Some Results for a Class of Pantograph Integro-Fractional Stochastic Differential Equations
Abstract
:1. Introduction
2. Notational Preliminaries
- There is such that
- The functions , and , satisfy the following conditions:
3. Existence and Uniqueness Results
4. Stability Results
5. Examples
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Laskin, N. Fractional market dynamics. Physica A 2000, 287, 482–492. [Google Scholar] [CrossRef]
- Koeller, R. Applications of fractional calculus to the theory of viscoelasticity. ASME J. Appl. Mech. 1984, 51, 299–307. [Google Scholar] [CrossRef]
- Petras, I.; Magin, R.L. Simulation of drug uptake in a two compartmental fractional model for a biological system. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4588–4595. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-J.; Srivastava, H.M. An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 2015, 29, 499–504. [Google Scholar] [CrossRef]
- Ahmad, M.; Zada, A.; Ahmad, J.; Salam, M.A.A.E. Analysis of Stochastic Weighted Impulsive Neutral ψ-Hilfer Integro-Fractional Differential System with Delay. Math. Probl. Eng. 2022, 2022, 1490583. [Google Scholar] [CrossRef]
- Shahid, S.; Saifullah, S.; Riaz, U.; Zada, A.; Moussa, S.B. Existence and Stability Results for Nonlinear Implicit Random Fractional Integro-Differential Equations. Qual. Theory Dyn. Syst. 2023, 22, 81. [Google Scholar] [CrossRef]
- Saifullah, S.; Shahid, S.; Zada, A. Analysis of Neutral Stochastic Fractional Differential Equations Involving Riemann–Liouville Fractional Derivative with Retarded and Advanced Arguments. Qual. Theory Dyn. Syst. 2024, 23, 39. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Gajda, Z. On stability of additive mappings. Int. J. Math. Math. Sci. 1991, 14, 431–434. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Rassias, T.M. On a modified Hyers–Ulam sequence. J. Math. Anal. Appl. 1991, 158, 106–113. [Google Scholar] [CrossRef]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Makhlouf, A.B.; Mchiri, L.; Rguigui, H. Ulam-Hyers stability of pantograph fractional stochastic differential equations. Math. Methods Appl. Sci. 2023, 46, 4134–4144. [Google Scholar]
- Rhaima, M.; Mchiri, L.; Makhlouf, A.B.; Ahmed, H. Ulam type stability for mixed Hadamard and Riemann–Liouville Fractional Stochastic Differential Equations. Chaos Solitons Fractals 2024, 78, 114356. [Google Scholar] [CrossRef]
- Makhlouf, A.B.; Sallay, J. Some results on proportional Caputo neutral fractional stochastic differential equations. Discret. Contin. Dyn. Syst.-S 2024, 17, 3102–3115. [Google Scholar] [CrossRef]
- Baleanu, D.; Machado, J.A.; Luo, A.C. Fractional Dynamics and Control; Springer Science and Business Media: New York, NY, USA, 2011. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abusalim, S.M.; Fakhfakh, R.; Alshahrani, F.; Ben Makhlouf, A. Some Results for a Class of Pantograph Integro-Fractional Stochastic Differential Equations. Symmetry 2024, 16, 1362. https://doi.org/10.3390/sym16101362
Abusalim SM, Fakhfakh R, Alshahrani F, Ben Makhlouf A. Some Results for a Class of Pantograph Integro-Fractional Stochastic Differential Equations. Symmetry. 2024; 16(10):1362. https://doi.org/10.3390/sym16101362
Chicago/Turabian StyleAbusalim, Sahar Mohammad, Raouf Fakhfakh, Fatimah Alshahrani, and Abdellatif Ben Makhlouf. 2024. "Some Results for a Class of Pantograph Integro-Fractional Stochastic Differential Equations" Symmetry 16, no. 10: 1362. https://doi.org/10.3390/sym16101362
APA StyleAbusalim, S. M., Fakhfakh, R., Alshahrani, F., & Ben Makhlouf, A. (2024). Some Results for a Class of Pantograph Integro-Fractional Stochastic Differential Equations. Symmetry, 16(10), 1362. https://doi.org/10.3390/sym16101362