Semi-Supervised Left-Atrial Segmentation Based on Squeeze–Excitation and Triple Consistency Training
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods
2.1. Model Architecture
2.2. Cycled Pseudo Label
3. Experiment and Results
3.1. Database
3.2. Implementation Details
3.3. Results
3.4. Ablation Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Zhou, Y.; Shen, W.; Park, S.; Fishman, E.K.; Yuille, A.L. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. Med. Image Anal. 2019, 55, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Dou, Q.; Liu, Q.; Heng, P.-A.; Glocker, B. Unpaired multi-modal segmentation via knowledge distillation. IEEE Trans. Med. Imaging 2020, 39, 2415–2425. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, H.; Qi, X.; Dou, Q.; Fu, C.-W.; Heng, P.-A. H-denseunet: Hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 2018, 37, 2663–2674. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Cao, K.; Yao, J.; Nogues, I.; Lu, L.; Huang, L.; Xiao, J.; Yin, Z.; Zhang, L. 3d graph anatomy geometry-integrated network for pancreatic mass segmentation, diagnosis, and quantitative patient management. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021. [Google Scholar]
- Wang, Q.; Li, W.; Van Gool, L. Semi-supervised learning by augmented distribution alignment. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1466–1475. [Google Scholar]
- Bai, W.; Oktay, O.; Sinclair, M.; Suzuki, H.; Rajchl, M.; Tarroni, G.; Glocker, B.; King, A.P.; Matthews, P.M.; Rueckert, D. Semisupervised learning for network-based cardiac MR image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Quebec City, QC, Canada, 10 September 2017. [Google Scholar]
- Zhou, Y.; Wang, Y.; Tang, P.; Bai, S.; Shen, W.; Fishman, E.K.; Yuille, A.L. Semi-supervised 3d abdominal multi-organ segmentation via deep multi-planar co-training. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA, 7–11 January 2019. [Google Scholar]
- You, C.; Zhou, Y.; Zhao, R.; Staib, L.; Duncan, J.S. Simcvd: Simple contrastive voxel-wise representation distillation for semi-supervised medical image segmentation. IEEE Trans. Med. Imaging 2022, 41, 2228–2237. [Google Scholar] [CrossRef] [PubMed]
- Sohn, K.; Berthelot, D.; Li, C.-L.; Zhang, Z.; Carlini, N.; Cubuk, E.D.; Kurakin, A.; Zhang, H.; Raffel, C. Fixmatch: Simplifying semi-supervised learning with consistency and confidence. In Proceedings of the 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, BC, Canada, 6–12 December 2020; Volume 33, pp. 596–608. [Google Scholar]
- Ouali, Y.; Hudelot, C.; Tami, M. Semi-supervised semantic segmentation with cross-consistency training. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 12674–12684. [Google Scholar]
- Lee, D.H. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Proceedings of the ICML 2013 Workshop: Challenges in Representation Learning (WREPL), Atlanta, GA, USA, 21 June 2013; Volume 3. [Google Scholar]
- Wu, Y.; Xu, M.; Ge, Z.; Cai, J.; Zhang, L. Semi-supervised left atrium segmentation with mutual consistency training. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2021 24th International Conference, Strasbourg, France, 27 September–1 October 2021; Proceedings, Part II, volume 12902 of Lecture Notes in Computer Science. Springer: Cham, Switzerland, 2021; Volume 6, p. 297306. [Google Scholar]
- Bai, Y.; Chen, D.; Li, Q.; Shen, W.; Wang, Y. Bidirectional copy-paste for semi-supervised medical image segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 1234–1244. [Google Scholar]
- Kowalski, M.; Naruniec, J.; Trzcinski, T. Deep Alignment Network: A convolutional neural network for robust face alignment. arXiv 2017, arXiv:1706.01789. [Google Scholar]
- Fang, K.; Li, W.J. DMNet: Difference Minimization Network for Semi-Supervised Segmentation in Medical Images. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI), Lima, Peru, 4–8 October 2020; Springer: Cham, Switzerland, 2021; pp. 532–541. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the ICML’15: Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 6–11 July 2015. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Bell, S.; Zitnick, C.L.; Bala, K.; Girshick, R. Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Newell, A.; Yang, K.; Deng, J. Stacked hourglass networks for human pose estimation. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Zhang, Y.; Xiang, T.; Hospedales, T.M.; Lu, H. Deep mutual learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 4320–4328. [Google Scholar]
- Xiong, Z.; Xia, Q.; Hu, Z.; Huang, N.; Bian, C.; Zheng, Y.; Vesal, S.; Ravikumar, N.; Maier, A.; Yang, X.; et al. A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging. Med. Image Anal. 2021, 67, 101832. [Google Scholar] [CrossRef] [PubMed]
- Milletari, F.; Navab, N.; Ahmadi, S.A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar]
- Kendall, A.; Gal, Y. What uncertainties do we need in bayesian deep learning for computer vision? arXiv 2017, arXiv:1703.04977. [Google Scholar]
- Yu, L.; Wang, S.; Li, X.; Fu, C.W.; Heng, P.A. Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2019; Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A., Eds.; Springer: Cham, Switzerland, 2019; pp. 605–613. [Google Scholar] [CrossRef]
- Zheng, Z.; Yang, Y. Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation. Int. J. Comput. Vis. 2021, 129, 1106–1120. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, F.; Yang, D.; Cai, J.; Yu, L.; Zhu, Z.; Xu, D.; Yuille, A.; Roth, H. 3d semi-supervised learning with uncertainty-aware multi-view co-training. In Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass, CO, USA, 1–5 March 2020; pp. 3646–3655. [Google Scholar]
- Xie, Q.; Dai, Z.; Hovy, E.; Luong, M.T.; Le, Q.V. Unsupervised data augmentation for consistency training. arXiv 2019, arXiv:1904.12848. [Google Scholar]
- Li, S.; Zhang, C.; He, X. Shape-aware Semi-Supervised 3D Semantic Segmentation for Medical Images. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2020, Proceedings of the 23rd International Conference, Lima, Peru, 4–8 October 2020; Martel, J., Wang, L., Ourselin, S., Reyes, M., Yang, G., Eds.; Springer: Cham, Switzerland, 2020; pp. 552–561. [Google Scholar]
- Luo, X.; Chen, J.; Song, T.; Chen, Y.; Wang, G.; Zhang, S. Semi-supervised medical image segmentation through dual-task consistency. arXiv 2020, arXiv:2009.04448. [Google Scholar] [CrossRef]
- Laine, S.; Aila, T. Temporal ensembling for semi-supervised learning. arXiv 2016, arXiv:1610.02242. [Google Scholar]
- Zheng, H.; Lin, L.; Hu, H.; Zhang, Q.; Chen, Q.; Iwamoto, Y.; Han, X.; Chen, Y.-W.; Tong, R. Semi-supervised segmentation of liver using adversarial learning with deep atlas prior. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2019, Proceedings of the 22nd International Conference, Shenzhen, China, 13–17 October 2019; Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 148–156. [Google Scholar] [CrossRef]
- Hang, W.; Feng, W.; Liang, S.; Yu, L.; Wang, Q.; Choi, K.-S. Local and global structure-aware entropy regularized mean teacher model for 3d left atrium segmentation. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2020, Proceedings of the 23rd International Conference, Lima, Peru, 4–8 October 2020; Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L., Eds.; Springer: Cham, Switzerland, 2020; pp. 562–571. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Tian, J.; Zhong, C.; Shi, Z.; Zhang, Y.; He, Z. Double-uncertainty weighted method for semi-supervised learning. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2020, Proceedings of the 23rd International Conference, Lima, Peru, 4–8 October 2020; Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L., Eds.; Springer: Cham, Switzerland, 2020; pp. 542–551. [Google Scholar] [CrossRef]
- Roth, H.R.; Lu, L.; Farag, A.; Shin, H.-C.; Liu, J.; Turkbey, E.B.; Summers, R.M. Deeporgan: Multi-level deep convolutional networks for automated pancreas segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part I, Volume 9349 of Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; pp. 556–564. [Google Scholar]
Method | #Scans Used | Metrics | ||||
---|---|---|---|---|---|---|
Labeled | Unlabeled | Dice (%) | Jaccard (%) | 95HD (Voxel) | ASD (Voxel) | |
V-Net | 8 (10%) | 0 | 79.99 | 68.12 | 21.11 | 5.48 |
V-Net | 16 (20%) | 0 | 86.04 | 76.06 | 14.26 | 3.51 |
V-Net | 80 (All) | 0 | 90.72 | 82.74 | 7.65 | 2.34 |
MC-Net [12] | 80 (All) | 0 | 91.13 | 83.79 | 5.76 | 1.57 |
SETC-Net (Ours) | 80 (All) | 0 | 92.28↑1.15 | 85.72↑1.93 | 4.42↓1.34 | 1.40↓0.17 |
DAP [32] | 8 (10%) | 72 | 81.88 | 71.23 | 15.81 | 3.79 |
UA-MT [25] | 8 (10%) | 72 | 84.23 | 73.48 | 13.84 | 3.35 |
SASSNet [31] | 8 (10%) | 72 | 87.31 | 77.72 | 9.61 | 2.55 |
LG-ER-MT [33] | 8 (10%) | 72 | 85.53 | 75.12 | 13.29 | 3.77 |
DUWM [34] | 8 (10%) | 72 | 85.90 | 75.74 | 12.67 | 3.31 |
DTC [30] | 8 (10%) | 72 | 86.57 | 76.55 | 14.47 | 3.74 |
MC-Net [12] | 8 (10%) | 72 | 87.70 | 78.30 | 9.37 | 2.18 |
SETC-Net (Ours) | 8 (10%) | 72 | 87.76↑0.06 | 78.42↑0.12 | 9.50↑0.13 | 2.02↓0.16 |
DAP [32] | 16 (20%) | 64 | 87.89 | 78.72 | 9.29 | 2.74 |
UA-MT [25] | 16 (20%) | 64 | 88.87 | 80.21 | 7.32 | 2.26 |
SASSNet [31] | 16 (20%) | 64 | 89.54 | 81.24 | 8.24 | 2.20 |
LG-ER-MT [33] | 16 (20%) | 64 | 89.63 | 81.30 | 7.16 | 2.06 |
DUWM [34] | 16 (20%) | 64 | 89.65 | 81.33 | 7.04 | 2.03 |
DTC [30] | 16 (20%) | 64 | 89.42 | 80.97 | 7.32 | 2.10 |
BCP [13] | 16 (20%) | 64 | 90.31 | 82.51 | 6.97 | 1.84 |
MC-Net [12] | 16 (20%) | 64 | 90.35 | 82.47 | 6.01 | 1.77 |
SETC-Net (Ours) | 16 (20%) | 64 | 91.14↑0.79 | 83.79↑1.32 | 5.75↓0.26 | 1.39↓0.38 |
Method | #Scans Used | Metrics | ||||
---|---|---|---|---|---|---|
Labeled | Unlabeled | Dice (%) | Jaccard (%) | 95HD (Voxel) | ASD (Voxel) | |
V-Net | 6 (10%) | 0 | 55.06 | 40.48 | 32.80 | 12.67 |
V-Net | 12 (20%) | 0 | 69.65 | 55.18 | 20.19 | 6.31 |
V-Net | 62 (All) | 0 | 83.01 | 71.35 | 5.18 | 1.19 |
UA-MT [14] | 6 (10%) | 56 | 68.70 | 54.65 | 13.89 | 3.23 |
SASSNet [31] | 6 (10%) | 56 | 66.52 | 52.23 | 17.11 | 2.27 |
DTC [30] | 6 (10%) | 56 | 66.27 | 52.07 | 15.00 | 4.43 |
MC-Net [12] | 6 (10%) | 56 | 68.94 | 54.74 | 16.28 | 3.16 |
SETC-Net (Ours) | 6 (10%) | 56 | 69.03↑0.09 | 54.89↑0.15 | 13.96↑0.07 | 2.11↓0.16 |
UA-MT [14] | 12 (20%) | 50 | 76.77 | 63.77 | 11.41 | 2.79 |
SASSNet [31] | 12 (20%) | 50 | 77.12 | 64.24 | 8.93 | 1.91 |
DTC [30] | 12 (20%) | 50 | 78.27 | 64.75 | 8.37 | 2.27 |
MC-Net [12] | 12 (20%) | 50 | 79.05 | 65.82 | 10.29 | 2.71 |
SETC-Net (Ours) | 12 (20%) | 50 | 80.01↑0.96 | 66.55↑0.73 | 7.40↓0.97 | 1.54↓0.37 |
Method | #Scans Used | Metrics | ||||
---|---|---|---|---|---|---|
Labeled | Unlabeled | Dice (%) | Jaccard (%) | 95HD (Voxel) | ASD (Voxel) | |
V2d-Net | 8 (10%) | 72 | 85.79 | 75.41 | 14.45 | 3.83 |
V3-Net | 8 (10%) | 72 | 86.61 | 76.65 | 13.39 | 3.93 |
V3d-Net | 8 (10%) | 72 | 87.56 | 78.25 | 9.93 | 2.16 |
V3d-Net+SEConv | 8 (10%) | 72 | 87.76 | 78.42 | 9.50 | 2.02 |
V2d-Net | 16 (20%) | 64 | 88.97 | 80.36 | 7.61 | 2.25 |
V3-Net | 16 (20%) | 64 | 85.56 | 79.65 | 14.06 | 3.58 |
V3d-Net | 16(20%) | 64 | 90.79 | 83.22 | 7.94 | 2.03 |
V3d-Net+SEConv | 16 (20%) | 64 | 91.14 | 83.79 | 5.75 | 1.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Xv, T.; Li, J.; Liu, J.; Guo, J.; Yang, L. Semi-Supervised Left-Atrial Segmentation Based on Squeeze–Excitation and Triple Consistency Training. Symmetry 2024, 16, 1041. https://doi.org/10.3390/sym16081041
Wang D, Xv T, Li J, Liu J, Guo J, Yang L. Semi-Supervised Left-Atrial Segmentation Based on Squeeze–Excitation and Triple Consistency Training. Symmetry. 2024; 16(8):1041. https://doi.org/10.3390/sym16081041
Chicago/Turabian StyleWang, Dongsheng, Tiezhen Xv, Jianshen Li, Jiehui Liu, Jinxi Guo, and Lijie Yang. 2024. "Semi-Supervised Left-Atrial Segmentation Based on Squeeze–Excitation and Triple Consistency Training" Symmetry 16, no. 8: 1041. https://doi.org/10.3390/sym16081041
APA StyleWang, D., Xv, T., Li, J., Liu, J., Guo, J., & Yang, L. (2024). Semi-Supervised Left-Atrial Segmentation Based on Squeeze–Excitation and Triple Consistency Training. Symmetry, 16(8), 1041. https://doi.org/10.3390/sym16081041