The Hopf Automorphism Group of Two Classes of Drinfeld Doubles
Abstract
1. Introduction
2. Preliminaries and Notations
3. The Construction of Drinfeld Doubles of Generalized Taft Algebra
4. Some Hopf Automorphisms of and
4.1. A Class of Hopf Automorphisms of
4.2. A Class of Hopf Automorphisms of
5. The Hopf Automorphism Groups of and
5.1. The Hopf Automorphism Group of
- (1)
- (2)
- where is the group consisting of all group-like elements of H, is the group consisting of all primitive elements of H, and .
5.2. The Hopf Automorphism Group of
- (1)
- (2)
- where is the group consisting of all group-like elements of T, and is the group consisting of all primitive elements of T, and .
6. Conclusions
- (a)
- Can this work be solved from the perspectives of eigenproblem and molecular alignment?
- (b)
- Which automorphism groups of infinite-dimensional Hopf algebras can be solved using our method?
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Erdmann, K.; Green, E.L.; Snashall, N.; Taillefer, R. Stable Green Ring of the Drinfeld Doubles of the Generalised Taft Algebras (Corrections and New Results). Algebr. Represent. Theory 2019, 22, 757–783. [Google Scholar] [CrossRef]
- Sun, H.; Chen, H.X. Representations of Drinfeld Doubles of Radford Hopf algebras. arXiv 2023. [Google Scholar] [CrossRef]
- Links, J. Hopf Algebra Symmetries of an Integrable Hamiltonian for Anyonic Pairing. Axioms 2012, 1, 226–237. [Google Scholar] [CrossRef]
- Cao, T.Q.; Xin, Q.L.; Wei, X.M. Jones Type Basic Construction on Hopf Spin Models. Mathematics 2022, 8, 1547. [Google Scholar]
- Alev, J.; Chamarie, M. Derivations et Automorphisms de Quelques Algebras Quantique. Commun. Algebra 1992, 20, 1787–1802. [Google Scholar] [CrossRef]
- Twietmeyer, E. Real Forms of Uq(g). Lett. Math. Phys. 1992, 24, 49–58. [Google Scholar] [CrossRef]
- Kirkman, E.; Procesi, C.; Small, L. A q-analog for the Virasoro algebra. Commun. Algebra 1994, 22, 3755–3774. [Google Scholar] [CrossRef]
- Artamonov, V.A. Actions of pointed Hopf algebras on quantum Torus. Ann. Univ. Ferrara 2005, 51, 29–60. [Google Scholar] [CrossRef]
- Chen, H.X. The coalgebra automorphism group of Hopf algebra kq[x,x−1,y]. J. Pure Appl. Algebra 2013, 217, 1870–1887. [Google Scholar] [CrossRef]
- Ye, Y. Automorphisms of path coalgebras and applications. arXiv 2011, arXiv:1109.2986. [Google Scholar]
- Yu, D.; Jiang, C.; Ma, J. Study on poisson Algebra and Automorphism of a special class of Solvable Lie algebras. Symmetry 2023, 15, 1115. [Google Scholar] [CrossRef]
- Sweedler, M.E. Hopf Algebras; Benjamin: New York, NY, USA, 1969. [Google Scholar]
- Kassel, C. Quantum Groups; Springer: New York, NY, USA, 1995. [Google Scholar]
- Montgomery, S. Hopf Algebras and Their Actions on Rings; CBMS Series in Math; American Mathematical Society: Providence, RI, USA, 1993; Volume 82. [Google Scholar]
- Masood, F.; Al-shami, T.M.; El-Metwally, H. Solving some partial q-differential equations using transformation methods. Palest. J. Math. 2023, 12, 937–946. [Google Scholar]
- Radford, D.E. On the coradical of a finite-dimensional Hopf algebras. Proc. Am. Math. Soc. 1975, 53, 9–15. [Google Scholar]
- Krop, L.; Radford, D.E. Finite dimensional Hopf algebras of rank one in characteristic zero. J. Algebra 2006, 302, 214–230. [Google Scholar] [CrossRef]
- Wang, Z.H.; Li, L.B.; Zhang, Y.H. Green rings of pointed rank one Hopf algebras of non-nilpotent type. J. Algebra 2016, 449, 108–137. [Google Scholar] [CrossRef]
- Chen, H.X.; Huang, H.L.; Zhang, P. Generalized Taft algebras. J. Algebra Colloq. 2004, 11, 313–320. [Google Scholar]
- Taft, E.J. The order of the antipode of a finite-dimensional Hopf algebra. Proc. Natl. Acad. Sci. USA 1971, 68, 2631–2633. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Hu, M.; Hu, J. The Hopf Automorphism Group of Two Classes of Drinfeld Doubles. Symmetry 2024, 16, 735. https://doi.org/10.3390/sym16060735
Sun H, Hu M, Hu J. The Hopf Automorphism Group of Two Classes of Drinfeld Doubles. Symmetry. 2024; 16(6):735. https://doi.org/10.3390/sym16060735
Chicago/Turabian StyleSun, Hua, Mi Hu, and Jiawei Hu. 2024. "The Hopf Automorphism Group of Two Classes of Drinfeld Doubles" Symmetry 16, no. 6: 735. https://doi.org/10.3390/sym16060735
APA StyleSun, H., Hu, M., & Hu, J. (2024). The Hopf Automorphism Group of Two Classes of Drinfeld Doubles. Symmetry, 16(6), 735. https://doi.org/10.3390/sym16060735