Lagrangian Reconstruction of Barrow Holographic Dark Energy in Interacting Tachyon Model
Abstract
:1. Introduction
2. Barrow Holographic Dark Energy
The Age of the Universe
3. Tachyon Scalar Field as Barrow Holographic Dark Energy in a Non-Flat FRW Universe
Observational Studies
4. Inflation in Barrow Holographic Dark Energy
Trans-Planckian Censorship Conjecture
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HDE | Holographic Dark Energy |
BHDE | Barrow Holographic Dark Energy |
References
- Sahni, V.; Starobinsky, A.A. The Case for a positive cosmological Lambda term. Int. J. Mod. Phys. D 2000, 9, 373–444. [Google Scholar] [CrossRef]
- Peebles, P.J.E.; Ratra, B. The Cosmological Constant and Dark Energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef]
- Ratra, B.; Peebles, P.J.E. Cosmological Consequences of a Rolling Homogeneous Scalar Field. Phys. Rev. D 1988, 37, 3406. [Google Scholar] [CrossRef] [PubMed]
- Frieman, J.A.; Hill, C.T.; Stebbins, A.; Waga, I. Cosmology with ultralight pseudo Nambu-Goldstone bosons. Phys. Rev. Lett. 1995, 75, 2077–2080. [Google Scholar] [CrossRef]
- Turner, M.S.; White, M.J. CDM models with a smooth component. Phys. Rev. D 1997, 56, R4439. [Google Scholar] [CrossRef]
- Caldwell, R.R.; Dave, R.; Steinhardt, P.J. Cosmological imprint of an energy component with general equation of state. Phys. Rev. Lett. 1998, 80, 1582–1585. [Google Scholar] [CrossRef]
- Armendariz-Picon, C.; Mukhanov, V.F.; Steinhardt, P.J. A Dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration. Phys. Rev. Lett. 2000, 85, 4438–4441. [Google Scholar] [CrossRef]
- Armendariz-Picon, C.; Mukhanov, V.F.; Steinhardt, P.J. Essentials of k essence. Phys. Rev. D 2001, 63, 103510. [Google Scholar] [CrossRef]
- Caldwell, R.R. A Phantom menace? Phys. Lett. B 2002, 545, 23–29. [Google Scholar] [CrossRef]
- Caldwell, R.R.; Kamionkowski, M.; Weinberg, N.N. Phantom energy and cosmic doomsday. Phys. Rev. Lett. 2003, 91, 071301. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Quantum de Sitter cosmology and phantom matter. Phys. Lett. B 2003, 562, 147–152. [Google Scholar] [CrossRef]
- Feng, B.; Wang, X.L.; Zhang, X.M. Dark energy constraints from the cosmic age and supernova. Phys. Lett. B 2005, 607, 35–41. [Google Scholar] [CrossRef]
- Guo, Z.K.; Piao, Y.S.; Zhang, X.M.; Zhang, Y.Z. Cosmological evolution of a quintom model of dark energy. Phys. Lett. B 2005, 608, 177–182. [Google Scholar] [CrossRef]
- Elizalde, E.; Nojiri, S.; Odintsov, S.D. Late-time cosmology in (phantom) scalar-tensor theory: Dark energy and the cosmic speed-up. Phys. Rev. D 2004, 70, 043539. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Tsujikawa, S. Properties of singularities in (phantom) dark energy universe. Phys. Rev. D 2005, 71, 063004. [Google Scholar] [CrossRef]
- Deffayet, C.; Dvali, G.R.; Gabadadze, G. Accelerated universe from gravity leaking to extra dimensions. Phys. Rev. D 2002, 65, 044023. [Google Scholar] [CrossRef]
- D’Agostino, R. Holographic dark energy from nonadditive entropy: Cosmological perturbations and observational constraints. Phys. Rev. D 2019, 99, 103524. [Google Scholar] [CrossRef]
- Capozziello, S.; D’Agostino, R. A cosmographic outlook on dark energy and modified gravity. arXiv 2022, arXiv:2211.17194. [Google Scholar]
- Capolupo, A.; Quaranta, A. Neutrino capture on tritium as a probe of flavor vacuum condensate and dark matter. Phys. Lett. B 2023, 839, 137776. [Google Scholar] [CrossRef]
- Capolupo, A.; Quaranta, A. Boson mixing and flavor vacuum in the expanding Universe: A possible candidate for the dark energy. Phys. Lett. B 2023, 840, 137889. [Google Scholar] [CrossRef]
- Lambiase, G.; Mishra, H.; Mohanty, S. Dark energy from Neutrinos and Standard Model Higgs potential. Astropart. Phys. 2012, 35, 629–633. [Google Scholar] [CrossRef]
- Lambiase, G.; Mohanty, S.; Narang, A.; Parashari, P. Testing dark energy models in the light of σ8 tension. Eur. Phys. J. C 2019, 79, 141. [Google Scholar] [CrossRef]
- Cohen, A.G.; Kaplan, D.B.; Nelson, A.E. Effective field theory, black holes, and the cosmological constant. Phys. Rev. Lett. 1999, 82, 4971–4974. [Google Scholar] [CrossRef]
- Horava, P.; Minic, D. Probable values of the cosmological constant in a holographic theory. Phys. Rev. Lett. 2000, 85, 1610–1613. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.D. Holography stabilizes the vacuum energy. Phys. Rev. Lett. 2002, 89, 081301. [Google Scholar] [CrossRef] [PubMed]
- Li, M. A Model of holographic dark energy. Phys. Lett. B 2004, 603, 1. [Google Scholar] [CrossRef]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155–228. [Google Scholar] [CrossRef]
- Ghaffari, S.; Dehghani, M.H.; Sheykhi, A. Holographic dark energy in the DGP braneworld with Granda-Oliveros cutoff. Phys. Rev. D 2014, 89, 123009. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Li, M. Holographic Dark Energy. Phys. Rep. 2017, 696, 1–57. [Google Scholar] [CrossRef]
- ’t Hooft, G. Dimensional reduction in quantum gravity. Conf. Proc. C 1993, 930308, 284–296. [Google Scholar]
- Susskind, L. The World as a hologram. J. Math. Phys. 1995, 36, 6377–6396. [Google Scholar] [CrossRef]
- Enqvist, K.; Hannestad, S.; Sloth, M.S. Searching for a holographic connection between dark energy and the low-l CMB multipoles. JCAP 2005, 02, 004. [Google Scholar] [CrossRef]
- Setare, M.R. Holographic tachyon model of dark energy. Phys. Lett. B 2007, 653, 116–121. [Google Scholar] [CrossRef]
- Hsu, S.D.H. Entropy bounds and dark energy. Phys. Lett. B 2004, 594, 13–16. [Google Scholar] [CrossRef]
- Srivastava, S.; Sharma, U.K. Barrow holographic dark energy with Hubble horizon as IR cutoff. Int. J. Geom. Meth. Mod. Phys. 2021, 18, 2150014. [Google Scholar] [CrossRef]
- Gong, Y.G. Holographic bound in Brans-Dicke cosmology. Phys. Rev. D 2000, 61, 043505. [Google Scholar] [CrossRef]
- Kim, H.; Lee, H.W.; Myung, Y.S. Role of the Brans-Dicke scalar in the holographic description of dark energy. Phys. Lett. B 2005, 628, 11–17. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unifying phantom inflation with late-time acceleration: Scalar phantom-non-phantom transition model and generalized holographic dark energy. Gen. Relativ. Gravit. 2006, 38, 1285–1304. [Google Scholar] [CrossRef]
- Setare, M.R. The Holographic dark energy in non-flat Brans-Dicke cosmology. Phys. Lett. B 2007, 644, 99–103. [Google Scholar] [CrossRef]
- Banerjee, N.; Pavon, D. A Quintessence scalar field in Brans-Dicke theory. Class. Quant. Grav. 2001, 18, 593. [Google Scholar] [CrossRef]
- Xu, L.; Lu, J. Holographic Dark Energy in Brans-Dicke Theory. Eur. Phys. J. C 2009, 60, 135–140. [Google Scholar] [CrossRef]
- Khodam-Mohammadi, A.; Karimkhani, E.; Sheykhi, A. Best values of parameters for interacting HDE with GO IR-cutoff in Brans–Dicke cosmology. Int. J. Mod. Phys. D 2014, 23, 1450081. [Google Scholar] [CrossRef]
- Tavayef, M.; Sheykhi, A.; Bamba, K.; Moradpour, H. Tsallis Holographic Dark Energy. Phys. Lett. B 2018, 781, 195–200. [Google Scholar] [CrossRef]
- Saridakis, E.N.; Bamba, K.; Myrzakulov, R.; Anagnostopoulos, F.K. Holographic dark energy through Tsallis entropy. JCAP 2018, 12, 012. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Saridakis, E.N. Modified cosmology from extended entropy with varying exponent. Eur. Phys. J. C 2019, 79, 242. [Google Scholar] [CrossRef]
- Luciano, G.G.; Gine, J. Baryogenesis in non-extensive Tsallis Cosmology. Phys. Lett. B 2022, 833, 137352. [Google Scholar] [CrossRef]
- Saridakis, E.N. Barrow holographic dark energy. Phys. Rev. D 2020, 102, 123525. [Google Scholar] [CrossRef]
- Moradpour, H.; Ziaie, A.H.; Kord Zangeneh, M. Generalized entropies and corresponding holographic dark energy models. Eur. Phys. J. C 2020, 80, 732. [Google Scholar] [CrossRef]
- Drepanou, N.; Lymperis, A.; Saridakis, E.N.; Yesmakhanova, K. Kaniadakis holographic dark energy and cosmology. Eur. Phys. J. C 2022, 82, 449. [Google Scholar] [CrossRef]
- Hernández-Almada, A.; Leon, G.; Magaña, J.; García-Aspeitia, M.A.; Motta, V.; Saridakis, E.N.; Yesmakhanova, K. Kaniadakis-holographic dark energy: Observational constraints and global dynamics. Mon. Not. R. Astron. Soc. 2022, 511, 4147–4158. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Paul, T. Barrow entropic dark energy: A member of generalized holographic dark energy family. Phys. Lett. B 2022, 825, 136844. [Google Scholar] [CrossRef]
- Luciano, G.G. Modified Friedmann equations from Kaniadakis entropy and cosmological implications on baryogenesis and 7Li-abundance. Eur. Phys. J. C 2022, 82, 314. [Google Scholar] [CrossRef]
- Ghaffari, S.; Luciano, G.G.; Capozziello, S. Barrow holographic dark energy in the Brans–Dicke cosmology. Eur. Phys. J. Plus 2023, 138, 82. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Faraoni, V. From nonextensive statistics and black hole entropy to the holographic dark universe. Phys. Rev. D 2022, 105, 044042. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Paul, T. Early and late universe holographic cosmology from a new generalized entropy. Phys. Lett. B 2022, 831, 137189. [Google Scholar] [CrossRef]
- Luciano, G.G. Cosmic evolution and thermal stability of Barrow holographic dark energy in a nonflat Friedmann-Robertson-Walker Universe. Phys. Rev. D 2022, 106, 083530. [Google Scholar] [CrossRef]
- Luciano, G.G.; Giné, J. Generalized interacting Barrow Holographic Dark Energy: Cosmological predictions and thermodynamic considerations. arXiv 2022, arXiv:2210.09755. [Google Scholar]
- Luciano, G.G. From the emergence of cosmic space to horizon thermodynamics in Barrow entropy-based Cosmology. Phys. Lett. B 2023, 838, 137721. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Saridakis, E.N.; Myrzakulov, R. Correspondence of cosmology from non-extensive thermodynamics with fluids of generalized equation of state. Nucl. Phys. B 2020, 950, 114850. [Google Scholar] [CrossRef]
- Bajardi, F.; Capozziello, S. Noether symmetries and quantum cosmology in extended teleparallel gravity. Int. J. Geom. Meth. Mod. Phys. 2021, 18, 2140002. [Google Scholar] [CrossRef]
- Acunzo, A.; Bajardi, F.; Capozziello, S. Non-local curvature gravity cosmology via Noether symmetries. Phys. Lett. B 2022, 826, 136907. [Google Scholar] [CrossRef]
- Liu, Y. Tachyon model of Tsallis holographic dark energy. Eur. Phys. J. Plus 2021, 136, 579. [Google Scholar] [CrossRef]
- Gibbons, G.W. Cosmological evolution of the rolling tachyon. Phys. Lett. B 2002, 537, 1–4. [Google Scholar] [CrossRef]
- Mazumdar, A.; Panda, S.; Perez-Lorenzana, A. Assisted inflation via tachyon condensation. Nucl. Phys. B 2001, 614, 101–116. [Google Scholar] [CrossRef]
- Padmanabhan, T. Accelerated expansion of the universe driven by tachyonic matter. Phys. Rev. D 2002, 66, 021301. [Google Scholar] [CrossRef]
- Ens, P.S.; Santos, A.F. f (R) gravity and Tsallis holographic dark energy. EPL 2020, 131, 40007. [Google Scholar] [CrossRef]
- Zubair, M.; Durrani, L.R. Exploring tsallis holographic dark energy scenario in f (R, T) gravity. Chin. J. Phys. 2021, 69, 153–171. [Google Scholar] [CrossRef]
- Sharif, M.; Saba, S. Tsallis Holographic Dark Energy in f (G, T) Gravity. Symmetry 2019, 11, 92. [Google Scholar] [CrossRef]
- Waheed, S. Reconstruction paradigm in a class of extended teleparallel theories using Tsallis holographic dark energy. Eur. Phys. J. Plus 2020, 135, 11. [Google Scholar] [CrossRef]
- Ghaffari, S.; Moradpour, H.; Lobo, I.P.; Morais Graça, J.P.; Bezerra, V.B. Tsallis holographic dark energy in the Brans–Dicke cosmology. Eur. Phys. J. C 2018, 78, 706. [Google Scholar] [CrossRef]
- Aditya, Y.; Mandal, S.; Sahoo, P.K.; Reddy, D.R.K. Observational constraint on interacting Tsallis holographic dark energy in logarithmic Brans–Dicke theory. Eur. Phys. J. C 2019, 79, 1020. [Google Scholar] [CrossRef]
- Sobhanbabu, Y.; Vijaya Santhi, M. Kantowski–Sachs Tsallis holographic dark energy model with sign-changeable interaction. Eur. Phys. J. C 2021, 81, 1040. [Google Scholar] [CrossRef]
- Luciano, G.G. Saez-Ballester gravity in Kantowski-Sachs Universe: A new reconstruction paradigm for Barrow Holographic Dark Energy. Phys. Dark Universe 2023, 41, 101237. [Google Scholar] [CrossRef]
- Barrow, J.D. The Area of a Rough Black Hole. Phys. Lett. B 2020, 808, 135643. [Google Scholar] [CrossRef]
- Tsallis, C. Possible Generalization of Boltzmann-Gibbs Statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Tsallis, C.; Cirto, L.J.L. Black hole thermodynamical entropy. Eur. Phys. J. C 2013, 73, 2487. [Google Scholar] [CrossRef]
- Kaniadakis, G. Statistical mechanics in the context of special relativity. Phys. Rev. E 2002, 66, 056125. [Google Scholar] [CrossRef]
- Luciano, G.G.; Blasone, M. q-generalized Tsallis thermostatistics in Unruh effect for mixed fields. Phys. Rev. D 2021, 104, 045004. [Google Scholar] [CrossRef]
- Luciano, G.G.; Blasone, M. Nonextensive Tsallis statistics in Unruh effect for Dirac neutrinos. Eur. Phys. J. C 2021, 81, 995. [Google Scholar] [CrossRef]
- Barrow, J.D.; Basilakos, S.; Saridakis, E.N. Big Bang Nucleosynthesis constraints on Barrow entropy. Phys. Lett. B 2021, 815, 136134. [Google Scholar] [CrossRef]
- Luciano, G.G.; Saridakis, E.N. Baryon asymmetry from Barrow entropy: Theoretical predictions and observational constraints. Eur. Phys. J. C 2022, 82, 558. [Google Scholar] [CrossRef]
- Vagnozzi, S.; Roy, R.; Tsai, Y.D.; Visinelli, L. Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A*. arXiv 2022, arXiv:2205.07787. [Google Scholar]
- Di Gennaro, S.; Ong, Y.C. Sign Switching Dark Energy from a Running Barrow Entropy. Universe 2022, 8, 541. [Google Scholar] [CrossRef]
- Guberina, B.; Horvat, R.; Nikolic, H. Nonsaturated Holographic Dark Energy. JCAP 2007, 01, 012. [Google Scholar] [CrossRef]
- Sheykhi, A.; Hamedan, M.S. Holographic dark energy in modified Barrow cosmology. Entropy 2023, 25, 569. [Google Scholar] [CrossRef]
- Al Mamon, A.; Mishra, A.K.; Sharma, U.K. Barrow Holographic dark energy in fractal cosmology. Int. J. Geom. Meth. Mod. Phys. 2022, 19, 2250231. [Google Scholar] [CrossRef]
- Ghaffari, S.; Sheykhi, A.; Dehghani, M.H. Statefinder diagnosis for holographic dark energy in the DGP braneworld. Phys. Rev. D 2015, 91, 023007. [Google Scholar] [CrossRef]
- Sheykhi, A. Holographic Scalar Fields Models of Dark Energy. Phys. Rev. D 2011, 84, 107302. [Google Scholar] [CrossRef]
- Boulkaboul, N. Baryogenesis triggered by Barrow holographic dark energy coupling. Phys. Dark Univ. 2023, 40, 101205. [Google Scholar] [CrossRef]
- Granda, L.N.; Oliveros, A. Infrared cut-off proposal for the Holographic density. Phys. Lett. B 2008, 669, 275–277. [Google Scholar] [CrossRef]
- Frolov, A.V.; Kofman, L.; Starobinsky, A.A. Prospects and problems of tachyon matter cosmology. Phys. Lett. B 2002, 545, 8–16. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, Erratum in Astron. Astrophys. 2021, 652, C4. [Google Scholar] [CrossRef]
- Anagnostopoulos, F.K.; Basilakos, S.; Saridakis, E.N. Observational constraints on Barrow holographic dark energy. Eur. Phys. J. C 2020, 80, 826. [Google Scholar] [CrossRef]
- Luciano, G.G. Constraining barrow entropy-based cosmology with power-law inflation. Eur. Phys. J. C 2023, 83, 329. [Google Scholar] [CrossRef]
- Mohammadi, A.; Golanbari, T.; Bamba, K.; Lobo, I.P. Tsallis holographic dark energy for inflation. Phys. Rev. D 2021, 103, 083505. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Saridakis, E.N. Holographic inflation. Phys. Lett. B 2019, 797, 134829. [Google Scholar] [CrossRef]
- Maity, S.; Rudra, P. Inflation driven by Barrow holographic dark energy. JHAP 2022, 2, 1–12. [Google Scholar] [CrossRef]
- Martin, J.; Brandenberger, R.H. The TransPlanckian problem of inflationary cosmology. Phys. Rev. D 2001, 63, 123501. [Google Scholar] [CrossRef]
- Bedroya, A.; Vafa, C. Trans-Planckian Censorship and the Swampland. JHEP 2020, 09, 123. [Google Scholar] [CrossRef]
- Banerjee, A.; Cai, H.; Heisenberg, L.; Colgáin, E.O.; Sheikh-Jabbari, M.M.; Yang, T. Hubble sinks in the low-redshift swampland. Phys. Rev. D 2021, 103, L081305. [Google Scholar] [CrossRef]
- Lee, B.H.; Lee, W.; Colgáin, E.O.; Sheikh-Jabbari, M.M.; Thakur, S. Is local H 0 at odds with dark energy EFT? JCAP 2022, 04, 004. [Google Scholar] [CrossRef]
- Sheykhi, A.; Farsi, B. Growth of perturbations in Tsallis and Barrow cosmology. Eur. Phys. J. C 2022, 82, 1111. [Google Scholar] [CrossRef]
- Luciano, G.G. Gravity and Cosmology in Kaniadakis Statistics: Current Status and Future Challenges. Entropy 2022, 24, 1712. [Google Scholar] [CrossRef]
- Kempf, A.; Mangano, G.; Mann, R.B. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 1995, 52, 1108–1118. [Google Scholar] [CrossRef]
- Scardigli, F. Generalized uncertainty principle in quantum gravity from micro-black hole Gedanken experiment. Phys. Lett. B 1999, 452, 39–44. [Google Scholar] [CrossRef]
- Bosso, P.; Das, S. Generalized ladder operators for the perturbed harmonic oscillator. Ann. Phys. 2018, 396, 254–265. [Google Scholar] [CrossRef]
- Luciano, G.G.; Petruzziello, L. Generalized uncertainty principle and its implications on geometric phases in quantum mechanics. Eur. Phys. J. Plus 2021, 136, 179. [Google Scholar] [CrossRef]
z | |||||
---|---|---|---|---|---|
0.070 | 69.0 | 19.6 | 0.4783 | 80 | 99 |
0.90 | 69 | 12 | 0.480 | 97 | 62 |
0.120 | 68.6 | 26.2 | 0.593 | 104 | 13 |
0.170 | 83 | 8 | 0.6797 | 92 | 8 |
0.1791 | 75 | 4 | 0.7812 | 105 | 12 |
0.1993 | 75 | 5 | 0.8754 | 125 | 17 |
0.200 | 72.9 | 29.6 | 0.880 | 90 | 40 |
0.270 | 77 | 14 | 0.900 | 117 | 23 |
0.280 | 88.8 | 36.6 | 1.037 | 154 | 20 |
0.3519 | 83 | 14 | 1.300 | 168 | 17 |
0.3802 | 83.0 | 13.5 | 1.363 | 160.0 | 33.6 |
0.400 | 95 | 17 | 1.430 | 177 | 18 |
0.4004 | 77.0 | 10.2 | 1.530 | 140 | 14 |
0.4247 | 87.1 | 11.2 | 1.750 | 202 | 40 |
0.4497 | 92.8 | 12.9 | 1.965 | 186.5 | 50.4 |
0.470 | 89 | 34 | |||
0.24 | 79.69 | 2.99 | 0.52 | 94.35 | 2.64 |
0.30 | 81.70 | 6.22 | 0.56 | 93.34 | 2.30 |
0.31 | 78.18 | 4.74 | 0.57 | 87.6 | 7.8 |
0.34 | 83.80 | 3.66 | 0.57 | 96.8 | 3.4 |
0.35 | 82.7 | 9.1 | 0.59 | 98.48 | 3.18 |
0.36 | 79.94 | 3.38 | 0.60 | 87.9 | 6.1 |
0.38 | 81.5 | 1.9 | 0.61 | 97.3 | 2.1 |
0.40 | 82.04 | 2.03 | 0.64 | 98.82 | 2.98 |
0.43 | 86.45 | 3.97 | 0.73 | 97.3 | 7.0 |
0.44 | 82.6 | 7.8 | 2.30 | 224.0 | 8.6 |
0.44 | 84.81 | 1.83 | 2.33 | 224 | 8 |
0.48 | 87.90 | 2.03 | 2.34 | 222.0 | 8.5 |
0.51 | 90.4 | 1.9 | 2.36 | 226.0 | 9.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luciano, G.G.; Liu, Y. Lagrangian Reconstruction of Barrow Holographic Dark Energy in Interacting Tachyon Model. Symmetry 2023, 15, 1129. https://doi.org/10.3390/sym15051129
Luciano GG, Liu Y. Lagrangian Reconstruction of Barrow Holographic Dark Energy in Interacting Tachyon Model. Symmetry. 2023; 15(5):1129. https://doi.org/10.3390/sym15051129
Chicago/Turabian StyleLuciano, Giuseppe Gaetano, and Yang Liu. 2023. "Lagrangian Reconstruction of Barrow Holographic Dark Energy in Interacting Tachyon Model" Symmetry 15, no. 5: 1129. https://doi.org/10.3390/sym15051129