Next Article in Journal
Impact of Semi-Symmetric Metric Connection on Homology of Warped Product Pointwise Semi-Slant Submanifolds of an Odd-Dimensional Sphere
Previous Article in Journal
Antihydrogen and Hydrogen: Search for the Difference
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Hankel Determinant for a Subclass of Starlike Functions with Respect to Symmetric Points Subordinate to the Exponential Function

1
Faculty of Humanities and Social Sciences, Guangzhou Civil Aviation College, Guangzhou 510403, China
2
School of Mathematical Sciences, Yangzhou Polytechnic College, Yangzhou 225009, China
3
Department of Basic Disciplines, Chuzhou Polytechnic College, Chuzhou 239000, China
*
Author to whom correspondence should be addressed.
Symmetry 2023, 15(8), 1604; https://doi.org/10.3390/sym15081604
Submission received: 18 July 2023 / Revised: 16 August 2023 / Accepted: 17 August 2023 / Published: 19 August 2023

Abstract

:
Let S s * ( e z ) denote the class of starlike functions with respect to symmetric points subordinate to the exponential function, i.e., the functions which satisfy in the unit disk U the condition 2 z f ( z ) f ( z ) f ( z ) e z ( z U ) . We obtained the sharp estimate of the second-order Hankel determinants H 2 , 3 ( f ) and improved the estimate of the third-order H 3 , 1 ( f ) for this functions class S s * ( e z ) .

1. Introduction and Definitions

Let the notation A denote the class of all analytic functions f ( z ) in the unit disk U = { z C : | z | < 1 } , which are normalized so that the Taylor expansion has the form
f ( z ) = z + n = 2 a n z n .
If f ( z ) is univalent and has the form (1), it is referred to as a normalized univalent function. The class of all f ( z ) is denoted as S.
In 1916, Bieberbach [1] studied the coefficients of class S and proposed the well-known coefficient conjecture, known as the “Bieberbach conjecture”, that if f ( z ) S , then | a n | n for all n 2 . Although de Branges [2] proved this conjecture in 1985, research on the coefficient estimation of univalent analytic functions continues to increase. In 1959, Sakaguchi [3] introduced the class S s * of starlike functions with respect to symmetric points, which consist of functions f ( z ) S , satisfying the condition R e 2 z f ( z ) f ( z ) f ( z ) > 0 , and obtained coefficient estimates | a n | 1 for all n 2 . Subsequently, the class S s * has been studied by several authors [4,5,6]. In 1991, Goodman [6] proved that if f ( z ) S s * , then for n 2 , | a n | 2 n .
Let B 0 denote the class of Schwarz functions in the unit disk U = { z : | z | < 1 } , i.e., w ( z ) B 0 if and only if w ( z ) = n = 1 c n z n is analytic and | w ( z ) | < 1 on U . Let f ( z ) and g ( z ) be analytic functions in the unit disk U . If there exists a Schwarz function w ( z ) in the unit disk that satisfies w ( 0 ) = 0 , | w ( z ) | < 1 and f ( z ) = g ( w ( z ) ) , then f ( z ) is said to be subordinate to g ( z ) and denoted by f ( z ) g ( z ) .
Ravichandran [7] introduced a class S s * ( ϕ ) of symmetric starlike functions, which is given by
S s * ( ϕ ) = { f ( z ) S , 2 z f ( z ) f ( z ) f ( z ) ϕ ( z ) , z U } ,
where ϕ ( z ) = 1 + B 1 z + B 2 z 2 + is a univalent starlike function with respect to 1, B 1 > 0 and R e ϕ ( z ) > 0 .
Taking different parameters for the coefficients of the function ϕ ( z ) , we can obtain the following subclasses:
(i)
S s * ( 1 + A z 1 + B z ) = S s * ( A , B ) , ( 1 B < A < 1 ) (see [8,9,10,11,12,13]; for S s * ( 1 + z 1 z ) = S s * , see [3]);
(ii)
S s * ( 1 + ( 1 2 α ) z 1 z ) = S s * ( α ) , ( 0 α < 1 2 ) (see [9,14]);
(iii)
S s * ( 1 + β z 1 α β z ) = S s * ( α , β ) (see [10,15]);
(iv)
S s * ( ( 1 β ) [ p ( z ) ] α + β ) = S ¯ s , β * ( α ) , where p P , the class of all functions p ( z ) analyzed in U , for which R e p ( z ) > 0 and p ( z ) = 1 + c 1 z + c 2 z 2 + , 0 < α 1 , 0 β < 1 (see [16]);
(v)
S s * ( 2 1 + e z ) = S S s G * (see [17]).
Pommerenke [18] introduced the q-th order Hankel determinant of f ( z ) of the form given by (1)
H q , n f : = a n a n + 1 a n + q 1 a n + 1 a n + 2 a n + q a n + q 1 a n + q a n + 2 q 2 .
When certain special parameters are chosen for q and n, different Hankel determinants will be obtained. For example,
H 2 , 3 ( f ) = a 3 a 5 a 4 2
and
H 3 , 1 ( f ) = a 1 a 3 a 5 + 2 a 2 a 3 a 4 a 3 3 a 2 2 a 5 a 1 a 4 2 .
The Hankel determinant plays a vital role in studies of power series with integral coefficients. Initially, the determinant was studied by researchers such as Hyman [19], Noonan [20] and Ehrenborg [21]. These studies explore the properties and behavior of power series, particularly their coefficients. It was difficult for scholars to determine the exact bounds of the Hankel determinants for a particular class of functions. After that, many papers focused on the upper-bound estimates of the second-order Hankel determinants H 2 , 1 and H 2 , 2 [22,23,24]. Recently, many scholars [25,26,27,28,29,30] have investigated the third-order Hankel determinant. Some sharp upper-bound estimates of the Hankel determinant for a subclass of univalent analytic functions were obtained via complex calculations.
In 2020, Ganesh et al. introduced and investigated a class S s * ( e z ) of analytic functions in [31], defined as follows:
S s * ( e z ) = { f A : 2 z f ( z ) f ( z ) f ( z ) e z , z U } .
They expressed the coefficients of functions in class S S * ( e z ) with the coefficients of the corresponding functions with positive real part, and these lemmas on the coefficients of the positive real part were obtained by Libera and Zlotkiewicz [32]. Using this method, the following results were obtained:
Theorem A. If f S s * ( e z ) , then | a 2 | 1 2 , | a 3 | 1 2 , | a 4 | 19 48 , | a 5 | 13 24 .
Theorem B. If f S s * ( e z ) , then H 2 , 1 = | a 3 a 2 2 | 1 2 .
Theorem C. If f S s * ( e z ) , then | a 4 a 2 a 3 | 765 + 59 118 3468 .
Theorem D. If f S s * ( e z ) , then H 2 , 2 = 2 | a 2 a 4 a 3 2 | 3 8 .
  • By applying the above theorems together, the estimate of the third-order Hankel determinant is derived as follows:
Theorem E. If f S s * ( e z ) , then H 3 , 1 = 90831 + 1121 118 166464 = 0.618 .
In 2022, Zaprawa [33] researched the class S s * ( e z ) using a new approach, which is based on relating the coefficients of functions in a given class with the coefficients of corresponding Schwarz functions. Some coefficient estimates of the function class S s * ( e z ) were obtained, including logarithmic coefficient estimates, Zalcman functional estimates and upper bounds for the second- and third-order Hankel determinants, etc. The main results are as follows:
Theorem A’. If f S s * ( e z ) , then | a 4 | 1 4 , | a 5 | 1 4 .
Theorem B’. If f S s * ( e z ) , then H 2 , 2 = 2 | a 2 a 4 a 3 2 | 1 4 .
Theorem C’. If f S s * ( e z ) , then | a 4 a 2 a 3 | 1 4 , | a 5 a 3 2 | 1 4 .
Theorem D’. If f S s * ( e z ) , then H 2 , 3 1 8 .
Theorem E’. If f S s * ( e z ) , then H 3 , 1 = 13 128 .
Comparing references [31,33], it is evident that Zaprawa’s research results improved upon some of Ganesh’s conclusions.
In this paper, we re-examined the upper bounds of Hankel determinants H 2 , 3 and H 3 , 1 of the class S s * ( e z ) and presented a complete proof. We proposed a proof method which differed from that of Zaprawa. This method is based on the use of a lemma derived by Carlson [34] about the coefficients of the Schwarz function. In particular, for the Hankel determinant H 3 , 1 , we obtained a more precise upper-bound estimate than in [33].
These proofs require the following lemma.
Lemma 1.
[34] Let w ( z ) B 0 . Then
| c 2 | 1 | c 1 | 2 , | c 3 | 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | , | c 4 | 1 | c 1 | 2 | c 2 | 2 .

2. Main Results and Proofs

Theorem 1.
If f S s * ( e z ) , then | H 2 , 3 ( f ) | 1 8 . The equality is sharp.
Proof. 
Since f S s * ( e z ) , we have
2 z f ( z ) f ( z ) f ( z ) = e w ( z )
where w ( z ) B 0 .
Comparing the coefficients on both sides yields
a 2 = c 1 2 , a 3 = c 2 2 + c 1 2 4 , a 4 = c 3 4 + 3 8 c 1 c 2 + 5 48 c 1 3 , a 5 = c 4 4 + 1 4 c 1 c 3 + 1 4 c 2 2 + 1 4 c 1 2 c 2 + 1 24 c 1 4 .
Based on (2) and (4), we have
| H 2 , 3 ( f ) | = 1 2304 | c 1 6 + 12 c 1 4 c 2 + 108 c 1 2 c 2 2 + 288 c 2 c 4 + 144 c 1 2 c 4 + 288 c 2 3 + 24 c 1 3 c 3 144 c 1 c 2 c 3 144 c 3 2 | .
Applying the triangle inequality and Lemma 1 to (5) yields
| H 2 , 3 ( f ) | 1 2304 [ | c 1 | 6 + 12 | c 1 | 4 | c 2 | + 108 | c 1 | 2 | c 2 | 2 + 288 | c 2 | ( 1 | c 1 | 2 | c 2 | 2 ) + 144 | c 1 | 2 ( 1 | c 1 | 2 | c 2 | 2 ) + 288 | c 2 | 3 + 24 | c 1 | 3 ( ( 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | ) + 144 | c 1 | | c 2 | ( 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | ) + 144 ( 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | ) 2 ] = 1 2304 [ | c 1 | 6 24 | c 1 | 5 + 12 | c 2 | | c 1 | 4 + 144 | c 1 | 4 144 | c 2 | | c 1 | 3 120 | c 1 | 3 36 | c 2 | 2 | c 1 | 2 288 | c 2 | | c 1 | 2 144 | c 1 | 2 + 288 | c 2 | 2 | c 1 | + 144 | c 2 | | c 1 | 288 | c 2 | 2 + 288 | c 2 | + 144 + 144 | c 2 | 4 ( 1 + | c 1 | ) 2 144 | c 1 | | c 2 | 3 1 + | c 1 | 24 | c 1 | 3 | c 2 | 2 1 + | c 1 | ] .
Let x = | c 1 | [ 0 , 1 ] , y = | c 2 | [ 0 , 1 x 2 ] . Then,
2304 | H 2 , 3 ( f ) | x 6 24 x 5 + ( 12 y + 144 ) x 4 + ( 144 y 120 ) x 3 + ( 36 y 2 288 y 144 ) x 2 + ( 288 y 2 + 144 y ) x 288 y 2 + 288 y + 144 + 144 y 4 ( 1 + x ) 2 144 x y 3 1 + x 24 x 3 y 2 1 + x = T ( x , y ) .
We need to find the maximum value 288 of T ( x , y ) on Ω = { ( x , y ) : 0 x 1 , 0 y 1 x 2 } . First, we find the possible extreme points of T ( x , y ) inside Ω . Let
T x = 6 x 5 120 x 4 + ( 48 y + 576 ) x 3 + ( 432 y 360 ) x 2 + ( 72 y 2 576 y 288 ) x + 288 y 2 + 144 y 288 y 4 ( 1 + x ) 3 144 y 3 ( 1 + x ) 2 24 y 2 ( 3 x 2 + 2 x 3 ) ( 1 + x ) 2 = 0 , T y = 12 x 4 144 x 3 + ( 72 y 288 ) x 2 + ( 576 y + 144 ) x 576 y + 288 + 576 y 3 ( 1 + x ) 2 432 x y 2 1 + x 48 x 3 y 1 + x = 0 .
In this case, it is equivalent to
x 8 17 x 7 + ( 8 y + 39 ) x 6 + ( 48 y + 169 ) x 5 + ( 20 y 2 288 y + 40 ) x 4 + ( 8 y 2 472 y 180 ) x 3 + ( 96 y 2 288 y 156 ) x 2 + ( 24 y 3 + 132 y 2 24 y 48 ) x 48 y 4 24 y 3 + 48 y 2 + 24 y = 0 , x 6 10 x 5 + ( 10 y 47 ) x 4 + ( 32 y 48 ) x 3 + ( 36 y 2 + 42 y + 24 ) x 2 + ( 36 y 2 48 y + 60 ) x + 48 y 3 48 y + 24 = 0 .
By solving the system of binary nonlinear equations, we find that
x 1 = 1 y 1 = 0 , x 2 = 0.1126 y 2 = 1.3016 , x 3 = 1.0265 y 3 = 0.1197 , x 4 = 13.2848 y 4 = 0.9468 , x 5 = 0.3053 y 5 = 0.8011 ,
x 6 = 0.4422 y 6 = 0.5837 , x 7 = 1.4723 y 8 = 0.0182 , x 8 = 1.4765 y 8 = 0.2346 , x 9 = 4.4675 y 9 = 6.4232 .
Obviously, there are no extreme points of T inside Ω .
It is assumed that the extreme points lie on the edges of Ω .
(a) When x = 0 , T ( 0 , y ) = 144 y 4 288 y 2 + 288 y + 144 .
Since T ( 0 , y ) = 576 y 3 576 y + 288 > 0 , T ( 0 , y ) T ( 0 , 1 ) = 288 .
(b) When y = 0 , T ( x , 0 ) = x 6 24 x 5 + 144 x 4 120 x 3 144 x 2 + 144 .
Let T ( x , 0 ) = 6 x 5 120 x 4 + 576 x 3 360 x 2 288 x = 0 . A simple calculation provides the stationary point x = 0 .
From T ( x , 0 ) = 30 x 4 488 x 3 + 1728 x 2 720 x 288 , we obtain T ( 0 , 0 ) = 288 < 0 . This implies T ( x , 0 ) T ( 0 , 0 ) = 1448 .
Therefore, we have | H 2 , 3 ( f ) | 288 2304 = 1 8 . Considering f ( z ) = z 3 2 z 2 = 1 2 z 3 + 1 4 z 5 + , the equality condition in the theorem’s statement is true. □
Theorem 2.
Let f ( z ) S s * ( e z ) . Then, | H 3 , 1 ( f ) | 203.5083 2304 = 0.08832 .
Proof. 
From (3) and (4), we have
| H 3 , 1 ( f ) | = 1 2304 | c 1 6 12 c 1 4 c 2 36 c 1 2 c 2 2 + 288 c 2 c 4 + 24 c 1 3 c 3 + 144 c 1 c 2 c 3 144 c 3 2 | .
Applying the triangle inequality and Lemma 1 to Equation (6), we obtain
| H 3 , 1 ( f ) | 1 2304 [ | c 1 | 6 + 12 | c 1 | 4 | c 2 | | + 36 | c 1 | 2 | c 2 | 2 + 288 | c 2 | ( 1 | c 1 | 2 | c 2 | 2 ) + 24 | c 1 | 3 ( 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | ) + 144 | c 1 | | c 2 | ( 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | ) + 144 ( 1 | c 1 | 2 | c 2 | 2 1 + | c 1 | ) 2 ] = 1 2304 [ | c 1 | 6 24 | c 1 | 5 + 12 | c 2 | | c 1 | 5 + 144 | c 1 | 4 144 | c 2 | | c 1 | 3 + 24 | c 1 | 3 + 36 | c 2 | 2 | c 1 | 2 288 | c 2 | | c 1 | 2 288 | c 1 | 2 + 288 | c 2 | 2 | c 1 | + 144 | c 2 | | c 1 | 288 | c 2 | 3 288 | c 2 | 2 + 288 | c 2 | + 144 + 144 | c 2 | 4 ( 1 + | c 1 | ) 2 144 | c 1 | | c 2 | 3 1 + | c 1 | 24 | c 1 | 3 | c 2 | 2 1 + | c 1 | .
Setting x = | c 1 | [ 0 , 1 ] and y = | c 2 | [ 0 , 1 x 2 ] , we obtain
2304 | H 3 , 1 ( f ) | x 6 24 x 5 + ( 12 y + 144 ) x 4 + ( 144 y + 24 ) x 3 + ( 36 y 2 288 y 288 ) x 2 + ( 288 y 2 + 144 y ) x 288 y 3 288 y 2 + 288 y + 144 + 144 y 4 ( 1 + x ) 2 144 x y 3 1 + x 24 x 3 y 2 1 + x = Ψ ( x , y ) .
Next, we will seek the maximum value of Ψ on Ω = { ( x , y ) : 0 x 1 , 0 y 1 x 2 } .
First, we need to find the possible extreme points inside Ω for Ψ . Let
Ψ x = 6 x 5 120 x 4 + ( 48 y + 576 ) x 3 + ( 432 y + 72 ) x 2 + ( 72 y 2 576 y 576 ) x + 288 y 2 + 144 y 288 y 4 ( 1 + x ) 3 144 y 3 ( 1 + x ) 2 24 y 2 ( 3 x 2 + 2 x 3 ) ( 1 + x ) 2 = 0 , Ψ y = 12 x 4 144 x 3 + ( 72 y 288 ) x 2 + ( 576 y + 144 ) x 864 y 2 576 y + 288 + 576 y 3 ( 1 + x ) 2 432 x y 2 1 + x 48 x 3 y 1 + x = 0 .
Then, it is equivalent to
x 8 17 x 7 + ( 8 y + 39 ) x 6 + ( 48 y + 241 ) x 5 + ( 4 y 2 288 y + 208 ) x 4 + ( 64 y 2 472 y 156 ) x 3 + ( 168 y 2 288 y 276 ) x 2 + ( 24 y 3 + 156 y 2 24 y 96 ) x 48 y 4 24 y 3 + 48 y 2 + 24 y = 0 , x 6 10 x 5 + ( 2 y 47 ) x 4 + ( 56 y 48 ) x 3 + ( 108 y 2 + 54 y + 24 ) x 2 + ( 180 y 2 48 y + 60 ) x + 48 y 3 72 y 2 48 y + 24 = 0 .
Solving this nonlinear system of equations gives
x 0 = 1 y 0 = 0 , x 1 = 0.1084 y 1 = 0.3801 , x 2 = 1.0099 y 2 = 0.0399 , x 3 = 0.2586 y 3 = 0.7152 , x 4 = 0.4558 y 4 = 0.6786 .
Thus, the extreme point inside Ω is x 1 = 0.1084 y 1 = 0.3801
  • and accordingly,
Ψ ( 0.1084 , 0.3801 ) = 203.5083 .
Second, we discuss the extreme values of Ψ on the boundary of Ω separately.
(a) When x = 0 , Ψ ( 0 , y ) = 144 y 4 288 y 3 288 y 2 + 288 y + 144 = ϕ 1 ( y ) .
Let ϕ 1 ( y ) = 576 y 3 864 y 2 576 y + 288 = 0 . Then, y = 0.3554 .
Since ϕ 1 ( y ) = 1728 y 2 1728 y 576 , ϕ 1 ( 0.3554 ) = 971.8690 < 0 . Thus, ϕ 1 ( y ) ϕ 1 ( 0.3554 ) = 199.3471 .
(b) When y = 0 ,   Ψ ( x , 0 ) = x 6 24 x 5 + 144 x 4 + 24 x 3 288 x 2 + 144 = ϕ 2 ( x ) .
Let ϕ 2 ( x ) = 6 x 5 120 x 4 + 576 x 3 + 72 x 2 576 x = 0 . Then, x = 0 .
Since ϕ 2 ( x ) = 30 x 4 480 x 3 + 1728 x 2 + 144 x 576 , ϕ 2 ( 0 ) = 576 < 0 . Thus, ϕ 2 ( x ) ϕ 2 ( 0 ) = 144 .
(c) When y = 1 x 2 , Ψ ( x , 1 x 2 ) = 577 x 6 1188 x 4 + 612 x 2 = ϕ 3 ( x ) .
Let ϕ 3 ( x ) = 3462 x 5 4752 x 3 + 1224 x = 0 . Then, x = 228492 1154 9777 577 = 0.5862 .
Since ϕ 3 ( x ) = 17310 x 4 14256 x 2 + 1224 , ϕ 3 ( 0.5862 ) = 1630.8 < 0 . Thus, ϕ 3 ( x ) ϕ 3 ( 0.5862 ) = 93.4332 .
Therefore,
| H 3 , 1 ( f ) | 203.5083 2304 = 0.08832 .
This completes the proof of Theorem 2. □

3. Conclusions

In this paper, upper-bound estimates for the Hankel determinant of the class S S * ( e z ) are studied using a new Lemma and method. Theorem 5 in reference [33] is proved once again, and the extremal function is obtained. The upper-bound estimate of | H 3 , 1 ( f ) | for the functions class S s * ( e z ) is more accurate than Theorem 6 in reference [33]. The proof of Theorem 2 indicates that the exact upper-bound estimate of | H 3 , 1 ( f ) | cannot be obtained at the boundary of Ω .

Author Contributions

Conceptualization, Z.L. and D.G.; Methodology, D.G.; Software, J.L.; Resources, D.G. and J.L.; Writing—original draft, Z.L. and D.G.; Writing—review and editing, Z.L.; Funding acquisition, D.G. and Z.L. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the Natural Science Foundation of Anhui Provincial Department of Education (Grant Nos. KJ2020A0993; KJ2020ZD74) and the Foundation of Guangzhou Civil Aviation College (Grant No. 22X0418).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Bieberbach, L. Über dié koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitzungsberichte Preuss. Akad. Wiss. 1916, 138, 940–955. [Google Scholar]
  2. De-Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
  3. Sakaguchi, K. On a certain univalent mapping. Math. Soc. Jpn. 1959, 11, 72–75. [Google Scholar] [CrossRef]
  4. Stankiewicz, J. Some remarks on functions starlike with respect to symmetric points. Ann. Univ. Mariae Curie-Sklodowska Sect. A 1965, 19, 53–59. [Google Scholar]
  5. Wu, Z. On classes of Sakaguchi functions and Hadamard products. Sci. Sin. Ser. A 1987, 30, 128–135. [Google Scholar]
  6. Goodman, A.W. On Uniformly Starlike Functions. J. Math. Anal. Appl. 1991, 155, 364–370. [Google Scholar] [CrossRef]
  7. Ravichandran, V. Starlike and conver functions with respect to conjugate points. Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 2004, 20, 31–37. [Google Scholar]
  8. Goel, R.M.; Mehrok, B.S. A subclass of starlike functions with respect to symmetric points. Tamkang J. Math. 1982, 13, 11–24. [Google Scholar]
  9. Shanmugam, T.N.; Ramachandram, C.; Ravichandran, V. Fekete-Szegö Problem for Subclasses of Starlike functions with Respect to Symmetric Points. Bull. Korean Math. Soc. 2006, 3, 589–598. [Google Scholar] [CrossRef]
  10. Wang, Z.G.; Gao, C.Y.; Liu, M.S.; Liao, M.X. On subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points. Adv. Math. 2009, 38, 44–56. [Google Scholar] [CrossRef]
  11. Janteng, A.; Halim, S.A. Coefficient Estimate for a Subclass of Close-to-Convex Functions with Respect to Symmetric Points. Int. J. Math. Anal. 2009, 3, 309–313. [Google Scholar]
  12. Janteng, A.; Halim, S.A. Class with Negative Coefficients and Quasi-Convex with Respect to Symmetric Points. Int. J. Math. Anal. 2010, 4, 1733–1738. [Google Scholar]
  13. Xu, Q.H.; Wu, G. Coefficient Estimate for a Subclass of Univalent Functions with Respect to Symmetric Points. Eur. J. Pure Appl. Math. 2010, 3, 1055–1061. [Google Scholar]
  14. Khatter, K.; Ravichandran, V.; Kumar, S.S. Estimates for Initial Coefficients of Certain Starlike Functions with Respect to Symmetric Points. In Applied Analysis in Biological and Physical Sciences; Springer: Aligarh, India, 2016. [Google Scholar] [CrossRef]
  15. Liu, M.S.; Xu, J.F.; Yang, M. Upper bound of second hankel determinant for certain subclasses of analytic functions. Abstr. Appl. Annl. 2014, 2014, 603180. [Google Scholar] [CrossRef]
  16. Al-Kharsani, H.A.; Al-Khal, R.A. On Neighborhoods of Strongly Starlike Functions of Order α and Type β with Respect to Symmetric Points. Bull. Inst. Math. Acad. Sin. (New Ser.) 2006, 1, 537–548. [Google Scholar]
  17. Faisal, M.I.; Al-shbeil, I.; Abbas, M.; Arif, M.; Alhefthi, R. Problems Concerning Coefficients of Symmetric Starlike Functions Connected with the Sigmoid Function. Symmetry 2023, 15, 1292. [Google Scholar] [CrossRef]
  18. Pommerenke, C.H. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 41, 111–122. [Google Scholar] [CrossRef]
  19. Hayman, W.K. On second Hankel determinant of mean univalent functions. Proc. Lond. Math. Soc. 1969, 18, 77–94. [Google Scholar] [CrossRef]
  20. Noonan, J.W.; Thomas, D.K. On the second Hankel determinant of areally mean p-valent functions. Trans. Amer. Math. Soc. 1976, 223, 337–346. [Google Scholar] [CrossRef]
  21. Ehrenborg, R. The Hankel determinant of exponential polynomials. Amer. Math. Mon. 2000, 107, 557–560. [Google Scholar] [CrossRef]
  22. Aouf, M.K.; Seoudy, T. Certain Class of Bi-Bazilevic Functions with Bounded Boundary Rotation Involving Salăgeăn Operator. Constr. Math. Anal. 2020, 3, 139–149. [Google Scholar]
  23. Seoudy, T.; Aouf, M.K. Fekete-Szegö Problem for Certain Subclass of Analytic Functions with Complex Order Defined by q-Analogue of Ruscheweyh Operator. Constr. Math. Anal. 2020, 3, 36–44. [Google Scholar] [CrossRef]
  24. Allu, V.; Lecko, A.; Thomas, D.K. Hankel, Toeplitz, and Hermitian-Toeplitz Determinants for Certain Close-to-convex Functions. Mediterr. J. Math. 2022, 19, 22. [Google Scholar] [CrossRef]
  25. Obradovic, M.; Tuneski, N. Improved upper bound of third order Hankel determinant for Ozaki close-to-convex functions. J. Class. Anal. 2022, 19, 13–19. [Google Scholar] [CrossRef]
  26. Wang, Z.G.; Raza, M.; Arif, M.; Ahmad, K. On the Third and Fourth Hankel Determinants for a Subclass of Analytic Functions. Bull. Malays. Math. Sci. Soc. 2022, 45, 323–359. [Google Scholar] [CrossRef]
  27. Tang, H.; Murugusundaramoorthy, G.; Li, S.; Ma, L.N. Fekete-Szegö and Hankel inequalities for certain class of analytic functions related to the sine function. AIMS Math. 2022, 7, 6365–6380. [Google Scholar] [CrossRef]
  28. Khan, M.G.; Ahmad, B.; Murugusundaramoorthy, G.; Mashwani, W.K.; Yalçin, S.; Shaba, T.G.; Salleh, Z. Third Hankel determinant and Zalcman functional for a class of starlike functions with respect to symmetric points related with sine function. J. Math. Comput. Sci. 2022, 25, 29–36. [Google Scholar] [CrossRef]
  29. Guo, D.; Tang, H.; Zhang, J.; Li, Z.T.; Xu, Q.B.; Ao, E. Improved Upper Bounds of the Third-Order Hankel Determinant for Ozaki Close-to-Convex Functions. Symmetry 2023, 15, 1176. [Google Scholar] [CrossRef]
  30. Kowalczyk, B.; Lecko, A.; Thomas, D.K. The sharp bound of the third Hankel determinant for Convex functions of order -1/2. J. Math. Inequal. 2023, 17, 191–204. [Google Scholar] [CrossRef]
  31. Ganesh, K.; Bharavi, S.R.; Rajya, L.K. Third Hankel determinant for a class of functions with respect to symmetric points associated with exponential function. WSEAS Trans. Math. 2020, 19, 133–138. [Google Scholar] [CrossRef]
  32. Libera, R.J.; Zlotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in P . Proc. Amer. Math. Soc. 1983, 57, 251–257. [Google Scholar] [CrossRef]
  33. Zaprawa, P. On coefficient problems for functions starlike with respect to symmetric points. Bol. Soc. Mat. Mex. 2022, 28, 17. [Google Scholar] [CrossRef]
  34. Carlson, F. Sur les coeffcients d’une fonction bornée dans le cercle unité. Ark. Mat. Astr. Fys. 1940, 27A, 8. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Li, Z.; Guo, D.; Liang, J. Hankel Determinant for a Subclass of Starlike Functions with Respect to Symmetric Points Subordinate to the Exponential Function. Symmetry 2023, 15, 1604. https://doi.org/10.3390/sym15081604

AMA Style

Li Z, Guo D, Liang J. Hankel Determinant for a Subclass of Starlike Functions with Respect to Symmetric Points Subordinate to the Exponential Function. Symmetry. 2023; 15(8):1604. https://doi.org/10.3390/sym15081604

Chicago/Turabian Style

Li, Zongtao, Dong Guo, and Jinrong Liang. 2023. "Hankel Determinant for a Subclass of Starlike Functions with Respect to Symmetric Points Subordinate to the Exponential Function" Symmetry 15, no. 8: 1604. https://doi.org/10.3390/sym15081604

APA Style

Li, Z., Guo, D., & Liang, J. (2023). Hankel Determinant for a Subclass of Starlike Functions with Respect to Symmetric Points Subordinate to the Exponential Function. Symmetry, 15(8), 1604. https://doi.org/10.3390/sym15081604

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop