Fractional Caputo Operator and Takagi–Sugeno Fuzzy Modeling to Diabetes Analysis
Abstract
1. Introduction
2. Related Work
3. Preliminary of the Fractional Calculations
4. Knowledge Mathematics Representation Model
4.1. Fractional Diabetes Model
- : total number of people with pre-diabetes.
- : number of people with pre-diabetes due to the negative influence of socio-environmental factors.
- : number of people with uncomplicated diabetes.
- : number of people with diabetes with complications.
- denotes the incidence of pre-diabetes.
- represents the natural mortality rate.
- signifies the probability of developing diabetes.
- denotes the probability of a diabetic person developing a complication.
- expresses the probability of developing diabetes at the stage of complications.
- is the rate at which complications are cured.
- represents the rate at which patients with complications become severely disabled.
- is the mortality rate due to complications.
4.2. Existence and Uniqueness
4.3. Fractional Takagi–Sugeno Fuzzy Model
4.4. Fractional T-S Fuzzy of Our Model
- MR 1: If is “Positive” and is “Big”, therefore, .
- MR 2: If is “Positive” and is “Small”, therefore, .
- MR 3: If is “Negative” and is “Big”, therefore, .
- MR 4: If is “Negative” and is “Small”, therefore, .
5. Numerical Simulation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Syam, M.I.; Al-Refai, M. Fractional differential equations with Atangana–Baleanu fractional derivative: Analysis and applications. Chaos Solitons Fractals X 2019, 2, 100013. [Google Scholar] [CrossRef]
- Sweis, H.; Shawagfeh, N.; Arqub, O.A. Fractional crossover delay differential equations of Mittag-Leffler kernel: Existence, uniqueness, and numerical solutions using the Galerkin algorithm based on shifted Legendre polynomials. Results Phys. 2022, 41, 105891. [Google Scholar] [CrossRef]
- Yadav, P.; Jahan, S.; Shah, K.; Peter, O.J.; Abdeljawad, T. Fractional-order modelling and analysis of diabetes mellitus: Utilizing the Atangana-Baleanu Caputo (ABC) operator. Alex. Eng. J. 2023, 81, 200–209. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Shaikh, A.; Tassaddiq, A.; Nisar, K.S.; Baleanu, D. Analysis of differential equations involving Caputo-Fabrizio fractional operator and its applications to reaction-diffusion equations. Adv. Differ. Equ. 2019, 2019, 178. [Google Scholar] [CrossRef]
- Shaikh, A.S.; Nisar, K.S. Transmission dynamics of fractional order Typhoid fever model using Caputo Fabrizio operator. Chaos Solitons Fractals 2019, 128, 355–365. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Baleanu, D. Two analytical methods for time-fractional nonlinear coupled Boussinesq-Burger’s equations arise in propagation of shallow water waves. Nonlinear Dyn. 2016, 85, 699–715. [Google Scholar] [CrossRef]
- Shah, N.A.; Asogwa, K.K.; Mahsud, Y.; Lee, S.R.; Kang, S.; Chung, J.D.; Ishtiaq, M. Effect of generalized thermal transport on MHD free convection flows of nanofluids: A generalized Atangana-Baleanu derivative model. Case Stud. Therm. Eng. 2022, 40, 102480. [Google Scholar] [CrossRef]
- Rauf, A.; Batool, F.; Shah, N.A.; Chung, J.D. The influence of fractional time-derivative on the helical flows of generalized multi-layer immiscible second grade fluids in a cylindrical domain. Ain Shams Eng. J. 2023, 14, 102145. [Google Scholar] [CrossRef]
- Owolabi, K.M.; Atangana, A. On the formulation of Adams-Bashforth scheme with Atangana-Baleanu-Caputo fractional derivative to model chaotic problems. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 023111. [Google Scholar] [CrossRef]
- El Moutaouakil, K.; El Ouissari, A.; Palade, V.; Charroud, A.; Olaru, A.; Baïzri, H.; Chellak, S.; Cheggour, M. Multi-objective optimization for controlling the dynamics of the diabetic population. Mathematics 2023, 11, 2957. [Google Scholar] [CrossRef]
- Shen, M.; Wang, C.; Wang, Q.G.; Sun, Y.; Zong, G. Synchronization of Fractional Reaction-Diffusion Complex Networks with Unknown Couplings. IEEE Trans. Netw. Sci. Eng. 2024, 11, 4503–4512. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.; Wen, D.; Shen, M.; Li, L.; Zhang, Z. Novel passivity and dissipativity criteria for discrete-time fractional generalized delayed Cohen–Grossberg neural networks. Commun. Nonlinear Sci. Numer. Simul. 2024, 133, 107960. [Google Scholar] [CrossRef]
- Nasir, H. A time-delay model of diabetic population: Dynamics analysis, sensitivity, and optimal control. Phys. Scr. 2021, 96, 115002. [Google Scholar] [CrossRef]
- Saliha, C.; Hicham, B. Genetic algorithms for optimal control of a continuous model of a diabetic population. In Proceedings of the 2022 IEEE 3rd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), Fez, Morocco, 1–2 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–5. [Google Scholar]
- Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discret. Contin. Dyn. Syst. Ser. 2020, 13, 709–722. [Google Scholar] [CrossRef]
- El Ouissari, A.; El Moutaouakil, K. Genetic algorithm applied to fractional optimal control of a diabetic patient. Ufa Math. J. 2023, 15, 129–147. [Google Scholar] [CrossRef]
- Abdellatif, E.O.; Karim, E.M.; Hicham, B.; Saliha, C. Intelligent local search for an optimal control of diabetic population dynamics. Math. Model. Comput. Simul. 2022, 14, 1051–1071. [Google Scholar] [CrossRef]
- El Ouissari, A.; El Moutaouakil, K. Intelligent optimal control of nonlinear diabetic population dynamics system using a genetic algorithm. Syst. Res. Inf. Technol. 2024, 134–148. [Google Scholar]
- El Moutaouakil, K.; Bouhanch, Z.; Ahourag, A.; Aberqi, A.; Karite, T. OPT-FRAC-CHN: Optimal Fractional Continuous Hopfield Network. Symmetry 2024, 16, 921. [Google Scholar] [CrossRef]
- Mehran, K. Takagi-Sugeno Fuzzy Modeling for Process Control. In Industrial Automation, Robotics and Artificial Intelligence (EEE8005); School of Electrical, Electronic and Computer Engineering, Newcastle University: Newcastle upon Tyne, UK, 2008. [Google Scholar]
- Tanaka, K.; Wang, H.O. Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach; John Wiley & Sons: Hoboken, NJ, USA, 2004; ISBN 0-471-32324-1. [Google Scholar]
- Guelton, K. Modèles Flous de Type Takagi-Sugeno: Des Origines à la Problématique Actuelle de leur Commande à Base de Signaux Echantillonnés. In Rencontres Francophones sur la Logique Floue et ses Applications (LFA); Sète: Cépaduès-Editions, France, 2020. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Goharimanesh, M.; Lashkaripour, A.; Abouei Mehrizi, A. Fractional order PID controller for diabetes patients. J. Comput. Appl. Mech. 2015, 46, 69–76. [Google Scholar]
- Singh, J.; Kumar, D.; Baleanu, D. On the analysis of fractional diabetes model with exponential law. Adv. Differ. Equ. 2018, 2018, 231. [Google Scholar] [CrossRef]
- Jajarmi, A.; Ghanbari, B.; Baleanu, D. A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 093111. [Google Scholar] [CrossRef] [PubMed]
- El Moutaouakil, K.; El Ouissari, A.; Hicham, B.; Saliha, C.; Cheggour, M. Multi-objectives optimization and convolution fuzzy C-means: Control of diabetic population dynamic. RAIRO-Oper. Res. 2022, 56, 3245–3256. [Google Scholar] [CrossRef]
- Omame, A.; Nwajeri, U.K.; Abbas, M.; Onyenegecha, C.P. A fractional order control model for Diabetes and COVID-19 co-dynamics with Mittag-Leffler function. Alex. Eng. J. 2022, 61, 7619–7635. [Google Scholar] [CrossRef]
- Farman, M.; Ahmad, A.; Zehra, A.; Nisar, K.S.; Hincal, E.; Akgul, A. Analysis and controllability of diabetes model for experimental data by using fractional operator. Math. Comput. Simul. 2024, 218, 133–148. [Google Scholar] [CrossRef]
- Narayanan, G.; Ali, M.S.; Rajchakit, G.; Jirawattanapanit, A.; Priya, B. Stability analysis for Nabla discrete fractional-order of Glucose–Insulin Regulatory System on diabetes mellitus with Mittag-Leffler kernel. Biomed. Signal Process. Control 2023, 80, 104295. [Google Scholar] [CrossRef]
- Balakrishnan, G.P.; Chinnathambi, R.; Rihan, F.A. A fractional-order control model for diabetes with restraining and time-delay. J. Appl. Math. Comput. 2023, 69, 3403–3420. [Google Scholar] [CrossRef]
- Kouidere, A.; Khajji, B.; Balatif, O.; Rachik, M. A multi-age mathematical modeling of the dynamics of population diabetics with effect of lifestyle using optimal control. J. Appl. Math. Comput. 2021, 67, 375–403. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustapha, E.-z.; Abdellatif, E.O.; Karim, E.M.; Ahmed, A. Fractional Caputo Operator and Takagi–Sugeno Fuzzy Modeling to Diabetes Analysis. Symmetry 2024, 16, 1395. https://doi.org/10.3390/sym16101395
Mustapha E-z, Abdellatif EO, Karim EM, Ahmed A. Fractional Caputo Operator and Takagi–Sugeno Fuzzy Modeling to Diabetes Analysis. Symmetry. 2024; 16(10):1395. https://doi.org/10.3390/sym16101395
Chicago/Turabian StyleMustapha, Ez-zaiym, El Ouissari Abdellatif, El Moutaouakil Karim, and Aberqi Ahmed. 2024. "Fractional Caputo Operator and Takagi–Sugeno Fuzzy Modeling to Diabetes Analysis" Symmetry 16, no. 10: 1395. https://doi.org/10.3390/sym16101395
APA StyleMustapha, E.-z., Abdellatif, E. O., Karim, E. M., & Ahmed, A. (2024). Fractional Caputo Operator and Takagi–Sugeno Fuzzy Modeling to Diabetes Analysis. Symmetry, 16(10), 1395. https://doi.org/10.3390/sym16101395