A Variety of Weighted Opial-Type Inequalities with Applications for Dynamic Equations on Time Scales
Abstract
1. Introduction
2. Main Results
3. An Application
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beesack, P.R. On an integral inequality of Z. Opial. Trans. Amer. Math. Soc. 1962, 104, 470–475. [Google Scholar] [CrossRef]
- Lasota, A. A discrete boundary value problem. Ann. Pol. Math. 1968, 20, 183–190. [Google Scholar] [CrossRef]
- Bohner, M.; Kaymakçalan, B. Opial inequalities on time scales. Ann. Pol. Math. 2001, 77, 11–20. [Google Scholar] [CrossRef]
- Luo-geng, H. On an inequality of Opial. Sci. Sin. 1965, 14, 789–790. [Google Scholar]
- Yang, G.S. On a certain result of Z. Opial. Proc. Jpn. Acad. 1966, 42, 78–83. [Google Scholar] [CrossRef]
- Willett, D. The existence-uniqueness theorem for an nth order linear ordinary differential equation. Am. Math. Mon. 1968, 75, 174–178. [Google Scholar] [CrossRef]
- El-Deeb, A.A.; Xu, H.; Abdeldaim, A.; Wang, G. Some dynamic inequalities on time scales and their applications. Adv. Differ. Equ. 2019, 2019, 130. [Google Scholar] [CrossRef]
- Tian, Y.; El-Deeb, A.A.; Meng, F. Some nonlinear delay Volterra-Fredholm type dynamic integral inequalities on time scales. Discret. Dyn. Nat. Soc. 2018, 2018, 5841985. [Google Scholar] [CrossRef]
- El-Deeb, A.A. Some Gronwall-Bellman type inequalities on time scales for Volterra-Fredholm dynamic integral equations. J. Egypt. Math. Soc. 2018, 26, 1–17. [Google Scholar] [CrossRef]
- El-Deeb, A.A. A Variety of Nonlinear Retarded Integral Inequalities of Gronwall Type and Their Applications. In Advances in Mathematical Inequalities and Applications; Springer: Singapore, 2018; pp. 143–164. [Google Scholar]
- Barić, J.; Bibi, R.; Bohner, M.; Nosheen, A.; Pečarić, J. Jensen Inequalities on Time Scales: Theory and applications; Monographs in Inequalities; Element: Zagreb, Croatia, 2015; Volume 9, ix+284p. [Google Scholar]
- Güvenilir, A.F.; Kaymakçalan, B.; Nesliye Pelen, N. Constantin’s inequality for nabla and diamond-alpha derivative. J. Inequal. Appl. 2015, 2015, 167. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Sivasundaram, S.; Kaymakcalan, B. Dynamic Systems on Measure Chains; Mathematics and Its Applications; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1996; Volume 370, x+285p. [Google Scholar] [CrossRef]
- Agarwal, R.; O’Regan, D.; Saker, S. Dynamic Inequalities on Time Scales; Springer: Cham, Switzerland, 2014; x+256p. [Google Scholar]
- Agarwal, R.; Bohner, M.; Peterson, A. Inequalities on time scales: A survey. Math. Inequal. Appl. 2001, 4, 535–557. [Google Scholar] [CrossRef]
- Hilscher, R. A time scales version of a Wirtinger-type inequality and applications. J. Comput. Appl. Math. 2002, 141, 219–226. [Google Scholar] [CrossRef][Green Version]
- El-Deeb, A.A.; Elsennary, H.A.; Cheung, W.S. Some reverse Hölder inequalities with Specht’s ratio on time scales. J. Nonlinear Sci. Appl. 2018, 11, 444–455. [Google Scholar] [CrossRef]
- Abdeldaim, A.; El-Deeb, A.A.; Agarwal, P.; El-Sennary, H.A. On some dynamic inequalities of Steffensen type on time scales. Math. Methods Appl. Sci. 2018, 41, 4737–4753. [Google Scholar] [CrossRef]
- KH, F.M.; El-Deeb, A.A.; Abdeldaim, A.; Khan, Z.A. On some generalizations of dynamic Opial-type inequalities on time scales. Adv. Differ. Equ. 2019, 2019, 246. [Google Scholar] [CrossRef]
- Karpuz, B.; Özkan, U.M. Some generalizations for Opial’s inequality involving several functions and their derivatives of arbitrary order on arbitrary time scales. Math. Inequal. Appl. 2011, 14, 79–92. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Pang, P.Y.H. Opial Inequalities with Applications in Differential and Difference Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; x+393p. [Google Scholar]
- Li, W.N. Some Pachpatte type inequalities on time scales. Comput. Math. Appl. 2009, 57, 275–282. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almarri, B.; Makarish, S.D.; El-Deeb, A.A. A Variety of Weighted Opial-Type Inequalities with Applications for Dynamic Equations on Time Scales. Symmetry 2023, 15, 1039. https://doi.org/10.3390/sym15051039
Almarri B, Makarish SD, El-Deeb AA. A Variety of Weighted Opial-Type Inequalities with Applications for Dynamic Equations on Time Scales. Symmetry. 2023; 15(5):1039. https://doi.org/10.3390/sym15051039
Chicago/Turabian StyleAlmarri, Barakah, Samer D. Makarish, and Ahmed A. El-Deeb. 2023. "A Variety of Weighted Opial-Type Inequalities with Applications for Dynamic Equations on Time Scales" Symmetry 15, no. 5: 1039. https://doi.org/10.3390/sym15051039
APA StyleAlmarri, B., Makarish, S. D., & El-Deeb, A. A. (2023). A Variety of Weighted Opial-Type Inequalities with Applications for Dynamic Equations on Time Scales. Symmetry, 15(5), 1039. https://doi.org/10.3390/sym15051039