Numerical Investigation of Fractional-Order Fornberg–Whitham Equations in the Framework of Aboodh Transformation
Abstract
1. Introduction
2. Fundamental Definitions
3. The General Application of ADTM
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Johnson, R.S. Fornberg-Whitham equation. In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1997; Volume 60, pp. 35–37. [Google Scholar]
- Choi, W.; Camassa, R. Fully nonlinear internal waves in a two-fluid system. J. Fluid Mech. 2007, 581, 369–380. [Google Scholar] [CrossRef]
- He, H.M.; Peng, J.G.; Li, H.Y. Iterative approximation of fixed point problems and variational inequality problems on Hadamard manifolds. UPB Bull. Ser. A 2022, 84, 25–36. [Google Scholar]
- Xie, X.; Huang, L.; Marson, S.M.; Wei, G. Emergency response process for sudden rainstorm and flooding: Scenario deduction and Bayesian network analysis using evidence theory and knowledge meta-theory. Nat. Hazards 2023, 117, 3307–3329. [Google Scholar] [CrossRef]
- Jin, H.Y.; Wang, Z.A. Global stabilization of the full attraction-repulsion Keller-Segel system. Discret. Contin. Dyn. Syst. Ser. A 2020, 40, 3509–3527. [Google Scholar] [CrossRef]
- Guo, C.; Hu, J. Fixed-Time Stabilization of High-Order Uncertain Nonlinear Systems: Output Feedback Control Design and Settling Time Analysis. J. Syst. Sci. Complex. 2023. [Google Scholar] [CrossRef]
- Lyu, W.; Wang, Z. Global classical solutions for a class of reaction-diffusion system with density-suppressed motility. Electron. Res. Arch. 2022, 30, 995–1015. [Google Scholar] [CrossRef]
- Shah, N.A.; Hamed, Y.S.; Abualnaja, K.M.; Chung, J.D.; Khan, A. A comparative analysis of fractional-order kaup-kupershmidt equation within different operators. Symmetry 2022, 14, 986. [Google Scholar] [CrossRef]
- Ostrovsky, L.A.; Pelinovsky, E.N.; Shrira, V.I. Rogue waves in nonlinear dispersive media: Physical mechanisms, models, and applications. Phys. Rep. 2008, 443, 1–53. [Google Scholar]
- Stolen, R.H.; Gordon, J.P. Self-phase-modulation and small-scale filaments in nonlinear fibers. Opt. Lett. 1982, 7, 28–33. [Google Scholar]
- Fornberg, B.; Whitham, G.B. A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1978, 289, 373–404. [Google Scholar]
- Fornberg, B.; Whitham, G.B. A numerical and theoretical study of certain nonlinear wave phenomena. II. Nonlinear geometrical optics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1979, 292, 385–409. [Google Scholar]
- Fornberg, B. Numerical solution of the Fornberg-Whitham equation. J. Comput. Phys. 1980, 36, 362–381. [Google Scholar]
- Zayed, E.M.; Rahman, H.M.A. On using the modified variational iteration method for solving the nonlinear coupled equations in the mathematical physics. Ric. Mat. 2010, 59, 137–159. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Nofal, T.A.; Gepreel, K.A. The travelling wave solutions for non-linear initial-value problems using the homotopy perturbation method. Int. J. Control. 2009, 88, 617–634. [Google Scholar] [CrossRef]
- Zhang, K.; Alshehry, A.S.; Aljahdaly, N.H.; Shah, N.A.; Ali, M.R. Efficient computational approaches for fractional-order Degasperis-Procesi and Camassa-Holm equations. Results Phys. 2023, 50, 106549. [Google Scholar] [CrossRef]
- Abu Hammad, M. Conformable Fractional Martingales and Some Convergence Theorems. Mathematics 2021, 10, 6. [Google Scholar] [CrossRef]
- Dahmani, Z.; Anber, A.; Gouari, Y.; Kaid, M.; Jebril, I. Extension of a Method for Solving Nonlinear Evolution Equations Via Conformable Fractional Approach. In Proceedings of the 2021 International Conference on Information Technology (ICIT 2021), Amman, Jordan, 14–15 July 2021; pp. 38–42. [Google Scholar]
- Batiha, I.M.; Oudetallah, J.; Ouannas, A.; Al-Nana, A.A.; Jebril, I.H. Tuning the fractional-order pid-controller for blood glucose level of diabetic patients. Int. J. Adv. Soft Comput. Its Appl. 2021, 13, 1–10. [Google Scholar]
- Deng, W.; Li, C. Existence and uniqueness of solutions for the fractional Fornberg-Whitham equation with initial and boundary conditions. Appl. Math. Lett. 2010, 23, 937–942. [Google Scholar] [CrossRef]
- Liu, F.; Anh, V. Well-posedness of the fractional Fornberg-Whitham equation with different types of boundary conditions. Comput. Math. Appl. 2011, 62, 1295–1303. [Google Scholar]
- Zhang, H.; Deng, W. A finite difference scheme for the fractional Fornberg-Whitham equation. J. Comput. Appl. Math. 2013, 239, 12–23. [Google Scholar]
- Liu, F.; Li, X.; Zhao, X. A finite volume method for the fractional Fornberg-Whitham equation. J. Comput. Phys. 2015, 295, 336–353. [Google Scholar]
- Li, C.; Deng, W.; Zhu, M. A spectral method for the fractional Fornberg-Whitham equation. Numer. Algorithms 2018, 79, 377–392. [Google Scholar]
- Hu, X.; Li, C.; Deng, W. Fractional Fornberg-Whitham equation for the dynamics of stock prices. J. Appl. Math. Comput. 2016, 50, 601–612. [Google Scholar]
- Wang, Y.; Zhang, C.; Song, W. Image denoising using the fractional Fornberg-Whitham equation. J. Comput. Appl. Math. 2015, 279, 152–161. [Google Scholar]
- Zhang, J.; Xie, J.; Shi, W.; Huo, Y.; Ren, Z.; He, D. Resonance and bifurcation of fractional quintic Mathieu-Duffing system. Chaos Interdiscip. J. Nonlinear Sci. 2023, 33, 23131. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Cui, S.; Chang, X.; Xu, Y.; Meng, H.; Wang, Y.; Arif, M. Multi-region Nonuniform Brightness Correction Algorithm Based on L-Channel Gamma Transform. Secur. Commun. Netw. 2022, 2022, 2675950. [Google Scholar] [CrossRef]
- Zhu, H.; Xue, M.; Wang, Y.; Yuan, G.; Li, X. Fast Visual Tracking with Siamese Oriented Region Proposal Network. IEEE Signal Process. Lett. 2022, 29, 1437. [Google Scholar] [CrossRef]
- Guo, F.; Zhou, W.; Lu, Q.; Zhang, C. Path extension similarity link prediction method based on matrix algebra in directed networks. Comput. Commun. 2022, 187, 83–92. [Google Scholar] [CrossRef]
- Song, J.; Mingotti, A.; Zhang, J.; Peretto, L.; Wen, H. Accurate Damping Factor and Frequency Estimation for Damped Real-Valued Sinusoidal Signals. IEEE Trans. Instrum. Meas. 2022, 71, 6503504. [Google Scholar] [CrossRef]
- He, J.H. variational iteration method-a kind of nonlinear analytical technique: Some examples. Int. J. Non-Linear Mech. 2007, 34, 699–708. [Google Scholar] [CrossRef]
- He, J.H. variational iteration method for autonomous ordinary differential systems. Appl. Math. Comput. 2010, 217, 869–877. [Google Scholar] [CrossRef]
- Khader, M.M.; Hashim, I. Numerical methods for solving fractional differential equations: A comparative study. J. Comput. Appl. Math. 2016, 305, 195–210. [Google Scholar]
- Gao, G.H.; Li, X.Z.; He, J.H. Chaos in the fractional order Chen system and its control. Chaos Solitons Fractals 2004, 22, 549–554. [Google Scholar] [CrossRef]
- Hu, Y.; Sun, Z. Variational iteration transform method for solving the coupled Burgers’ equations with time-fractional derivatives. Appl. Math. Comput. 2017, 303, 132–141. [Google Scholar]
- Shah, N.A.; Alyousef, H.A.; El-Tantawy, S.A.; Chung, J.D. Analytical investigation of fractional-order Korteweg-De-Vries-type equations under Atangana-Baleanu-Caputo operator: Modeling nonlinear waves in a plasma and fluid. Symmetry 2022, 14, 739. [Google Scholar] [CrossRef]
- Xu, L.; Cao, X. The variational iteration transform method for solving the time-space fractional Fisher equation. Appl. Math. Comput. 2017, 305, 188–194. [Google Scholar]
- Wang, J.; Tian, J.; Zhang, X.; Yang, B.; Liu, S.; Yin, L.; Zheng, W. Control of Time Delay Force Feedback Teleoperation System with Finite Time Convergence. Front. Neurorobot. 2022, 16, 877069. [Google Scholar] [CrossRef]
- Jafari, H.; Seifi, S. Analytical solution of a nonlinear differential equation using the Variational Iteration Transform Method. J. Math. Anal. Appl. 2017, 446, 1261–1275. [Google Scholar]
- Adomian, G. A review of the decomposition method and some recent results for nonlinear equations. Math. Comput. Model. 1988, 13, 17–43. [Google Scholar] [CrossRef]
- Wazwaz, A.M. A First Course in Integral Equations; World Scientific: Singapore, 2002. [Google Scholar]
- Momani, S.; Odibat, Z. Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method. Appl. Math. Comput. 2007, 177, 488–494. [Google Scholar] [CrossRef]
- Abbasbandy, S.; Shirzadi, A. Application of the Adomian decomposition method for solving a system of nonlinear fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 210–219. [Google Scholar]
- Eftekhari, G.; Alhuthali, M.S. Solving fractional partial differential equations using the Adomian decomposition method. J. Comput. Appl. Math. 2018, 339, 318–328. [Google Scholar]
- Cakir, M.; Arslan, D. The Adomian Decomposition Method and the Differential Transform Method for Numerical Solution of Multi-Pantograph Delay Differential Equations. Appl. Math. 2015, 6, 1332. [Google Scholar] [CrossRef]
- Bhrawy, A.H.; Alofi, A.S. Solving nonlinear differential equations by the modified Adomian decomposition method with application to wave equation. Results Phys. 2021, 26, 104708. [Google Scholar]
- Benattia, M.E.; Belghaba, K. Application of the Aboodh transform for solving fractional delay differential equations. Univers. J. Math. Appl. 2020, 3, 93–101. [Google Scholar] [CrossRef]
- Awuya, M.A.; Subasi, D. Aboodh transform iterative method for solving fractional partial differential equation with Mittag-Leffler Kernel. Symmetry 2021, 13, 2055. [Google Scholar] [CrossRef]
- Gupta, P.K.; Singh, M. Homotopy perturbation method for fractional Fornberg-Whitham equation. Comput. Math. Appl. 2011, 61, 250–254. [Google Scholar] [CrossRef]
- Abidi, F.; Omrani, K. Numerical solutions for the nonlinear Fornberg-Whitham equation by He’s methods. Int. J. Mod. Phys. B 2011, 25, 4721–4732. [Google Scholar] [CrossRef]
x | ADTM/VITM | Exact Solution | Absolute Error |
---|---|---|---|
−1.0 | 0.567414 | 0.567839 | 0.000425389 |
−0.9 | 0.596506 | 0.596953 | 0.000447199 |
−0.8 | 0.627089 | 0.627559 | 0.000470128 |
−0.7 | 0.659241 | 0.659735 | 0.000494232 |
−0.6 | 0.693041 | 0.69356 | 0.000519572 |
−0.5 | 0.728574 | 0.72912 | 0.000546211 |
−0.4 | 0.765928 | 0.766503 | 0.000574215 |
−0.3 | 0.805198 | 0.805802 | 0.000603656 |
−0.2 | 0.846482 | 0.847116 | 0.000634606 |
−0.1 | 0.889882 | 0.890549 | 0.000667143 |
0.0 | 0.935507 | 0.936208 | 0.000701348 |
0.1 | 0.983471 | 0.984209 | 0.000737307 |
0.2 | 1.0339 | 1.03467 | 0.00077511 |
0.3 | 1.0869 | 1.08772 | 0.00081485 |
0.4 | 1.14263 | 1.14349 | 0.000856629 |
0.5 | 1.20121 | 1.20212 | 0.000900549 |
x | ADTM/VITM | Exact Solution | Absolute Error |
---|---|---|---|
0.0 | 1.0021 | 1.00089 | 0.00121594 |
0.1 | 1.00043 | 0.999616 | 0.000818105 |
0.2 | 1.00002 | 0.999597 | 0.000420427 |
0.3 | 1.00085 | 1.00083 | 0.0000183526 |
0.4 | 1.00294 | 1.00333 | 0.000392684 |
0.5 | 1.00628 | 1.0071 | 0.000817276 |
0.6 | 1.01089 | 1.01215 | 0.00126006 |
0.7 | 1.01678 | 1.0185 | 0.00172572 |
0.8 | 1.02396 | 1.02618 | 0.00221902 |
0.9 | 1.03245 | 1.03519 | 0.0027448 |
1.0 | 1.04227 | 1.04557 | 0.003308 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noor, S.; Hammad, M.A.; Shah, R.; Alrowaily, A.W.; El-Tantawy, S.A. Numerical Investigation of Fractional-Order Fornberg–Whitham Equations in the Framework of Aboodh Transformation. Symmetry 2023, 15, 1353. https://doi.org/10.3390/sym15071353
Noor S, Hammad MA, Shah R, Alrowaily AW, El-Tantawy SA. Numerical Investigation of Fractional-Order Fornberg–Whitham Equations in the Framework of Aboodh Transformation. Symmetry. 2023; 15(7):1353. https://doi.org/10.3390/sym15071353
Chicago/Turabian StyleNoor, Saima, Ma’mon Abu Hammad, Rasool Shah, Albandari W. Alrowaily, and Samir A. El-Tantawy. 2023. "Numerical Investigation of Fractional-Order Fornberg–Whitham Equations in the Framework of Aboodh Transformation" Symmetry 15, no. 7: 1353. https://doi.org/10.3390/sym15071353
APA StyleNoor, S., Hammad, M. A., Shah, R., Alrowaily, A. W., & El-Tantawy, S. A. (2023). Numerical Investigation of Fractional-Order Fornberg–Whitham Equations in the Framework of Aboodh Transformation. Symmetry, 15(7), 1353. https://doi.org/10.3390/sym15071353