Next Article in Journal
A Mathematical Theoretical Study of a Coupled Fully Hybrid (k, Φ)-Fractional Order System of BVPs in Generalized Banach Spaces
Previous Article in Journal
New Study on the Quantum Midpoint-Type Inequalities for Twice q-Differentiable Functions via the Jensen–Mercer Inequality
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Variety of Weighted Opial-Type Inequalities with Applications for Dynamic Equations on Time Scales

by
Barakah Almarri
1,*,
Samer D. Makarish
2 and
Ahmed A. El-Deeb
2,*
1
Department of Mathematical Sciences, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
2
Department of Mathematics, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
*
Authors to whom correspondence should be addressed.
Symmetry 2023, 15(5), 1039; https://doi.org/10.3390/sym15051039
Submission received: 3 November 2022 / Revised: 22 February 2023 / Accepted: 23 March 2023 / Published: 8 May 2023
(This article belongs to the Section Mathematics)

Abstract

:
Using higher order delta derivatives on time scales, we demonstrated a few dynamic inequalities of the Opial type in this paper. Our findings expanded upon and generalised earlier findings in the literature. Furthermore, we give the discrete and continuous inequalities as special cases. At the end of this paper, we apply our results to study the behaviour of the solution of an initial value problem. In selecting the best ways to solve dynamic inequalities, symmetry is crucial.

1. Introduction

In 1962, Beesack [1] stated the result.
Theorem 1 (Continuous Opial Inequality).
Letting ϝ be an abs continuous function on [ 0 , ϑ ] with ϝ ( 0 ) = 0 , obtains
0 ϑ | ϝ ( x ) ϝ ( x ) | d x ϑ 2 0 ϑ | ϝ ( x ) | 2 d x ,
for ϝ ( x ) = c x the equality obtained.
In 1968, Losata [2] investigated the result as follows:
Theorem 2 (Discrete Opial Inequality).
Letting { ϝ i } 0 i ϑ R and ϝ 0 = 0 gets
x = 0 ϑ 1 | ϝ x ( ϝ x + 1 ϝ x ) | ϑ 1 2 x = 0 ϑ 1 | ϝ x + 1 ϝ x | .
Bohner, et al. [3] discussed the dynamic version of Theorems 1 and 2.
Theorem 3 (Dynamic Opial inequality).
Letting T be a time scale with 0, ϑ T . If ϝ : [ 0 , ϑ ] T R is a Δ-diff. fun. and ϝ ( 0 ) = 0 , gets
0 ϑ | ϝ ( x ) + ϝ σ ( x ) ϝ Δ ( x ) | Δ x ϑ 0 ϑ | ϝ Δ ( x ) | 2 Δ x .
In 1965, Hua [4] extended Opial’s Theorem 1 and proved that
0 h | ϝ ( x ) | | ϝ ( x ) | d x h + 1 0 h | ϝ ( x ) | + 1 d x ,
with 0 . In 1966, Yang [5] established that if ϝ ( ι ) = 0 , then
ι ϱ q ( x ) | ϝ ( x ) | | ϝ ( x ) | d x 1 2 ι ϱ 1 p ( x ) d x ι ϱ p ( x ) q ( x ) | ϝ ( x ) | 2 d x .
Further Willet in [6] stated the following result.
0 h | ϝ ( x ) | | ϝ ( n ) ( x ) | d x h n 4 0 h | ϝ ( n ) ( x ) | 2 d x .
In [3], the authors studied the following inequalities.
0 ϑ | ϝ ( x ) + ϝ σ ( x ) ϝ Δ ( x ) | Δ x α 0 ϑ | ϝ Δ ( x ) | 2 Δ x + 2 β 0 ϑ | ϝ Δ ( x ) | Δ x .
0 ϑ | ϝ ( x ) + ϝ σ ( x ) ϝ Δ ( x ) | Δ x α 0 ϑ | ϝ Δ ( x ) | 2 Δ x .
In [3], the authors generalized (5).
0 ϑ | k = 0 ϝ k ( x ) ( ϝ σ ) k ( x ) ϝ Δ j ( x ) | Δ x ϑ n l 0 ϑ | ϝ Δ j ( x ) | + 1 Δ x .
As special cases of (7), if we take = 1 and j = 1 , we obtain the following two inequalities, respectively:
0 ϑ | ( ϝ + ϝ σ ) ϝ Δ j | ( x ) Δ x ϑ j 0 ϑ | ϝ Δ j ( x ) | 2 Δ x .
0 ϑ | k = 0 ϝ k ( ϝ σ ) ) k ϝ Δ | ( x ) Δ x ϑ 0 ϑ | ϝ Δ ( x ) | + 1 Δ x .
Numerous scholars have been interested in, and are currently interested in, the study of opioid-type inequalities. The Opial Inequalities have undergone various extensions in recent years; for further information, see articles [7,8,9,10,11,12,13,14,15,16,17,18,19,20]). For more details on Opial-type inequalities, see the monograph [21].
Lemma 1
(See [22]). Supposing χ : T R is diff. fun. Letting η and fix x 0 T , then the following initial value problem has a unique solution: e η ( x , x 0 ) (the exponential function):
χ Δ ( x ) = η ( x ) χ ( x ) , χ ( x 0 ) = 1 .
The dynamic Hölder’s inequality is what follows [14].
Lemma 2.
Suppose α ,   β T and φ, ψ C r d ( [ α , β ] T , [ 0 , ) ) . Assume p, q > 1 with 1 p + 1 q = 1 , then
α β φ ( x ) ψ ( x ) Δ x α β φ p ( x ) Δ x 1 p α β ψ q ( x ) Δ x 1 q .
Below, is the dynamic integration by parts rule.
α β Θ 2 Δ ( x ) Θ 1 ( x ) Δ x = Θ 2 ( β ) Θ 1 ( β ) Θ 2 ( α ) Θ 1 ( a ) α β Θ 2 σ ( x ) Θ 1 ( x ) Δ x .
Supposing the function ψ : T T with j N , we have
ψ j Δ ( x ) = k = 0 j 1 ψ k ( x ) ψ σ ( x ) j 1 k ψ Δ ( x ) .
In this manuscript, we extend the above-mentioned-qualities by applying some novel tools. Some previously known disparities are extended by and given more widespread new forms by these inequalities. In selecting the best ways to solve dynamic inequalities, symmetry is crucial.

2. Main Results

Here, we outline and provide evidence for our main conclusions.
Theorem 4.
Supposing ζ, δ 0 are right-dense-continuous fun. over [ 0 , ϑ ] T , 0 ϑ ζ ( x ) Δ x < , and δ nondecreasing. For diff. fun. ϝ : [ 0 , ϑ ] T R on ϝ ( 0 ) = 0 we get
0 ϑ 1 δ σ | ( ϝ + ϝ σ ) ϝ Δ | ( x ) Δ x 0 ϑ ζ ( x ) Δ x 0 ϑ 1 ζ ( x ) δ ( x ) | ϝ Δ ( x ) | 2 Δ x .
Proof. 
We consider
( x ) = 0 x 1 δ σ ( ) | ϝ Δ ( ) | Δ .
Then, Δ = 1 δ σ | ϝ Δ | and σ ( ) x and hence δ σ ( ) δ ( x ) .
| ϝ ( x ) | = | ϝ ( x ) ϝ ( 0 ) | 0 x | ϝ Δ ( ) | Δ 0 x δ ( x ) δ σ ( ) | ϝ Δ ( ) | Δ = δ ( x ) 0 x | ϝ Δ ( ) | δ σ ( ) Δ = δ ( x ) ( x ) .
Thus, (observe that x σ ( x ) implies δ ( x ) δ ( σ ( x ) ) ).
0 ϑ 1 δ σ | ( ϝ + ϝ σ ) ϝ Δ | ( x ) Δ x 0 ϑ 1 δ σ ( x ) | ϝ ( x ) | + | ϝ σ ( x ) | | ϝ Δ ( x ) | Δ x 0 ϑ 1 δ σ ( x ) δ ( x ) ( x ) + δ ( σ ( x ) ) ( σ ( x ) ) δ σ ( x ) Δ ( x ) Δ x 0 ϑ 1 δ σ ( x ) δ ( σ ( x ) ) ( x ) + δ ( σ ( x ) ) ( σ ( x ) ) δ σ ( x ) Δ ( x ) Δ x = 0 ϑ ( ( x ) + ( σ ( x ) ) Δ ( x ) ) Δ x = 0 ϑ ( 2 ) Δ Δ x = 2 ( ϑ ) = 0 ϑ | ϝ Δ ( ) | δ σ ( ) Δ 2 = 0 ϑ ζ ( ) 1 ζ ( ) δ σ ( ) | ϝ Δ ( ) | Δ 2 0 ϑ ζ ( x ) Δ x 0 ϑ 1 ζ ( x ) δ ( x ) | ϝ Δ ( x ) | 2 Δ x .
Corollary 1.
Supposing T = R , obtains
0 ϑ 1 δ ( x ) | ϝ ( x ) ϝ ( x ) | d t ϑ 2 0 ϑ ζ ( x ) d t 0 ϑ 1 ζ ( x ) δ ( x ) | ϝ ( x ) | 2 d x .
Corollary 2.
Taking T = Z we obtain
x = 0 ϑ 1 1 δ ( x + 1 ) | ( ϝ ( x ) + ϝ ( x + 1 ) ) Δ ϝ ( x ) | x = 0 ϑ 1 ζ ( x ) x = 0 ϑ 1 1 ζ ( x ) δ ( x ) | Δ ϝ ( x ) | 2 .
We generalise the aforementioned findings to higher order dynamic inequalities in the sections that follow.
Theorem 5.
Let ℓ, j and m N and δ, w and right dense-continuous functions over [ 0 , ϑ ] T and δ nondec. with 0 ϑ w ( x ) Δ x < . Let ϝ : [ 0 , ϑ ] T R be j times differentiable and ϝ ( 0 ) = ϝ Δ ( 0 ) = = ϝ Δ j 1 ( 0 ) = 0 , then
0 ϑ 1 δ σ ( x ) m | k = 0 ϝ k ( x ) ( ϝ σ ) k ( x ) ϝ Δ j ( x ) | Δ x ϑ ( j 1 ) 0 ϑ w ( x ) Δ x 0 ϑ 1 w ( x ) δ m ( σ ( x ) ) | ϝ Δ j ( x ) | + 1 Δ x .
Proof. 
Define
( x ) = 0 x 0 x j 1 0 x 2 0 x 1 1 δ σ ( ) m + 1 | ϝ Δ j ( ) | Δ Δ x 1 Δ x 2 Δ x j 1 .
Then,
Δ ( x ) = 0 x 0 x j 2 0 x 2 0 x 1 1 δ σ ( ) m + 1 | ϝ Δ j ( ) | Δ Δ x 1 Δ x 2 Δ x j 2 , Δ Δ ( x ) = 0 x 0 x j 3 0 x 2 0 x 1 1 δ σ ( ) m + 1 | ϝ Δ j ( ) | Δ Δ x 1 Δ x 2 Δ x j 3 , Δ j 1 ( x ) = 0 x 1 δ σ ( ) m + 1 | ϝ Δ j ( ) | Δ , Δ j ( x ) = 1 δ σ ( x ) m + 1 | ϝ Δ j ( x ) | ,
and for 0 x ϑ (observe that 0 < x 1 < x 2 < < x j 1 < x implies σ ( ) < x , and hence δ σ ( ) < δ ( x ) .
Now, we have
| ϝ ( x ) | = | ϝ ( x ) ϝ ( 0 ) | = | 0 x ϝ Δ ( x 1 ) Δ x 1 | 0 x | ϝ Δ ( x 1 ) | Δ x 1 0 x 0 x 1 | ϝ Δ Δ ( x 2 ) | Δ x 2 Δ x 1 0 x 0 x j 1 0 x 2 0 x 1 | ϝ Δ j ( ) | Δ Δ x 1 Δ x 2 Δ x j 1 0 x 0 x j 1 0 x 2 0 x 1 δ ( x ) δ σ ( ) m + 1 | ϝ Δ j ( ) | Δ Δ x 1 Δ x 2 Δ x j 1 = δ m + 1 ( x ) ( x ) = δ m + 1 ( x ) 0 x Δ ( ) Δ δ m + 1 ( x ) 0 x Δ ( x ) Δ δ m + 1 ( x ) 0 ϑ Δ ( x ) Δ = h q m + 1 ( x ) Δ ( x ) ϑ 2 δ m + 1 ( x ) Δ Δ ( x ) ϑ j 1 δ m + 1 ( x ) Δ j 1 ( x ) .
Hence
0 ϑ 1 δ σ ( x ) m | k = 0 ϝ k ( x ) ( ϝ σ ) k ( x ) ϝ Δ j ( x ) | Δ x 0 ϑ 1 δ σ ( x ) m k = 0 | ϝ ( x ) | k | ϝ σ ( x ) | k | ϝ Δ j ( x ) | Δ x 0 ϑ 1 δ σ ( x ) m k = 0 ϑ j 1 δ m + 1 ( x ) Δ j 1 ( x ) k ϑ j 1 ( δ σ ) m + 1 ( x ) Δ j 1 ( σ ( x ) ) k ( δ σ ) m + 1 ( x ) Δ j ( x ) Δ x ϑ ( j 1 ) 0 ϑ k = 0 Δ j 1 ( x ) k Δ j 1 ( σ ( x ) ) k Δ j ( x ) Δ x = ϑ ( j 1 ) 0 ϑ Δ j 1 ( x ) + 1 Δ Δ x = ϑ ( j 1 ) Δ j 1 + 1 ( ϑ ) = ϑ ( j 1 ) 0 ϑ 1 δ σ ( x ) m | ϝ Δ j ( x ) | Δ x + 1 = ϑ ( j 1 ) 0 ϑ 1 w + 1 ( x ) δ σ ( x ) m w + 1 ( x ) | ϝ Δ j ( x ) | Δ x + 1 ϑ ( j 1 ) 0 ϑ w ( x ) Δ x 0 ϑ 1 w ( x ) δ σ ( x ) m | ϝ Δ j ( x ) | + 1 Δ x ,
where (11) (13) were employed. This concludes the evidence. □
Theorem 6.
Using the same conditions of Theorem 5, gets
0 ϑ 1 δ σ ( x ) m | ( ϝ + ϝ σ ) ϝ Δ j | Δ x ϑ ( j 1 ) 0 ϑ w ( x ) Δ x 0 ϑ 1 w ( x ) δ m ( σ ( x ) ) | ϝ Δ j ( x ) | 2 Δ x .
Proof. 
That is Theorem 5 with = 1 .
Theorem 7.
Using the same conditions of Theorem 5, gets
0 ϑ 1 δ σ ( x ) m | k = 0 ϝ k ( x ) ( ϝ σ ) k ( x ) ϝ Δ ( x ) | Δ x 0 ϑ w ( x ) Δ x 0 ϑ 1 w ( x ) δ m ( σ ( x ) ) | ϝ Δ ( x ) | + 1 Δ x .
Proof. 
This is Theorem 5 with j = 1 .
Remark 1.
Taking = j = m = 1 in Theorem 5, got result 4.
Remark 2.
Taking δ = w = 1 in Theorem 5, got result (7).
Remark 3.
Taking δ = w = 1 in Theorem 6, got result (8).
Remark 4.
Taking δ = w = 1 in Theorem 7, got result (9).
Corollary 3.
Taking T = R in Theorem 5, obtains
0 ϑ 1 δ ( x ) m | ϝ ( x ) ϝ ( j ) ( x ) | d t ϑ ( j 1 ) + 1 0 ϑ w ( x ) d t 0 ϑ 1 w ( x ) δ ( x ) | ϝ ( j ) ( x ) | + 1 d t .
Corollary 4.
If T = Z in Theorem 5, then, we obtain
ϵ = 0 ϑ 1 1 δ ( ϵ + 1 ) m | k = 0 ϝ k ( ϵ ) ϝ k ( ϵ + 1 ) Δ j x ( ϵ ) | ϑ ( j 1 ) ϵ = 0 ϑ 1 Θ ( ϵ ) ϵ = 0 ϑ 1 1 Θ ( ϵ ) δ ( ϵ + 1 ) | Δ j x ( ϵ ) | + 1 .
Theorem 8.
Using the same conditions of Theorem 5, gets
0 ϑ 1 g ( x ) m | k = 0 ϝ k ( x ) ( ϝ σ ) k ( x ) ϝ Δ j ( x ) | Δ x ϑ ( j 1 ) 0 ϑ w ( x ) Δ x 0 ϑ 1 w ( x ) g m ( x ) | ϝ Δ j ( x ) | + 1 Δ x .
Proof. 
Define
( x ) = x ϑ x j 1 ϑ x 2 ϑ x 1 ϑ 1 g ( ) m + 1 | ϝ Δ j ( ) | Δ Δ x 1 Δ x 2 Δ x j 1 .
Then
Δ ( x ) = x ϑ x j 2 ϑ x 2 ϑ x 1 ϑ 1 g ( ) m + 1 | ϝ Δ j ( ) | Δ Δ x 1 Δ x 2 Δ x j 2 , Δ Δ ( x ) = x ϑ x j 3 ϑ x 2 ϑ x 1 ϑ 1 g ( ) m + 1 | ϝ Δ j ( ) | Δ Δ x 1 Δ x 2 Δ x j 3 , Δ j 1 ( x ) = ( 1 ) j 1 x ϑ 1 g ( ) m + 1 | ϝ Δ j ( ) | Δ , Δ j ( x ) = ( 1 ) j 1 g ( x ) m + 1 | ϝ Δ j ( x ) | ,
and for 0 x ϑ (observe that > x 1 > x 2 > > x j 1 > x implies g ( ) < g ( x ) ).
Now, we have
| ϝ ( x ) | = | ϝ ( x ) ϝ ( ϑ ) | = | ϝ ( ϑ ) ϝ ( x ) | = | x ϑ ϝ Δ ( x 1 ) Δ x 1 | x ϑ | ϝ Δ ( x 1 ) | Δ x 1 x ϑ x 1 ϑ | ϝ Δ Δ ( x 2 ) | Δ x 2 Δ x 1 x ϑ x j 1 ϑ x 2 ϑ x 1 ϑ | ϝ Δ j ( ) | Δ Δ x 1 Δ x 2 Δ x j 1 x ϑ x j 1 ϑ x 2 ϑ x 1 ϑ g ( x ) g ( ) m + 1 | ϝ Δ j ( ) | Δ Δ x 1 Δ x 2 Δ x j 1 = g m + 1 ( x ) ( x ) = g m + 1 ( x ) x ϑ Δ ( ) Δ g m + 1 ( x ) x ϑ Δ ( x ) Δ g m + 1 ( x ) 0 ϑ Δ ( x ) Δ = ϑ g m + 1 ( x ) Δ ( x ) ϑ 2 g m + 1 ( x ) Δ Δ ( x ) ( 1 ) j 1 ϑ j 1 g m + 1 ( x ) Δ j 1 ( x ) .
Therefore,
0 ϑ 1 g ( x ) m | k = 0 ϝ k ( x ) ( ϝ σ ) k ( x ) ϝ Δ j ( x ) | Δ x 0 ϑ 1 g ( x ) m k = 0 | ϝ ( x ) | k | ϝ σ ( x ) | k | ϝ Δ j ( x ) | Δ x 0 ϑ 1 g ( x ) m k = 0 ( 1 ) j 1 ϑ j 1 Δ j 1 ( x ) g m + 1 ( x ) k ( 1 ) j 1 ϑ j 1 Δ j 1 ( σ ( x ) ) ( g σ ) m + 1 ( x ) k × ( 1 ) n g m + 1 ( x ) Δ j ( x ) Δ x ( 1 ) j j ϑ ( j 1 ) 0 ϑ k = 0 Δ j 1 ( x ) k Δ j 1 ( σ ( x ) ) k Δ j ( x ) Δ x = ( 1 ) j j ϑ ( j 1 ) 0 ϑ Δ j 1 ( x ) + 1 Δ Δ x = ( 1 ) j j + 1 ϑ ( j 1 ) Δ j 1 + 1 ( 0 ) = ( 1 ) 2 ( n l ) ϑ ( j 1 ) 0 ϑ 1 g ( x ) m + 1 | ϝ Δ j ( x ) | Δ x + 1 = ϑ ( j 1 ) 0 ϑ w + 1 ( x ) 1 w + 1 ( x ) g m + 1 ( x ) ) | ϝ Δ j ( x ) | Δ x + 1 ϑ ( j 1 ) 0 ϑ w ( x ) Δ x 0 ϑ 1 w ( x ) g m ( x ) | ϝ Δ j ( x ) | + 1 Δ x
where (13) and (11) were employed. This concludes the evidence. □
Corollary 5.
Taking R = T in Theorem 8, obtains
0 ϑ 1 g ( x ) m | ϝ ( x ) ϝ ( j ) ( x ) | d t ϑ ( j 1 ) + 1 0 ϑ w ( x ) d t 0 ϑ 1 w ( x ) g m ( x ) | ϝ ( j ) ( x ) | + 1 d t .
Corollary 6.
If T = Z in Theorem 8, then, we obtain
x = 0 ϑ 1 1 g ( x ) m | k = 0 ϝ k ( x ) ϝ k ( x + 1 ) Δ j x ( x ) | ϑ ( j 1 ) x = 0 ϑ 1 w ( x ) x = 0 ϑ 1 1 w ( x ) g m ( x ) | Δ j x ( x ) | + 1 .
Theorem 9.
Using the same conditions of Theorem 8, gets
0 ϑ 1 g ( x ) m | ( ϝ + ϝ σ ) ϝ Δ j | Δ x ϑ ( j 1 ) 0 ϑ w ( x ) Δ x 0 ϑ 1 w ( x ) g m ( x ) | ϝ Δ j ( x ) | 2 Δ x
Proof. 
That is Theorem 8 with = 1 .
Theorem 10.
Using the same conditions of Theorem 8, gets
0 ϑ 1 g ( x ) m | k = 0 ϝ k ( x ) ( ϝ σ ) k ( x ) ϝ Δ ( x ) | Δ x 0 ϑ w ( x ) Δ x 0 ϑ 1 w ( x ) g m ( x ) | ϝ Δ ( x ) | + 1 Δ x .
Proof. 
This is Theorem 8 with j = 1 .
In the following, we offer a generalization of the above inequalities where ϝ ( 0 ) and ϝ ( ϑ ) do not need to be 0.
Theorem 11.
Using the same conditions of Theorem 8, gets
0 ϑ 1 δ σ ( x ) k = 0 | ϝ ( x ) | β ˜ k | ϝ σ ( x ) | β ˜ k | ϝ Δ j ( x ) | Δ x ϑ ( j 1 ) α ˜ 0 ϑ 1 w ( x ) δ σ ( x ) | ϝ Δ j ( x ) | + 1 Δ x ,
where
α ˜ T w i t h | ϑ 2 α ˜ | = d i s t ϑ 2 , T , a n d β ˜ = max | ϝ ( 0 ) | , | ϝ ( ϑ ) | .
Proof. 
Define
( x ) = 0 x 0 x j 1 0 x 2 0 x 1 1 δ σ ( ) 1 + 1 | ϝ Δ j ( ) | Δ Δ x 1 Δ x 2 Δ x j 1 ,
and
z ( x ) = x ϑ x j 1 ϑ x 2 ϑ x 1 ϑ 1 δ σ ( ) 1 + 1 | ϝ Δ j ( ) | Δ Δ x 1 Δ x 2 Δ x j 1 .
Then,
Δ ( x ) = 0 x 0 x j 2 0 x 2 0 x 1 1 δ σ ( ) 1 + 1 | ϝ Δ j ( ) | Δ Δ x 1 Δ x 2 Δ x j 2 , Δ Δ ( x ) = 0 x 0 x j 3 0 x 2 0 x 1 1 δ σ ( ) 1 + 1 | ϝ Δ j ( ) | Δ Δ x 1 Δ x 2 Δ x j 3 , Δ j 1 ( x ) = 0 x 1 δ σ ( ) 1 + 1 | ϝ Δ j ( ) | Δ , Δ j ( x ) = 1 δ σ ( x ) 1 + 1 | ϝ Δ j ( x ) | ,
and
z Δ ( ε ) = ε ϑ ε j 2 ϑ ε 2 ϑ ε 1 ϑ 1 δ σ ( ) 1 + 1 | ϝ Δ j ( ) | Δ Δ ε 1 Δ ε 2 Δ ε j 2 , z Δ Δ ( ε ) = ε ϑ ε j 3 ϑ ε 2 ϑ ε 1 ϑ 1 δ σ ( ) 1 + 1 | ϝ Δ j ( ) | Δ Δ ε 1 Δ ε 2 Δ ε j 3 , z Δ j 1 ( x ) = ( 1 ) j 1 x ϑ 1 δ σ ( ) 1 + 1 | ϝ Δ j ( ) | Δ , z Δ j ( x ) = ( 1 ) j 1 δ σ ( x ) 1 + 1 | ϝ Δ j ( x ) | .
and for 0 x ϑ (observe that 0 < x 1 < x 2 < < x j 1 < x implies σ ( ) < x , and hence δ σ ( ) < δ ( x ) .
| ϝ ( x ) | = | ϝ ( x ) ϝ ( 0 ) + ϝ ( 0 ) | | ϝ ( x ) ϝ ( 0 ) | + | ϝ ( 0 ) | = | 0 x ϝ Δ ( x 1 ) Δ x 1 | + | ϝ ( 0 ) | 0 x | ϝ Δ ( x 1 ) | Δ x 1 + | ϝ ( 0 ) | 0 x 0 x 1 | ϝ Δ Δ ( x 2 ) | Δ x 2 Δ x 1 + | ϝ ( 0 ) | 0 x 0 x j 1 0 x 2 0 x 1 | ϝ Δ j ( ) | Δ Δ x 1 Δ x 2 Δ x j 1 + | ϝ ( 0 ) | 0 x 0 x j 1 0 x 2 0 x 1 δ ( x ) δ σ ( ) 1 + 1 | ϝ Δ j ( ) | Δ Δ x 1 Δ x 2 Δ x j 1 + | ϝ ( 0 ) | = δ 1 + 1 ( x ) ( x ) + | ϝ ( 0 ) | = δ 1 + 1 ( x ) 0 x Δ ( ) Δ + | ϝ ( 0 ) | δ 1 + 1 ( x ) 0 x Δ ( x ) Δ + | ϝ ( 0 ) | δ 1 + 1 ( x ) 0 ϑ Δ ( x ) Δ + | ϝ ( 0 ) | = ϑ δ 1 + 1 ( x ) Δ ( x ) + | ϝ ( 0 ) | ϑ 2 δ 1 + 1 ( x ) Δ Δ ( x ) + | ϝ ( 0 ) | ϑ j 1 δ 1 + 1 ( x ) Δ j 1 ( x ) + | ϝ ( 0 ) | ,
and | ϝ ( x ) | β ˜ ϑ j 1 δ 1 + 1 ( x ) Δ j 1 ( x ) .
Similarly, we have
| ϝ ( x ) | = | ϝ ( x ) ϝ ( ϑ ) + ϝ ( ϑ ) | | ϝ ( x ) ϝ ( ϑ ) | + | ϝ ( ϑ ) | = | x ϑ ϝ Δ ( x 1 ) Δ x 1 | + | ϝ ( ϑ ) | x ϑ | ϝ Δ ( x 1 ) | Δ x 1 + | ϝ ( ϑ ) | x ϑ x 1 ϑ | ϝ Δ Δ ( x 2 ) | Δ x 2 Δ x 1 + | ϝ ( ϑ ) | x ϑ x j 1 ϑ x 2 ϑ x 1 ϑ | ϝ Δ j ( ) | Δ Δ x 1 Δ x 2 Δ x j 1 + | ϝ ( ϑ ) | x ϑ x j 1 ϑ x 2 ϑ x 1 ϑ δ ( x ) δ σ ( ) 1 + 1 | ϝ Δ j ( ) | Δ Δ x 1 Δ x 2 Δ x j 1 + | ϝ ( ϑ ) | = δ 1 + 1 ( x ) z ( x ) + | ϝ ( ϑ ) | = δ 1 + 1 ( x ) x ϑ z Δ ( ) Δ + | ϝ ( ϑ ) | δ 1 + 1 ( x ) x ϑ z Δ ( x ) Δ + | ϝ ( ϑ ) | δ 1 + 1 ( x ) 0 ϑ z Δ ( x ) Δ + | ϝ ( ϑ ) | = ϑ δ 1 + 1 ( x ) z Δ ( x ) + | ϝ ( ϑ ) | ϑ 2 δ 1 + 1 ( x ) z Δ Δ ( x ) + | ϝ ( ϑ ) | ( 1 ) j 1 ϑ j 1 δ 1 + 1 ( x ) z Δ j 1 ( x ) + | ϝ ( ϑ ) | .
and thus | ϝ ( x ) | β ˜ ( 1 ) j 1 ϑ j 1 δ 1 + 1 ( x ) z Δ j 1 ( x ) .
Let u [ 0 , ϑ ] T . Then
0 u 1 δ σ ( x ) k = 0 | ϝ ( x ) | β ˜ k | ϝ σ ( x ) | β ˜ k | ϝ Δ j ( x ) | Δ x 0 u 1 δ σ ( x ) k = 0 ϑ j 1 δ 1 + 1 ( x ) Δ j 1 ( x ) k ϑ j 1 δ 1 + 1 ( σ ( x ) ) Δ j 1 ( σ ( x ) ) k δ 1 + 1 ( σ ( x ) ) Δ j ( x ) Δ x = ϑ ( j 1 ) 0 u k = 0 Δ j 1 ( x ) k Δ j 1 ( σ ( x ) ) k Δ j ( x ) Δ x = ϑ ( j 1 ) 0 u Δ j 1 ( x ) + 1 Δ Δ x = ϑ ( j 1 ) Δ j 1 + 1 ( u ) = ϑ ( j 1 ) 0 u 1 δ σ ( x ) 1 + 1 | ϝ Δ j ( x ) | Δ x + 1 = ϑ ( j 1 ) 0 u w + 1 ( x ) 1 w ( x ) δ σ ( x ) 1 + 1 | ϝ Δ j ( x ) | Δ x + 1 ϑ ( j 1 ) 0 ϑ w ( x ) Δ x 0 u 1 w ( x ) δ σ ( x ) | ϝ Δ j ( x ) | + 1 Δ x ,
the dynamicHölder inequality (11) and (13) were employed.
Similarly, we get
u ϑ 1 δ σ ( x ) k = 0 | ϝ ( x | β ˜ k | ϝ σ ( x ) | β ˜ k ( x ) | ϝ Δ j ( x ) | Δ x u ϑ 1 δ σ ( x ) k = 0 ( 1 ) j 1 ϑ j 1 δ 1 + 1 ( x ) z Δ j 1 ( x ) k ( 1 ) j 1 ϑ j 1 δ 1 + 1 ( σ ( x ) ) z Δ j 1 ( σ ( x ) ) k × δ 1 + 1 ( σ ( x ) ) z Δ j ( x ) ( 1 ) j Δ x = ( 1 ) j j ϑ ( j 1 ) u ϑ k = 0 z Δ j 1 ( x ) k z Δ j 1 ( σ ( x ) ) k z Δ j ( x ) Δ x = ( 1 ) j j ϑ ( j 1 ) u ϑ z Δ j 1 ( x ) + 1 Δ Δ x = ( 1 ) j j + 1 ϑ ( j 1 ) z Δ j 1 + 1 ( u ) = ( 1 ) 2 ( n l ) ϑ ( j 1 ) u ϑ 1 δ σ ( x ) 1 + 1 | ϝ Δ j ( x ) | Δ x + 1 = ϑ ( j 1 ) u ϑ w + 1 ( x ) 1 w ( x ) δ σ ( x ) 1 + 1 | ϝ Δ j ( x ) | Δ x + 1 ϑ ( j 1 ) u ϑ w ( x ) Δ x u ϑ 1 w ( x ) δ σ ( x ) | ϝ Δ j ( x ) | + 1 Δ x .
Using v ( u ) = max { 0 u w ( x ) Δ x , u ϑ w ( x ) Δ x } . by adding (21) and (22), gets
0 ϑ 1 δ σ ( x ) k = 0 | ϝ ( x ) | β ˜ k | ϝ σ ( x ) | β ˜ k | ϝ Δ j ( x ) | Δ x ϑ ( j 1 ) v ( u ) 0 ϑ 1 w ( x ) δ σ ( x ) | ϝ Δ j ( x ) | + 1 Δ x ,
This holds true for any u [ 0 , ϑ ] T , hence it holds true if we swap out v ( u ) for min min u [ 0 , ϑ ] T v ( u ) . It is simple to demonstrate that the final quantity equals α ˜ . That is the required results. □
Remark 5.
Taking j = δ = = w = 1 and ϝ ( 0 ) = ϝ ( ϑ ) = 0 in Theorem 11, then we recapture (6).
Remark 6.
If we take δ = = j = w = 1 in Theorem 11, then we recapture (5).
Corollary 7.
If T = R in Theorem 11, then, we obtain
0 ϑ 1 δ ( x ) | ϝ ( x | ) β ˜ | ϝ ( j ) ( x ) | d t ϑ j 2 ( + 1 ) 0 ϑ 1 w ( x ) δ ( x ) | ϝ ( j ) ( x ) | + 1 d t ,
thus
β ˜ = max | ϝ ( 0 ) | , | ϝ ( ϑ ) | .
Corollary 8.
Taking T = Z in Theorem 11, obtains
x = 0 ϑ 1 1 δ ( x + 1 ) k = 0 | ϝ ( x ) | β ˜ k | ϝ ( x + 1 ) | β ˜ k | Δ j x ( x ) | ϑ ( j 1 ) η x = 0 ϑ 1 1 w ( x + 1 ) δ ( x + 1 ) | Δ j x ( x ) | + 1 ,
thus
η = min { ϑ / 2 , ϑ / 2 } , a n d β ˜ = max | ϝ ( 0 ) | , | ϝ ( ϑ ) | .
Now, we give an application of Theorem 10.

3. An Application

Theorem 12.
Let ϝ be a solution for
ϝ Δ ( x ) = 1 ϑ + x ϝ 2 j ( x ) ( x ϑ ) 2 j 1 , 0 < x ϑ , ϝ ( ϑ ) = 0 ,
where j N . Gets ϝ ( x ) ϝ 1 ( x ) on [ 0 , ϑ ] T , where ϝ 1 ( x ) = x ϑ solves (23).
Proof. 
Obviously ϝ 1 solves (23). Now suppose that ϝ is a solution of (23) and for brevity define U ( x ) = 1 x + ϑ + ϑ x | ϝ Δ ( ) | 2 j Δ .
Then, for any x ( 0 , ϑ ] T , we have
| ϝ Δ ( x ) | = | 1 ϑ + x ϝ 2 j ( x ) ( x ϑ ) 2 j 1 | | 1 ϑ + x | + 1 | x ϑ | 2 j 1 | ϝ 2 j ( x ) | = | 1 ϑ + x | + 1 | x ϑ | 2 j 1 | ϝ 2 j ( x ) ϝ 2 j ( ϑ ) | = | 1 ϑ + x | + 1 | x ϑ | 2 j 1 | ϑ x ϝ 2 j ( ) Δ Δ | | 1 ϑ + x | + 1 | x ϑ | 2 j 1 ϑ x | ϝ 2 j ( ) Δ | Δ = | 1 ϑ + x | + 1 | x ϑ | 2 j 1 ϑ x | k = 0 2 j 1 ϝ k ( ) ( ϝ σ ) 2 j 1 k ( ) ϝ Δ ( ) | Δ z 1 x + ϑ + 1 | x ϑ | 2 j 1 ϑ x | k = 0 2 j 1 ϝ k ( ) ( ϝ σ ) 2 j 1 k ( ) ϝ Δ ( ) | Δ 1 x + ϑ + ϑ x | ϝ Δ ( ) | 2 j Δ = U ( x ) ,
where we applied the inequality (14) has been employed by putting w = g = 1 .
Thus, U Δ ( x ) = 1 + | ϝ Δ ( x ) | 2 j U 2 j ( x ) 1 . Additionally, it is evident that U ( ϑ ) = 1 .
Consider that the initial value problem’s unique solution is z
z Δ ( x ) = U j ( x ) + 1 k = 0 j 1 U k ( x ) ( U σ ) j 1 k ( x ) z ( x ) , z ( ϑ ) = 1 .
Next, as stated by Lemma 1, this z exists because 1 + μ ( x ) U j ( x ) + 1 k = 0 j 1 U k ( x ) ( U σ ) j 1 k ( x ) > 0 .
In fact, z ( x ) > 0 on [ 0 , ϑ ] T . Since U Δ ( x ) U 2 j ( x ) 1 , we have
U j ( x ) 1 z ( x ) Δ = U j ( x ) 1 Δ z ( x ) U j ( x ) 1 z Δ ( x ) z ( x ) z σ ( x ) = k = 0 j 1 U k ( x ) ( U σ ) j 1 k ( x ) U Δ ( x ) z ( x ) U j ( x ) 1 U j ( x ) + 1 k = 0 j 1 U k ( x ) ( U σ ) j 1 k ( x ) z ( x ) z ( x ) z σ ( x ) k = 0 j 1 U k ( x ) ( U σ ) j 1 k ( x ) U 2 j ( x ) 1 z ( x ) U j ( x ) 1 U j ( x ) + 1 k = 0 j 1 U k ( x ) ( U σ ) j 1 k ( x ) z ( x ) z ( x ) z σ ( x ) = 0 ,
where we used formula (13).
Hence
U j ( x ) 1 z ( x ) = U j ( ϑ ) 1 z ( ϑ ) + ϑ x U j ( ) 1 z ( ) Δ Δ 0 ,
and thus U j ( x ) 1 , i.e., U ( x ) 1 . Therefore ϝ Δ ( x ) | ϝ Δ ( x ) | U ( x ) 1 and ϝ ( x ) = ϑ x ϝ Δ ( ) Δ ϑ x Δ = x ϑ = ϝ 1 ( x ) , which is the desired result. □

4. Discussion

Using the integration by parts, Holder’s inequality, and other crucial techniques, we addressed a number of novel, higher order, opioid-type inequalities on temporal scales in this study. Several previously acknowledged inequalities are extended and given more general new shapes by these disparities. In order to create some extra inequalities as special cases, we also extended our inequalities to discrete and continuous calculus.

Author Contributions

Conceptualization, B.A., S.D.M. and A.A.E.-D.; formal analysis, B.A., S.D.M. and A.A.E.-D.; investigation, B.A., S.D.M. and A.A.E.-D.; writing—original draft preparation, B.A, S.D.M. and A.A.E.-D.; writing—review and editing, B.A., S.D.M. and A.A.E.-D.; All authors have read and agreed to the published version of the manuscript.

Funding

Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R216), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Data Availability Statement

Not applicable.

Acknowledgments

Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R216), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Beesack, P.R. On an integral inequality of Z. Opial. Trans. Amer. Math. Soc. 1962, 104, 470–475. [Google Scholar] [CrossRef]
  2. Lasota, A. A discrete boundary value problem. Ann. Pol. Math. 1968, 20, 183–190. [Google Scholar] [CrossRef]
  3. Bohner, M.; Kaymakçalan, B. Opial inequalities on time scales. Ann. Pol. Math. 2001, 77, 11–20. [Google Scholar] [CrossRef]
  4. Luo-geng, H. On an inequality of Opial. Sci. Sin. 1965, 14, 789–790. [Google Scholar]
  5. Yang, G.S. On a certain result of Z. Opial. Proc. Jpn. Acad. 1966, 42, 78–83. [Google Scholar] [CrossRef]
  6. Willett, D. The existence-uniqueness theorem for an nth order linear ordinary differential equation. Am. Math. Mon. 1968, 75, 174–178. [Google Scholar] [CrossRef]
  7. El-Deeb, A.A.; Xu, H.; Abdeldaim, A.; Wang, G. Some dynamic inequalities on time scales and their applications. Adv. Differ. Equ. 2019, 2019, 130. [Google Scholar] [CrossRef]
  8. Tian, Y.; El-Deeb, A.A.; Meng, F. Some nonlinear delay Volterra-Fredholm type dynamic integral inequalities on time scales. Discret. Dyn. Nat. Soc. 2018, 2018, 5841985. [Google Scholar] [CrossRef]
  9. El-Deeb, A.A. Some Gronwall-Bellman type inequalities on time scales for Volterra-Fredholm dynamic integral equations. J. Egypt. Math. Soc. 2018, 26, 1–17. [Google Scholar] [CrossRef]
  10. El-Deeb, A.A. A Variety of Nonlinear Retarded Integral Inequalities of Gronwall Type and Their Applications. In Advances in Mathematical Inequalities and Applications; Springer: Singapore, 2018; pp. 143–164. [Google Scholar]
  11. Barić, J.; Bibi, R.; Bohner, M.; Nosheen, A.; Pečarić, J. Jensen Inequalities on Time Scales: Theory and applications; Monographs in Inequalities; Element: Zagreb, Croatia, 2015; Volume 9, ix+284p. [Google Scholar]
  12. Güvenilir, A.F.; Kaymakçalan, B.; Nesliye Pelen, N. Constantin’s inequality for nabla and diamond-alpha derivative. J. Inequal. Appl. 2015, 2015, 167. [Google Scholar] [CrossRef]
  13. Lakshmikantham, V.; Sivasundaram, S.; Kaymakcalan, B. Dynamic Systems on Measure Chains; Mathematics and Its Applications; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1996; Volume 370, x+285p. [Google Scholar] [CrossRef]
  14. Agarwal, R.; O’Regan, D.; Saker, S. Dynamic Inequalities on Time Scales; Springer: Cham, Switzerland, 2014; x+256p. [Google Scholar]
  15. Agarwal, R.; Bohner, M.; Peterson, A. Inequalities on time scales: A survey. Math. Inequal. Appl. 2001, 4, 535–557. [Google Scholar] [CrossRef]
  16. Hilscher, R. A time scales version of a Wirtinger-type inequality and applications. J. Comput. Appl. Math. 2002, 141, 219–226. [Google Scholar] [CrossRef]
  17. El-Deeb, A.A.; Elsennary, H.A.; Cheung, W.S. Some reverse Hölder inequalities with Specht’s ratio on time scales. J. Nonlinear Sci. Appl. 2018, 11, 444–455. [Google Scholar] [CrossRef]
  18. Abdeldaim, A.; El-Deeb, A.A.; Agarwal, P.; El-Sennary, H.A. On some dynamic inequalities of Steffensen type on time scales. Math. Methods Appl. Sci. 2018, 41, 4737–4753. [Google Scholar] [CrossRef]
  19. KH, F.M.; El-Deeb, A.A.; Abdeldaim, A.; Khan, Z.A. On some generalizations of dynamic Opial-type inequalities on time scales. Adv. Differ. Equ. 2019, 2019, 246. [Google Scholar] [CrossRef]
  20. Karpuz, B.; Özkan, U.M. Some generalizations for Opial’s inequality involving several functions and their derivatives of arbitrary order on arbitrary time scales. Math. Inequal. Appl. 2011, 14, 79–92. [Google Scholar] [CrossRef]
  21. Agarwal, R.P.; Pang, P.Y.H. Opial Inequalities with Applications in Differential and Difference Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; x+393p. [Google Scholar]
  22. Li, W.N. Some Pachpatte type inequalities on time scales. Comput. Math. Appl. 2009, 57, 275–282. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Almarri, B.; Makarish, S.D.; El-Deeb, A.A. A Variety of Weighted Opial-Type Inequalities with Applications for Dynamic Equations on Time Scales. Symmetry 2023, 15, 1039. https://doi.org/10.3390/sym15051039

AMA Style

Almarri B, Makarish SD, El-Deeb AA. A Variety of Weighted Opial-Type Inequalities with Applications for Dynamic Equations on Time Scales. Symmetry. 2023; 15(5):1039. https://doi.org/10.3390/sym15051039

Chicago/Turabian Style

Almarri, Barakah, Samer D. Makarish, and Ahmed A. El-Deeb. 2023. "A Variety of Weighted Opial-Type Inequalities with Applications for Dynamic Equations on Time Scales" Symmetry 15, no. 5: 1039. https://doi.org/10.3390/sym15051039

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop