Linear Arrangement of Euler Sums with Multiple Argument
Abstract
1. Introduction and Background
2. The Main Results
3. Illustrative Examples of Euler Harmonic Sums
4. Concluding Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flajolet, P.; Salvy, B. Euler sums and contour integral representations. Exp. Math. 1998, 7, 15–35. [Google Scholar] [CrossRef]
- Srivastava, H.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier, Inc.: Amsterdam, The Netherland, 2012; p. xvi+657. ISBN 978-0-12-385218-2. [Google Scholar]
- Borwein, J.M.; Crandall, R.E. Closed forms: What they are and why we care. Not. Am. Math. Soc. 2013, 60, 50–65. [Google Scholar] [CrossRef]
- Euler, L. Opera Omnia; Series 1; Teubner: Berlin, Germany, 1917; Volume AT, pp. 217–267. [Google Scholar]
- Borwein, D.; Borwein, J.M.; Girgensohn, R. Explicit evaluation of Euler sums. Proc. Edinb. Math. Soc. 1995, 38, 277–294. [Google Scholar] [CrossRef]
- Sitaramachandrarao, R. A Formula of S. Ramanujan. J. Number Theory 1987, 25, 1–19. [Google Scholar] [CrossRef]
- Alzer, A.; Choi, J. Four parametric linear Euler sums. J. Math. Anal. Appl. 2020, 484, 123661. [Google Scholar] [CrossRef]
- Choi, J.; Srivastava, H.M. Explicit evaluation of Euler and related sums. Ramanujan J. 2005, 10, 51–70. [Google Scholar] [CrossRef]
- Sofo, A.; Nimbran, A.S. Euler sums and integral connections. Mathematics 2019, 7, 833. [Google Scholar] [CrossRef]
- Sofo, A. General order Euler sums with rational argument. Integral Transform. Spec. Funct. 2019, 30, 978–991. [Google Scholar] [CrossRef]
- Sofo, A. Reciprocal argument Euler sum identities. 2024; submitted. [Google Scholar]
- Sofo, A. General order Euler sums with multiple argument. J. Number Theory 2018, 189, 255–271. [Google Scholar] [CrossRef]
- Sofo, A.; Choi, J. Extension of the four Euler sums being linear with parameters and series involving the zeta functions. J. Math. Anal. Appl. 2022, 515, 126370. [Google Scholar] [CrossRef]
- Sofo, A.; Nimbran, A.S. Euler-like sums via powers of log, arctan and arctanh functions. Integral Transform. Spec. Funct. 2020, 31, 966–981. [Google Scholar] [CrossRef]
- Li, C.; Chu, W. Gauss’ Second Theorem for 2F1(1/2)-Series and Novel Harmonic Series Identities. Mathematics 2024, 12, 1381. [Google Scholar] [CrossRef]
- Chen, K.-W. On Some General Tornheim-Type Series. Mathematics 2024, 12, 1867. [Google Scholar] [CrossRef]
- Sofo, A.; Batir, N. Parameterized families of polylog integrals. Constuctive Math. Anal. 2021, 4, 400419. [Google Scholar] [CrossRef]
- Sofo, A. Generalization of the Flajolet Salvy identities. 2024; submitted. [Google Scholar]
- Kölbig, K.S. The polygamma function ψk(x) for x = and x = . J. Comput. Appl. Math. 1996, 75, 43–46. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sofo, A. Linear Arrangement of Euler Sums with Multiple Argument. Symmetry 2024, 16, 1322. https://doi.org/10.3390/sym16101322
Sofo A. Linear Arrangement of Euler Sums with Multiple Argument. Symmetry. 2024; 16(10):1322. https://doi.org/10.3390/sym16101322
Chicago/Turabian StyleSofo, Anthony. 2024. "Linear Arrangement of Euler Sums with Multiple Argument" Symmetry 16, no. 10: 1322. https://doi.org/10.3390/sym16101322
APA StyleSofo, A. (2024). Linear Arrangement of Euler Sums with Multiple Argument. Symmetry, 16(10), 1322. https://doi.org/10.3390/sym16101322