth and fifth order of reverse Fibonacci-Like sequences. Eur. J. Theor. Appl. Sci. 2024, 2, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Gurak, S. Pseudoprimes for higher-order linear recurrence sequences. Math. Comp. 1990, 55, 783–813. [Google Scholar] [CrossRef]
- Yang, S.L. On the k-generalized Fibonacci numbers and high-order linear recurrence relations. Appl. Math. Comp. 2008, 196, 850–857. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, J. On the higher power sums of reciprocal higher-order sequences. Sci. World J. 2014, 2014, 521358. [Google Scholar] [CrossRef]
- Feinberg, M. Fibonacci-Tribonacci. Fibonacci Quart. 1963, 1, 71–74. [Google Scholar] [CrossRef]
- Tascı, D. On Quadrapell numbers and Quadrapell polynomials. Hacet. J. Math. Stat. 2009, 38, 265–275. [Google Scholar]
- Özkoç, A. Some algebraic identities on quadra Fibona-Pell integer sequence. Adv. Differ. Equ. 2015, 2015, 148. [Google Scholar] [CrossRef]
- Taş, S. The Hyperbolic Quadrapell sequences. East. Anatol. J. Sci. 2021, 7, 25–29. [Google Scholar]
- Qi, L.; Chen, Z. Identities involving the fourth-order linear recurrence sequence. Symmetry 2019, 11, 1476. [Google Scholar] [CrossRef]
- Panda, G.K.; Panda, A.K. Almost balancing numbers. J. Indian Math. Soc. 2015, 82, 147–156. [Google Scholar]
- Tekcan, A. Almost balancing, triangular and square triangular numbers. Notes Number Theory Discret. Math. 2019, 25, 108–121. [Google Scholar] [CrossRef]
- Tekcan, A. Sums and spectral norms of all almost balancing numbers. Creat. Math. Inform. 2019, 28, 203–214. [Google Scholar] [CrossRef]
- Davala, R.K.; Panda, G.K. Subbalancing numbers. Matematika 2018, 34, 163–172. [Google Scholar] [CrossRef]
- Sarı, S.; Karadeniz-Gözeri, G. On the Existence of Solutions of Diophantine Equations Related to Subbalancing Numbers. J. Math. 2024. submittedsubmittedsubmitted. [Google Scholar]
- Rayaguru, S.G.; Panda, G.K. A generalization to almost balancing and cobalancing numbers using triangular numbers. Notes Number Theory Discret. Math. 2020, 26, 135–148. [Google Scholar] [CrossRef]
- Sari, S.; Karadeniz-Gözeri, G. b3-subbalancing and b3-Lucas subbalancing numbers. Filomat 2023, 37, 7623–7639. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karadeniz-Gözeri, G.; Sarı, S.; Akgül, P. On Certain Fourth-Order Linear Recursive Sequences. Symmetry 2025, 17, 41. https://doi.org/10.3390/sym17010041
Karadeniz-Gözeri G, Sarı S, Akgül P. On Certain Fourth-Order Linear Recursive Sequences. Symmetry. 2025; 17(1):41. https://doi.org/10.3390/sym17010041
Chicago/Turabian StyleKaradeniz-Gözeri, Gül, Selin Sarı, and Pınar Akgül. 2025. "On Certain Fourth-Order Linear Recursive Sequences" Symmetry 17, no. 1: 41. https://doi.org/10.3390/sym17010041
APA StyleKaradeniz-Gözeri, G., Sarı, S., & Akgül, P. (2025). On Certain Fourth-Order Linear Recursive Sequences. Symmetry, 17(1), 41. https://doi.org/10.3390/sym17010041