Combinatorial Identities Concerning Binomial Quotients
Abstract
1. Introduction and Motivation
2. Summation Formulae
3. Summation Formulae
4. Summation Formulae
5. Double Summation Formulae
6. Concluding Comments
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gould, H.W. Combinatorial Identities: A Standardized Set of Tables Listing 500 Binomial Coefficient Summations; Morgantown Printing and Binding Co.: Morgantown, WV, USA, 1972. [Google Scholar]
- Mansour, T. Combinatorial identities and inverse binomial coefficients. Adv. Appl. Math. 2002, 28, 196–202. [Google Scholar] [CrossRef]
- Rockett, A.M. Sums of the inverses of binomial coefficients. Fibonacci Quart. 1981, 19, 433–437. [Google Scholar]
- Trif, T. Combinatorial sums and series involving inverses of binomial coefficients. Fibonacci Quart. 2000, 38, 79–84. [Google Scholar]
- Sury, B. Sum of the reciprocals of the binomial coefficients. Eur. J. Combin. 1993, 14, 351–353. [Google Scholar] [CrossRef]
- Pla, J. The sum of the inverses of binomial coefficients revisited. Fibonacci Quart. 1997, 35, 342–345. [Google Scholar]
- Riordan, J. Combinatorial Identities; John Wiley & Sons: New York, NY, USA, 1968. [Google Scholar]
- Trif, T. Combinatorial sums and series involving inverses of the Gaussian binomial coefficients. J. Comb. Number Theory 2011, 3, 197–207. [Google Scholar]
- Comtet, L. Advanced Combinatorics; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1974. [Google Scholar]
- Graham, R.L.; Knuth, D.E.; Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed.; Addison—Wesley Publ. Company, Reading: Boston, MA, USA, 1994. [Google Scholar]
- Merlini, D.; Sprugnoli, R.; Verri, M.C. The method of coefficients. Am. Math. Mon. 2007, 114, 40–57. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Y.; Guo, D. Combinatorial identities concerning trigonometric functions and Fibonacci/Lucas numbers. AIMS Math. 2024, 9, 9348–9363. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, D. Summation formulas for certain combinatorial sequences. Mathematics 2024, 12, 1210. [Google Scholar] [CrossRef]
- Wilf, H.S.; Zeilberger, D. Rational functions certify combinatorial identities. J. Am. Math. Soc. 1990, 3, 147–158. [Google Scholar] [CrossRef]
- Guillera, J. Some binomial series obtained by the WZ-method. Adv. Appl. Math. 2002, 29, 599–603. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, T. Some identities related to reciprocal functions. Discret. Math. 2003, 265, 323–335. [Google Scholar] [CrossRef]
- Sprugnoli, R. Riordan arrays and combinatorial sums. Discret. Math. 1994, 132, 267–290. [Google Scholar] [CrossRef]
- Chu, W. Binomial sums via Bailey’s cubic transformation. Czech. Math. J. 2023, 73, 1131–1150. [Google Scholar] [CrossRef]
- Zeilberger, D. A holonomic systems approach to special functions identities. J. Comput. Appl. Math. 1990, 32, 321–368. [Google Scholar] [CrossRef]
- Zeilberger, D. The method of creative telescoping. J. Symb. Comput. 1991, 11, 195–204. [Google Scholar] [CrossRef]
- Chu, W.; Guo, D. Alternating sums of binomial quotients. Math. Commun. 2022, 27, 203–213. [Google Scholar]
- Guo, D.; Chu, W. Inverse tangent series involving Pell and Pell-Lucas polynomials. Math. Slovaca 2022, 72, 869–884. [Google Scholar] [CrossRef]
- Chu, W. Analytical formulae for extended 3F2-series of Watson–Whipple–Dixon with two extra integer parameters. Math. Comput. 2012, 81, 467–479. [Google Scholar] [CrossRef]
- Bailey, W.N. Generalized Hypergeometric Series; Cambridge University Press: Cambridge, MA, USA, 1935. [Google Scholar]
- Chen, K.W. Clausen’s series 3F2(1) with integral parameter differences. Symmetry 2021, 13, 1783. [Google Scholar] [CrossRef]
- Li, N.N.; Chu, W. Non-terminating 3F2-series with unit argument. Integral Transform. Spec. Funct. 2018, 29, 450–469. [Google Scholar] [CrossRef]
- Milgram, M. On hypergeometric 3F2(1)–A review. arXiv 2010, arXiv:1011.4546v1. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Guo, D. Combinatorial Identities Concerning Binomial Quotients. Symmetry 2024, 16, 746. https://doi.org/10.3390/sym16060746
Chen Y, Guo D. Combinatorial Identities Concerning Binomial Quotients. Symmetry. 2024; 16(6):746. https://doi.org/10.3390/sym16060746
Chicago/Turabian StyleChen, Yulei, and Dongwei Guo. 2024. "Combinatorial Identities Concerning Binomial Quotients" Symmetry 16, no. 6: 746. https://doi.org/10.3390/sym16060746
APA StyleChen, Y., & Guo, D. (2024). Combinatorial Identities Concerning Binomial Quotients. Symmetry, 16(6), 746. https://doi.org/10.3390/sym16060746