The p-Frobenius Number for the Triple of the Generalized Star Numbers
Abstract
1. Introduction
2. Basic Properties of the Generalized Star Numbers
3. Apéry Set
4. Main Result
4.1. Proof of Theorem 1
4.1.1. Even Case
4.1.2. Odd Case
5.
6.
7. -Genus
8. Examples
9. Final Comments
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matone, M.; Volpato, R. Vector-valued modular forms from the Mumford forms, Schottky-Igusa form, product of Thetanullwerte and the amazing Klein formula. Proc. Am. Math. Soc. 2013, 141, 2575–2587. [Google Scholar] [CrossRef]
- Plouffe, S. Approximations of Generating Functions and a Few Conjectures. Master’s Thesis, Universit’e du Québec à Montréal, Montréal, QC, Canada, 1992. [Google Scholar]
- Sloane, N.J.A. The On-Line Encyclopedia of Integer Sequences. Available online: https://oeis.org/ (accessed on 15 May 2024).
- Komatsu, T.; Ying, H. p-numerical semigroups with p-symmetric properties. J. Algebra Appl. 2024, 2450216. [Google Scholar] [CrossRef]
- Sylvester, J.J. On the partition of numbers. Quart. J. Pure Appl. Math. 1857, 1, 141–152. [Google Scholar]
- Cayley, A. On a problem of double partitions. Philos. Mag. 1860, 20, 337–341. [Google Scholar] [CrossRef]
- Binner, D.S. Generalization of a result of Sylvester related to the Frobenius coin problem. J. Integer Seq. 2021, 24, 14. [Google Scholar]
- Komatsu, T. On the number of solutions of the Diophantine equation of Frobenius–General case. Math. Commun. 2003, 8, 195–206. [Google Scholar]
- Tripathi, A. The number of solutions to ax + by = n. Fibonacci Quart. 2000, 38, 290–293. [Google Scholar]
- Liu, F.; Xin, G. A combinatorial approach to Frobenius numbers of some special sequences. Adv. Appl. Math. 2024, 158, 102719. [Google Scholar] [CrossRef]
- Liu, F.; Xin, G.; Ye, S.; Yin, J. The Frobenius formula for A = (a,ha + d,ha + b2d,…,ha + bkd). Ramanujan J. 2024, 64, 489–504. [Google Scholar] [CrossRef]
- Liu, F.; Xin, G.; Zhang, C. Three Simple Reduction Formulas for the Denumerant Functions. arXiv 2024, arXiv:2404.13989. [Google Scholar]
- Liu, F.; Xin, G. A Fast Algorithm for Denumerants with Three Variables. arXiv 2024, arXiv:2406.18955. [Google Scholar]
- Liu, F. Generating functions for the quotients of numerical semigroups. Bull. Aust. Math. Soc. 2024, 1–12. [Google Scholar] [CrossRef]
- Assi, A.; D’Anna, M.; Garcia-Sanchez, P.A. Numerical Semigroups and Applications, 2nd extended and revised ed.; RSME Springer Series 3; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Rosales, J.C.; Garcia-Sanchez, P.A. Numerical semigroups. In Developments in Mathematics, 20; Springer: New York, NY, USA, 2009. [Google Scholar]
- Curtis, F. On formulas for the Frobenius number of a numerical semigroup. Math. Scand. 1990, 67, 190–192. [Google Scholar] [CrossRef]
- Rosales, J.C.; Branco, M.B.; Torrão, D. The Frobenius problem for repunit numerical semigroups. Ramanujan J. 2016, 40, 323–334. [Google Scholar] [CrossRef]
- Rosales, J.C.; Branco, M.B.; Torrão, D. The Frobenius problem for Mersenne numerical semigroups. Math. Z. 2017, 286, 741–749. [Google Scholar] [CrossRef]
- Robles-Perez, A.M.; Rosales, J.C. The Frobenius number for sequences of triangular and tetrahedral numbers. J. Number Theory 2018, 186, 473–492. [Google Scholar] [CrossRef]
- Komatsu, T. The Frobenius number associated with the number of representations for sequences of repunits. C. R. Math. Acad. Sci. Paris 2023, 361, 73–89. [Google Scholar] [CrossRef]
- Komatsu, T.; Ying, H. The p-Frobenius and p-Sylvester numbers for Fibonacci and Lucas triplets. Math. Biosci. Eng. 2023, 20, 3455–3481. [Google Scholar] [CrossRef]
- Komatsu, T.; Mu, J. p-numerical semigroups of Pell triples. J. Ramanujan Math. Soc. 2024, in press.
- Komatsu, T.; Pita-Ruiz, C. The Frobenius number for Jacobsthal triples associated with number of solutions. Axioms 2023, 12, 98. [Google Scholar] [CrossRef]
- Komatsu, T. The Frobenius number for sequences of triangular numbers associated with number of solutions. Ann. Comb. 2022, 26, 757–779. [Google Scholar] [CrossRef]
- Aigner, M.; Ziegler, G.M. Proofs from the Book, 5th ed.; Including Illustrations by Karl H. Hofmann; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-3-662-44204-3/978-3-662-44205-0. [Google Scholar]
- Apéry, R. Sur les branches superlinéaires des courbes algébriques. C. R. Acad. Sci. Paris 1946, 222, 1198–1200. [Google Scholar]
- Komatsu, T. On the determination of p-Frobenius and related numbers using the p-Apéry set. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2024, 118, 58. [Google Scholar] [CrossRef]
- Brauer, A.; Shockley, B.M. On a problem of Frobenius. J. Reine. Angew. Math. 1962, 211, 215–220. [Google Scholar]
- Selmer, E.S. On the linear diophantine problem of Frobenius. J. Reine Angew. Math. 1977, 293–294, 1–17. [Google Scholar]
- Komatsu, T. Sylvester power and weighted sums on the Frobenius set in arithmetic progression. Discret. Appl. Math. 2022, 315, 110–126. [Google Scholar] [CrossRef]
- Lepilov, M.; O’Rourke, J.; Swanson, I. Frobenius numbers of numerical semigroups generated by three consecutive squares or cubes. Semigroup Forum 2015, 91, 238–259. [Google Scholar] [CrossRef]
- Zayed, M.; Wani, S.A.; Quintana, Y. Properties of multivariate Hermite polynomials in correlation with Frobenius-Euler polynomials. Mathematics 2023, 11, 3439. [Google Scholar] [CrossRef]
- Peralta, D.; Quintana, Y.; Wani, S.A. Mixed-type Hypergeometric Bernoulli-Gegenbauer polynomials. Mathematics 2023, 11, 3920. [Google Scholar] [CrossRef]
⋯ | ⋯ | ⋯ | ||||
⋮ | ⋮ | ⋮ | ⋮ | |||
⋯ | ⋯ | ⋯ | ||||
⋯ | ||||||
⋮ | ⋮ | |||||
⋮ | ⋮ | |||||
⋯ |
⋯ | ⋯ | ⋯ | ||||
⋮ | ⋮ | ⋮ | ⋮ | |||
⋯ | ⋯ | ⋯ | ||||
⋯ | ||||||
⋮ | ⋮ | |||||
⋮ | ⋮ | |||||
⋯ |
⋯ | ⋯ | ||||||||||||
⋮ | ⋮ | ||||||||||||
⋮ | ⋮ | ||||||||||||
⋯ | ⋯ | ||||||||||||
⋯ | |||||||||||||
⋮ | ⋮ | ||||||||||||
⋯ | |||||||||||||
⋯ | ⋯ | ||||||||||||
⋮ | ⋮ | ||||||||||||
⋯ | ⋯ | ||||||||||||
⋯ | |||||||||||||
⋮ | ⋮ | ||||||||||||
⋯ |
⋯ | ⋯ | ⋯ | ||||||||||||||||||
⋮ | ⋮ | ⋮ | ⋮ | |||||||||||||||||
⋯ | ⋯ | ⋯ | ||||||||||||||||||
⋯ | ||||||||||||||||||||
⋮ | ⋮ | |||||||||||||||||||
⋯ | ||||||||||||||||||||
⋯ | ⋯ | |||||||||||||||||||
⋮ | ⋮ | |||||||||||||||||||
⋯ | ⋯ | |||||||||||||||||||
⋯ | ||||||||||||||||||||
⋮ | ⋮ | |||||||||||||||||||
⋯ | ||||||||||||||||||||
⋯ | ⋯ | |||||||||||||||||||
⋮ | ⋮ | |||||||||||||||||||
⋯ | ⋯ | |||||||||||||||||||
⋯ | ||||||||||||||||||||
⋮ | ⋮ | |||||||||||||||||||
⋯ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, R.; Mu, J.; Komatsu, T. The p-Frobenius Number for the Triple of the Generalized Star Numbers. Symmetry 2024, 16, 1090. https://doi.org/10.3390/sym16081090
Yin R, Mu J, Komatsu T. The p-Frobenius Number for the Triple of the Generalized Star Numbers. Symmetry. 2024; 16(8):1090. https://doi.org/10.3390/sym16081090
Chicago/Turabian StyleYin, Ruze, Jiaxin Mu, and Takao Komatsu. 2024. "The p-Frobenius Number for the Triple of the Generalized Star Numbers" Symmetry 16, no. 8: 1090. https://doi.org/10.3390/sym16081090
APA StyleYin, R., Mu, J., & Komatsu, T. (2024). The p-Frobenius Number for the Triple of the Generalized Star Numbers. Symmetry, 16(8), 1090. https://doi.org/10.3390/sym16081090