Some Limiting Measures Related to Free and Boolean Convolutions
Abstract
:1. Introduction
- (i)
- (ii)
- at least one of the first moments of one of measures or is finite,
2. Cauchy–Stieltjes Kernel Families
- (i)
- Let . Consider , where and and let be the image of σ by g. Then, ∀m is sufficiently close to ,
- (ii)
- characterizes σ: If we consider then
- (iii)
- Furthermore, ∀m is sufficiently close to ,
- (iv)
- In addition, ∀ and ∀,
3. Main Results
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
- (vii)
- (viii)
4. Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banna, M.; Merlevède, F. Limiting Spectral Distribution of Large Sample Covariance Matrices Associated with a Class of Stationary Processes. J. Theor. Probab. 2015, 28, 745–783. [Google Scholar] [CrossRef]
- Anderson, G.; Zeitouni, O. A law of large numbers for finite-range dependent random matrices. Comm. Pure Appl. Math. 2008, 61, 1118–1154. [Google Scholar] [CrossRef]
- Banna, M.; Merlevède, F.; Peligrad, M. On the limiting spectral distribution for a large class of symmetric random matrices with correlated entries. Stoch. Processes Their Appl. 2015, 125, 2700–2726. [Google Scholar] [CrossRef]
- Merlevède, F.; Peligrad, M. On the empirical spectral distribution for matrices with long memory and independent rows. Stoch. Processes Their Appl. 2016, 126, 2734–2760. [Google Scholar] [CrossRef]
- Pastur, L.; Shcherbina, M. Eigenvalue distribution of large random matrices. In Mathematical Surveys and Monographs; American Mathematical Society: Providence, RI, USA, 2011; Volume 171. [Google Scholar]
- Liu, W. Relations between convolutions and transforms in operator-valued free probability. Adv. Math. 2021, 390, 107949. [Google Scholar] [CrossRef]
- Capitaine, M.; Donati-Martin, C.; Féral, D.; Février, M. Free Convolution with a Semicircular Distribution and Eigenvalues of Spiked Deformations of Wigner Matrices. Electron. J. Probab. 2011, 16, 1750–1792. [Google Scholar] [CrossRef]
- Bai, Z.D.; Yin, Y.Q. Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix. Ann. Probab. 1988, 16, 1729–1741. [Google Scholar] [CrossRef]
- Benaych-Georges, F.; Nadakuditi, R.R. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Adv. Math. 2011, 227, 494–521. [Google Scholar] [CrossRef]
- Furedi, Z.; Komlos, J. The eigenvalues of random symmetric matrices. Combinatorica 1981, 1, 233–241. [Google Scholar] [CrossRef]
- Wang, J.-C. Limit laws for Boolean convolutions. Pac. J. Math. 2008, 237, 349–371. [Google Scholar] [CrossRef]
- Bercovici, H.; Pata, V. Stable laws and domains of attraction in free probability theory (with an appendix by Philippe Biane). Ann. Math. 1999, 149, 1023–1060. [Google Scholar] [CrossRef]
- Tucci, G.H. Limits laws for geometric means of free random variables. Indiana Univ. Math. J. 2010, 59, 1–13. [Google Scholar] [CrossRef]
- Haagerup, U.; Möller, S. The Law of Large Numbers for the Free Multiplicative Convolution. In Operator Algebra and Dynamics; Proceedings in Mathematics and Statistics; Springer: Berlin/Heidelberg, Germany, 2013; Volume 58. [Google Scholar]
- Lindsay, J.M.; Pata, V. Some weak laws of large numbers in noncommutative probability. Math. Z. 1997, 226, 533–543. [Google Scholar] [CrossRef]
- Chistyakov, G.P.; Götze, F. Limit theorems in free probability theory I. Ann. Probab. 2008, 36, 54–90. [Google Scholar] [CrossRef]
- Ueda, Y. Max-convolution semigroups and extreme values in limit theorems for the free multiplicative convolution. Bernoulli 2021, 27, 502–531. [Google Scholar] [CrossRef]
- Bercovici, H.; Voiculescu, D. Free convolution of measures with unbounded support. Indiana Univ. Math. J. 1993, 42, 733–773. [Google Scholar] [CrossRef]
- Nica, A.; Speicher, R. On the multiplication of free N-tuples of noncommutative random variables. Amer. J. Math. 1996, 118, 799–837. [Google Scholar] [CrossRef]
- Belinschi, S.T. Complex Analysis Methods in Noncommutative Probability; ProQuest LLC: Ann Arbor, MI, USA, 2005. [Google Scholar]
- Speicher, R.; Woroudi, R. Boolean convolution. Fields Inst. Commun. 1997, 12, 267–279. [Google Scholar]
- Bercovici, H. On Boolean convolutions. Oper. Theory 2006, 20, 7–13. [Google Scholar]
- Anshelevich, M.; Wang, J.-C.; Zhong, P. Local limit theorems for multiplicative free convolutions. J. Funct. Anal. 2014, 267, 3469–3499, ISSN 0022-1236. [Google Scholar] [CrossRef]
- Fakhfakh, R. Explicit free multiplicative law of large numbers. Commun.-Stat.-Theory Methods 2023, 52, 2031–2042. [Google Scholar] [CrossRef]
- Bryc, W. Free exponential families as kernel families. Demonstr. Math. 2009, 42, 657–672. [Google Scholar] [CrossRef]
- Bryc, W.; Hassairi, A. One-sided Cauchy-Stieltjes kernel families. J. Theoret. Probab. 2011, 24, 577–594. [Google Scholar] [CrossRef]
- Fakhfakh, R. Variance function of boolean additive convolution. Stat. Probab. Lett. 2020, 163, 108777. [Google Scholar] [CrossRef]
- Fakhfakh, R.; Hassairi, A. Cauchy-Stieltjes kernel families and free multiplicative convolution. Commun. Math. Stat. 2023. [Google Scholar] [CrossRef]
- Fakhfakh, R. Boolean multiplicative convolution and Cauchy-Stieltjes Kernel families. Bull. Korean Math. Soc. 2021, 58, 515–526. [Google Scholar] [CrossRef]
- Belinschi, S.T.; Bercovici, H. Atoms and regularity for measures in a partially defined free convolution semigroup. Math. Z. 2004, 248, 665–674. [Google Scholar] [CrossRef]
- Voiculescu, D. Voiculescu, D. Addition of certain noncommuting random variables. J. Funct. Anal. 1986, 66, 323–346. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanzi, A.R.A.; Alshqaq, S.S.; Fakhfakh, R. Some Limiting Measures Related to Free and Boolean Convolutions. Symmetry 2024, 16, 1365. https://doi.org/10.3390/sym16101365
Alanzi ARA, Alshqaq SS, Fakhfakh R. Some Limiting Measures Related to Free and Boolean Convolutions. Symmetry. 2024; 16(10):1365. https://doi.org/10.3390/sym16101365
Chicago/Turabian StyleAlanzi, Ayed. R. A., Shokrya S. Alshqaq, and Raouf Fakhfakh. 2024. "Some Limiting Measures Related to Free and Boolean Convolutions" Symmetry 16, no. 10: 1365. https://doi.org/10.3390/sym16101365
APA StyleAlanzi, A. R. A., Alshqaq, S. S., & Fakhfakh, R. (2024). Some Limiting Measures Related to Free and Boolean Convolutions. Symmetry, 16(10), 1365. https://doi.org/10.3390/sym16101365