A General and Comprehensive Subclass of Univalent Functions Associated with Certain Geometric Functions
Abstract
1. Introduction and Preliminaries
2. Main Results
3. Corollaries
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rabotnov, Y. Equilibrium of an Elastic Medium with After-Effect. Prikladnaya Matematika i Mekhanika 1948, 12, 53–62. (In Russian); reprinted in Fract. Calc. Appl. Anal. 2014, 17, 684–696 [Google Scholar] [CrossRef]
- Attiya, A.A. Some applications of Mittag-Leffler function in the unit disk. Filomat 2016, 30, 2075–2081. [Google Scholar] [CrossRef]
- Bansal, D.; Prajapat, J.K. Certain geometric properties of the Mittag-Leffler functions. Complex Var. Elliptic Equ. 2016, 61, 338–350. [Google Scholar] [CrossRef]
- Frasin, B.A.; Al-Hawary, T.; Yousef, F. Some properties of a linear operator involving generalized Mittag-Leffler function. Stud. Univ. Babeş-Bolyai Math. 2020, 65, 67–75. [Google Scholar] [CrossRef]
- Garg, M.; Manohar, P.; Kalla, S.L. A Mittag-Leffler-type function of two variables. Integral Transform. Spec. Funct. 2013, 24, 934–944. [Google Scholar] [CrossRef]
- Porwal, S. An application of a Poisson distribution series on certain analytic functions. J. Complex Anal. 2014, 2014, 984135. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G. Subclasses of starlike and convex functions involving Poisson distribution series. Afr. Mat. 2017, 28, 1357–1366. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Vijaya, K.; Porwal, S. Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series. Hacettepe J. Math. Stat. 2016, 45, 1101–1107. [Google Scholar] [CrossRef]
- Baricz, A.; Ponnusamy, S. Starlikeness and convexity of generalized Bessel functions. Integral Transform. Spec. Funct. 2010, 21, 641–653. [Google Scholar] [CrossRef]
- Frasin, B.A.; Yousef, F.; Al-Hawary, T.; Aldawish, I. Application of generalized Bessel functions to classes of analytic functions. Afr. Mat. 2021, 32, 431–439. [Google Scholar] [CrossRef]
- Saiful, R.; Mondal, S.R.; Swaminathan, A. Geometric properties of Generalized Bessel functions. Bull. Malays. Math. Sci. Soc. 2012, 35, 179–194. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and applications of fractional differential equations. In North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Mainardi, F. Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics; Springer: Wien, Austria, 1971. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: New York, NY, USA, 1993. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Incorporated: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
- Ponnusamy, S.; Singh, V.; Vasundhra, P. Starlikeness and convexity of an integral transform. Integral Transform. Spec. Funct. 2004, 15, 267–280. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Vuorinen, M. Univalence and convexity properties for Gaussian hypergeometric functions. Rocky Mt. J. Math. 2001, 31, 327–353. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Vuorinen, M. Univalence and convexity properties for confluent hypergeometric functions. Complex Var. Elliptic Equ. 1998, 36, 73–97. [Google Scholar] [CrossRef]
- Yagmur, N.; Orhan, H. Hardy space of generalized Struve functions. Complex Var. Elliptic Equ. 2014, 59, 929–936. [Google Scholar] [CrossRef]
- Frasin, B.A.; Al-Hawary, T.; Yousef, F.; Aldawish, I. On Subclasses of Analytic Functions Associated with Struve Functions. Nonlinear Func. Anal. App. 2022, 27, 99–110. [Google Scholar]
- Thulasiram, T.; Suchithra, K.; Sudharsan, T.; Murugusundaramoorthy, G.G. Some inclusion results associated with certain subclass of analytic functions inolving Hohlov operator. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. Math. 2014, 108, 711–720. [Google Scholar] [CrossRef]
- Şeker, B.; Sümer Eker, S. On Certain Subclasses of Starlike and Convex Functions Associated with Pascal Distribution Series. Turk. J. Math. 2020, 44, 1982–1989. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Vijaya, K.; Uma, K. Subordination results for a class of analytic functions involving the Hurwitz-Lerch zeta function. Int. J. Nonlinear Sci. 2010, 10, 430–437. [Google Scholar]
- Altintas, O.; Owa, S. On subclasses of univalent functions with negative coefficients. East Asian Math. J. 1988, 4, 41–56. [Google Scholar]
- Selvaraj, C.; Geetha, R. On subclasses of uniformly convex spirallike functions and corresponding class of spirallike functions. Int. J. Contemp. Math. Sci. 2010, 5, 37–40. [Google Scholar]
- Sümer Eker, S.; Ece, S. Geometric Properties Of Normalized Rabotnov Function. Hacet. J. Math. Stat. 2022, 51, 1248–1259. [Google Scholar] [CrossRef]
- Sümer Eker, S.; Seker, B.; Ece, S. On normalized Rabotnov function associated with certain subclasses of analytic functions. Probl. Anal. Issues Anal. 2023, 2, 97–106. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G. Parabolic Starlike and Uniformly Convex Functions Associated with Poisson Distribution Series. Bull. Transilv. Univ. Brasov. Ser. Math. Inform. Phys. 2017, 10, 91–100. [Google Scholar]
- Porwal, S.; Dixit, K.K. An application of generalized Bessel functions on certain analytic functions. Acta Univ. Matthiae Belii Ser. Math. 2013, 21, 55–61. [Google Scholar]
- Al-Hawary, T.; Aldawish, I.; Frasin, B.A.; Alkam, O.; Yousef, F. Necessary and Sufficient Conditions for Normalized Wright Functions to Be in Certain Classes of Analytic Functions. Mathematics 2022, 10, 4693. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hawary, T.; Frasin, B.; Aldawish, I. A General and Comprehensive Subclass of Univalent Functions Associated with Certain Geometric Functions. Symmetry 2024, 16, 982. https://doi.org/10.3390/sym16080982
Al-Hawary T, Frasin B, Aldawish I. A General and Comprehensive Subclass of Univalent Functions Associated with Certain Geometric Functions. Symmetry. 2024; 16(8):982. https://doi.org/10.3390/sym16080982
Chicago/Turabian StyleAl-Hawary, Tariq, Basem Frasin, and Ibtisam Aldawish. 2024. "A General and Comprehensive Subclass of Univalent Functions Associated with Certain Geometric Functions" Symmetry 16, no. 8: 982. https://doi.org/10.3390/sym16080982
APA StyleAl-Hawary, T., Frasin, B., & Aldawish, I. (2024). A General and Comprehensive Subclass of Univalent Functions Associated with Certain Geometric Functions. Symmetry, 16(8), 982. https://doi.org/10.3390/sym16080982