A Variety of Weighted Opial-Type Inequalities with Applications for Dynamic Equations on Time Scales
Abstract
:1. Introduction
2. Main Results
3. An Application
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beesack, P.R. On an integral inequality of Z. Opial. Trans. Amer. Math. Soc. 1962, 104, 470–475. [Google Scholar] [CrossRef]
- Lasota, A. A discrete boundary value problem. Ann. Pol. Math. 1968, 20, 183–190. [Google Scholar] [CrossRef]
- Bohner, M.; Kaymakçalan, B. Opial inequalities on time scales. Ann. Pol. Math. 2001, 77, 11–20. [Google Scholar] [CrossRef]
- Luo-geng, H. On an inequality of Opial. Sci. Sin. 1965, 14, 789–790. [Google Scholar]
- Yang, G.S. On a certain result of Z. Opial. Proc. Jpn. Acad. 1966, 42, 78–83. [Google Scholar] [CrossRef]
- Willett, D. The existence-uniqueness theorem for an nth order linear ordinary differential equation. Am. Math. Mon. 1968, 75, 174–178. [Google Scholar] [CrossRef]
- El-Deeb, A.A.; Xu, H.; Abdeldaim, A.; Wang, G. Some dynamic inequalities on time scales and their applications. Adv. Differ. Equ. 2019, 2019, 130. [Google Scholar] [CrossRef]
- Tian, Y.; El-Deeb, A.A.; Meng, F. Some nonlinear delay Volterra-Fredholm type dynamic integral inequalities on time scales. Discret. Dyn. Nat. Soc. 2018, 2018, 5841985. [Google Scholar] [CrossRef]
- El-Deeb, A.A. Some Gronwall-Bellman type inequalities on time scales for Volterra-Fredholm dynamic integral equations. J. Egypt. Math. Soc. 2018, 26, 1–17. [Google Scholar] [CrossRef]
- El-Deeb, A.A. A Variety of Nonlinear Retarded Integral Inequalities of Gronwall Type and Their Applications. In Advances in Mathematical Inequalities and Applications; Springer: Singapore, 2018; pp. 143–164. [Google Scholar]
- Barić, J.; Bibi, R.; Bohner, M.; Nosheen, A.; Pečarić, J. Jensen Inequalities on Time Scales: Theory and applications; Monographs in Inequalities; Element: Zagreb, Croatia, 2015; Volume 9, ix+284p. [Google Scholar]
- Güvenilir, A.F.; Kaymakçalan, B.; Nesliye Pelen, N. Constantin’s inequality for nabla and diamond-alpha derivative. J. Inequal. Appl. 2015, 2015, 167. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Sivasundaram, S.; Kaymakcalan, B. Dynamic Systems on Measure Chains; Mathematics and Its Applications; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1996; Volume 370, x+285p. [Google Scholar] [CrossRef]
- Agarwal, R.; O’Regan, D.; Saker, S. Dynamic Inequalities on Time Scales; Springer: Cham, Switzerland, 2014; x+256p. [Google Scholar]
- Agarwal, R.; Bohner, M.; Peterson, A. Inequalities on time scales: A survey. Math. Inequal. Appl. 2001, 4, 535–557. [Google Scholar] [CrossRef]
- Hilscher, R. A time scales version of a Wirtinger-type inequality and applications. J. Comput. Appl. Math. 2002, 141, 219–226. [Google Scholar] [CrossRef]
- El-Deeb, A.A.; Elsennary, H.A.; Cheung, W.S. Some reverse Hölder inequalities with Specht’s ratio on time scales. J. Nonlinear Sci. Appl. 2018, 11, 444–455. [Google Scholar] [CrossRef]
- Abdeldaim, A.; El-Deeb, A.A.; Agarwal, P.; El-Sennary, H.A. On some dynamic inequalities of Steffensen type on time scales. Math. Methods Appl. Sci. 2018, 41, 4737–4753. [Google Scholar] [CrossRef]
- KH, F.M.; El-Deeb, A.A.; Abdeldaim, A.; Khan, Z.A. On some generalizations of dynamic Opial-type inequalities on time scales. Adv. Differ. Equ. 2019, 2019, 246. [Google Scholar] [CrossRef]
- Karpuz, B.; Özkan, U.M. Some generalizations for Opial’s inequality involving several functions and their derivatives of arbitrary order on arbitrary time scales. Math. Inequal. Appl. 2011, 14, 79–92. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Pang, P.Y.H. Opial Inequalities with Applications in Differential and Difference Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; x+393p. [Google Scholar]
- Li, W.N. Some Pachpatte type inequalities on time scales. Comput. Math. Appl. 2009, 57, 275–282. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almarri, B.; Makarish, S.D.; El-Deeb, A.A. A Variety of Weighted Opial-Type Inequalities with Applications for Dynamic Equations on Time Scales. Symmetry 2023, 15, 1039. https://doi.org/10.3390/sym15051039
Almarri B, Makarish SD, El-Deeb AA. A Variety of Weighted Opial-Type Inequalities with Applications for Dynamic Equations on Time Scales. Symmetry. 2023; 15(5):1039. https://doi.org/10.3390/sym15051039
Chicago/Turabian StyleAlmarri, Barakah, Samer D. Makarish, and Ahmed A. El-Deeb. 2023. "A Variety of Weighted Opial-Type Inequalities with Applications for Dynamic Equations on Time Scales" Symmetry 15, no. 5: 1039. https://doi.org/10.3390/sym15051039
APA StyleAlmarri, B., Makarish, S. D., & El-Deeb, A. A. (2023). A Variety of Weighted Opial-Type Inequalities with Applications for Dynamic Equations on Time Scales. Symmetry, 15(5), 1039. https://doi.org/10.3390/sym15051039