Gröbner–Shirshov Bases for Temperley–Lieb Algebras of Type F
Abstract
:1. Introduction
2. Gröbner–Shirshov Bases
- (a)
- S is closed under composition;
- (b)
- For each , a normal form of p with respect to S is unique;
- (c)
- The set of S-standard monomials forms the -linear basis of the algebra defined by S.
3. Temperley–Lieb Algebras of Types and
3.1. Type
3.2. Type
4. Temperley–Lieb Algebras of Type
4.1. Type
4.2. Type
4.3. Type
4.4. Type
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Temperley, H.N.V.; Lieb, E.H. Relations between percolation and colouring problems and other graph theoretical problems associated with regular planar lattices: Some exact results for the percolation problem. Proc. R. Soc. Lond. Ser. A 1971, 322, 251–280. [Google Scholar]
- Jones, V.F.R. Hecke algebra representations of braid groups and link polynomials. Ann. Math. 1987, 126, 335–388. [Google Scholar] [CrossRef]
- Buchberger, B. An Algorithm for Finding the Basis Elements of the Residue Class Ring of a Zero Dimensional Polynomial Ideal. Ph.D. Thesis, University of Innsbruck, Innsbruck, Austria, 1965. (In German) Translated in J. Symbolic Comput. 2006, 41, 475–511. [Google Scholar]
- Shirshov, A.I. Some algorithmic problems for Lie algebras. Sibirk. Math. Z. 1962, 3, 292–296. (In Russian) Translated in ACM SIGSAM Bull. Commun. Comput. Algebra 1999, 33, 3–6 [Google Scholar]
- Shirshov, A.I. Selected Works of AI Shirshov; Bokut, L.A., Latyshev, V., Shestakov, I., Zelmanov, E., Eds.; Birkhäuser: Basel, Switzerland, 2009. [Google Scholar]
- Bokut, L.A. Imbedding into simple associative algebras. Algebra Logic 1976, 15, 117–142. [Google Scholar] [CrossRef]
- Bergman, G.M. The diamond lemma for ring theory. Adv. Math. 1978, 29, 178–218. [Google Scholar] [CrossRef]
- Miller, C.F. Decision problems for groups—Survey and reflections. In Algorithms and Classification in Combinatorial Group Theory; Baumslag, G., Miller, C.F., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; Volume 23, pp. 1–59. [Google Scholar]
- Kang, S.-J.; Lee, I.-S.; Lee, K.-H.; Oh, H. Hecke algebras, Specht modules and Gröbner-Shirshov bases. J. Algebra 2002, 252, 258–292. [Google Scholar] [CrossRef]
- Bokut, L.A.; Shiao, L.-S. Gröbner-Shirshov bases for Coxeter groups. Comm. Algebra 2001, 29, 4305–4319. [Google Scholar] [CrossRef]
- Borges-Trenard, M.A.; Pérez-Rosés, H. Complete presentations of direct products of groups. Cien. Mat. 2001, 19, 3–11. [Google Scholar]
- Lee, D.-I. Standard monomials for the Weyl group F4. J. Algebra Appl. 2016, 15, 1650146. [Google Scholar] [CrossRef]
- Lee, D. Gröbner-Shirshov bases and normal forms for the Coxeter groups E6 and E7. In Advances in Algebra and Combinatorics; Shum, K.P., Zelmanov, E., Zhang, Z., Shangzhi, L., Eds.; World Scientific Publications: Singapore, 2008; pp. 243–255. [Google Scholar]
- Svechkarenko, O. Gröbner-Shirshov Bases for the Coxeter Group E8. Master’s Thesis, Novosibirsk State University, Novosibirsk, Russia, 2007. [Google Scholar]
- Lee, J.-Y.; Lee, D.-I. Gröbner-Shirshov bases for non-crystallographic Coxeter groups. Acta Cryst. 2019, A75, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Bokut, L.A.; Chen, Y. Gröbner-Shirshov bases and PBW theorems. J. Sib. Fed. Univ. Math. Phys. 2013, 6, 417–427. [Google Scholar]
- Ivanov-Pogodaev, I.; Malcev, S. Finite Gröbner basis algebras with unsolvable nilpotency problem and zero divisors problem. J. Algebra 2018, 508, 575–588. [Google Scholar] [CrossRef]
- Oner, T.; Senturk, I.; Oner, G. An independent set of axioms of MV-algebras and solutions of the set-theoretical Yang–Baxter equation. Axioms 2017, 6, 17. [Google Scholar] [CrossRef]
- Graham, J.J. Modular Representations of Hecke Algebras and Related Algebras. Ph.D. Thesis, University of Sydney, Sydney, Australia, 1995. [Google Scholar]
- Fan, C.K. Structure of a Hecke algebra quotient. J. Am. Math. Soc. 1997, 10, 139–167. [Google Scholar] [CrossRef]
- Kleshchev, A.; Ram, A. Homogeneous representations of Khovanov-Lauda algebras. J. Eur. Math. Soc. 2010, 12, 1293–1306. [Google Scholar] [CrossRef]
- Feinberg, G.; Lee, K.-H. Fully commutative elements of type D and homogeneous representations of KLR-algebras. J. Comb. 2015, 6, 535–557. [Google Scholar] [CrossRef]
- Stembridge, J.R. On the fully commutative elements of Coxeter groups. J. Algebr. Comb. 1996, 5, 353–385. [Google Scholar] [CrossRef]
- Kim, S.; Lee, D.-I. Gröbner-Shirshov bases for Temperley-Lieb algebras of types B and D. J. Algebra Appl. 2020, 19, 2050002. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Lee, D.-I.; Kim, S. Gröbner-Shirshov bases for Temperley-Lieb algebras of complex reflection groups. Symmetry 2018, 10, 438. [Google Scholar] [CrossRef]
- Stanley, R.P. Catalan Numbers; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Stembridge, J.R. The enumeration of fully commutative elements of Coxeter groups. J. Algebr. Comb. 1998, 7, 291–320. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-Y.; Lee, D.-i. Gröbner–Shirshov Bases for Temperley–Lieb Algebras of Type F. Symmetry 2024, 16, 1458. https://doi.org/10.3390/sym16111458
Lee J-Y, Lee D-i. Gröbner–Shirshov Bases for Temperley–Lieb Algebras of Type F. Symmetry. 2024; 16(11):1458. https://doi.org/10.3390/sym16111458
Chicago/Turabian StyleLee, Jeong-Yup, and Dong-il Lee. 2024. "Gröbner–Shirshov Bases for Temperley–Lieb Algebras of Type F" Symmetry 16, no. 11: 1458. https://doi.org/10.3390/sym16111458
APA StyleLee, J.-Y., & Lee, D.-i. (2024). Gröbner–Shirshov Bases for Temperley–Lieb Algebras of Type F. Symmetry, 16(11), 1458. https://doi.org/10.3390/sym16111458