Recursive Symmetries: Chemically Induced Combinatorics of Colorings of Hyperplanes of an 8-Cube for All Irreducible Representations
Abstract
:1. Introduction
2. Recursive Symmetries, Wreath Products, and Combinatorial and Computational Techniques for the 8-Cube
= x + 11x2 + 52x3 + 138x4 + 224x5 + 224x6 + 128x7 + 32x8
Qp | x | x2 | x3 | x4 | x5 | x6 | x7 | x8 |
Q1 | 8 | 24 | 32 | 16 | ||||
Q2 | ||||||||
Q4 | ||||||||
Q8 | 1 | 11 | 52 | 138 | 224 | 224 | 128 | 32 |
Cycle type | 188 | 124811 | 132852 | 1168138 | 8224 | 8224 | 8128 | 832 |
Hyperplane | q = 1 (hepteracts) | q = 2 hexeracts | q = 3 penteracts | q = 4 tesseracts | q = 5 cubic cells | q = 6 faces | q = 7 edges | q = 8 vertices |
3. Results and Discussions
4. Chemical, Biological and other Applications of the Colorings of 8-Cube
15Γ672-2(15), 17Γ672-2(6), 19Γ672-2(2)
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rouvray, D.H.; King, R.B. (Eds.) Periodic Table into the 21st Century; Illustrated Edition; Research Studies Press: Philadelphia, PA, USA, 2004; 410p. [Google Scholar]
- Restrepo, G. The periodic system: A mathematical approach. In Mendeleev to Oganesson: A Multidisciplinary Perspective on the Periodic Table; Scerri, E.R., Restrepo, G., Eds.; Oxford University Press: New York, NY, USA, 2017. [Google Scholar]
- Scerri, E.R. Can Quantum Ideas Explain Chemistry’s Greatest Icon? Nature 2019, 256, 557. [Google Scholar] [CrossRef]
- Carbó-Dorca, R.; Chakraborty, T. Divagations about the periodic table: Boolean hypercube and quantum similarity connections. J. Comput. Chem. 2019, 40, 2653–2663. [Google Scholar] [CrossRef]
- Balasubramanian, K. Topological Indices, Graph Spectra, Entropies, Laplacians, and Matching Polynomials of n-Dimensional Hypercubes. Symmetry 2023, 15, 557. [Google Scholar] [CrossRef]
- Carbó-Dorca, R. N-Dimensional Boolean hypercubes and the Goldbach conjecture. J. Math. Chem. 2016, 54, 1213–1220. [Google Scholar] [CrossRef]
- Carbó-Dorca, R. DNA unnatural base pairs and hypercubes. J. Math. Chem. 2018, 56, 1353–1536. [Google Scholar] [CrossRef]
- Kaatz, F.H.; Bultheel, A. Dimensionality of hypercube clusters. J. Math Chem. 2016, 54, 33–43. [Google Scholar] [CrossRef]
- Carbó-Dorca, R. Boolean Hypercubes and the Structure of Vector Spaces. J. Math. Sci. Model. 2018, 1, 1–14. [Google Scholar] [CrossRef]
- Carbó-Dorca, R. Boolean hypercubes as time representation holders. J. Math. Chem. 2018, 55, 1349–1352. [Google Scholar] [CrossRef]
- Gowen, A.A.; O’Donnella, C.P.; Cullenb, P.J.; Bell, S.J. Recent applications of chemical imaging to pharmaceutical process monitoring and quality control. Eur. J. Pharm. Biopharm. 2008, 69, 10–22. [Google Scholar] [CrossRef]
- Mezey, P.G. Similarity Analysis in two and three dimensions using lattice animals and ploycubes. J. Math. Chem. 1992, 11, 27–45. [Google Scholar] [CrossRef]
- Fralov, A.; Jako, E.; Mezey, P.G. Logical Models for Molecular Shapes and Families. J. Math. Chem. 2001, 30, 389–409. [Google Scholar] [CrossRef]
- Mezey, P.G. Some Dimension Problems in Molecular Databases. J. Math. Chem. 2009, 45, 1. [Google Scholar] [CrossRef]
- Mezey, P.G. Shape Similarity measures for Molecular Bodies: A Three-dimensional Topological Approach in Quantitative Shape-activity Relation. J. Chem. Inf. Comput. Sci. 1992, 32, 650. [Google Scholar] [CrossRef]
- Balasubramanian, K. Combinatorial Multinomial Generators for colorings of 4D-hypercubes and their applications. J. Math. Chem. 2018, 56, 2707–2723. [Google Scholar] [CrossRef]
- Balasubramanian, K. Nonrigid group theory, tunneling splittings, and nuclear spin statistics of water pentamer:(H2O)5. J. Phys. Chem. A 2004, 108, 5527–5536. [Google Scholar] [CrossRef]
- Balasubramanian, K. Group-Theory and Nuclear-Spin Statistics of Weakly-Bound (H2O)N, (NH3)N, (CH4)N, and NH4+(NH3)N. J. Chem. Phys. 1991, 95, 8273–8286. [Google Scholar] [CrossRef]
- Clifford, W.K. On the types of compound statement involving four classes. In Manchester Philosophical Society; Taylor & Francis: London, UK, 1877; pp. 81–96. Available online: https://www.biodiversitylibrary.org/partpdf/305332 (accessed on 8 April 2023).
- Pólya, G.; Read, R.C. Combinatorial Enumeration of Groups, Graphs and Chemical Compounds; Springer: New York, NY, USA, 1987. [Google Scholar]
- Redfield, J.H. The theory of group reduced distributions. Am. J. Math. 1927, 49, 433. [Google Scholar] [CrossRef]
- Pólya, G. Sur les types des propositions composées. J. Symb. Log. 1940, 5, 98–103. [Google Scholar] [CrossRef]
- Banks, D.C.; Linton, S.A.; Stockmeyer, P.K. Counting Cases in Substitope Algorithms. IEEE Trans. Vis. Comput. Graph. 2004, 10, 371–384. [Google Scholar] [CrossRef]
- Bhaniramka, P.; Wenger, R.; Crawfis, R. Isosurfacing in higher Dimension. In Proceedings of the IEEE Visualization, Salt Lake City, UT, USA, 8–13 October 2000; pp. 267–270. [Google Scholar]
- Aichholzer, O. Extremal Properties of 0/1-Polytopes of Dimension 5. In Polytopes—Combinatorics and Computation; Ziegler, G.M., Kalai, G., Eds.; Birkhäuser: Basel, Switzerland, 2000; pp. 11–130. [Google Scholar]
- Perez-Aguila, R. Enumerating the Configurations in the n-Dimensional Polytopes through Pólya’s counting and A Concise Representation. In Proceedings of the 2006 3rd International Conference on Electrical and Electronics Engineering, Veracruz, Mexico, 6–8 September 2006; pp. 1–4. [Google Scholar]
- Banks, D.C.; Stockmeyer, P.K. De Bruijn Counting for visualization Algorithms. In Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration; Springer: Berlin/Heidelberg, Germany, 2009; pp. 69–88. [Google Scholar]
- Chen, W.Y.C. Induced cycle structures of the hyperoctahedral group. SIAM J. Discret. Math. 1993, 6, 353–362. [Google Scholar] [CrossRef]
- Ziegler, G.M. Lectures on Polytopes; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1994; Volume 152. [Google Scholar]
- Lemmis, P.W.H. Pólya Theory of hypercubes. Geom. Dedicata 1997, 64, 145–155. [Google Scholar] [CrossRef]
- Balasubramanian, K. Mathematical and Computational Techniques for Drug Discovery: Promises and Developments. Curr. Top. Med. Chem. 2018, 18, 2774–2799. [Google Scholar] [CrossRef]
- Liu, M.; Bassler, K.E. Finite size effects and symmetry breaking in the evolution of networks of competing Boolean nodes. J. Phys. A Math. Theor. 2010, 44, 045101. [Google Scholar] [CrossRef]
- Perez-Aguila, R. Towards a New Approach for volume datasets based on orthogonal polytopes in four-dimensional color space. Eng. Lett. 2010, 18, 326. [Google Scholar]
- Chen, W.Y.C.; Guo, P.L. Equivalence Classes of Full-Dimensional 0/1-Polytopes with Many Vertices. Discret. Comput. Geom. 2014, 52, 630–662. [Google Scholar] [CrossRef]
- Kennedy, J.W.; Gordon, M. Graph Contraction and a Generalized Möbius Inversion. Ann. N. Y. Acad. Sci. 1979, 319, 331–348. [Google Scholar] [CrossRef]
- de Bruijn, N.G. Color Patterns that are invariant under permutation of colors. J. Comb. Theory 1967, 2, 418–421. [Google Scholar] [CrossRef]
- de Bruijn, N.G. Enumeration of Tree shaped Molecules. In Recent Progress in Combinatorics; Tutte, W.D., Ed.; Academic: New York, NY, USA, 1969; pp. 59–68. [Google Scholar]
- Harary, F.; Palmer, E.M. Graphical Enumeration; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Macdonald, I.G. Symmetric Functions and Hall Polynomials; Clarendon Press: Oxford, UK, 1979. [Google Scholar]
- Balaban, A.T. Enumerating isomers. In Chemical Graph Theory; Bonchev, D., Rouvray, D.H., Eds.; Gordon & Beach Publishers: New York, NY, USA, 1991. [Google Scholar] [CrossRef]
- Reichhardt, C.J.O.; Bassler, K.E. Canalization and symmetry in Boolean models for genetic regulatory networks. J. Phys. A Math. Theor. 2007, 40, 4339. [Google Scholar] [CrossRef]
- Balasubramanian, K. Symmetry Groups of Nonrigid Molecules as Generalized Wreath-Products and Their Representations. J. Chem. Phys. 1980, 72, 665–677. [Google Scholar] [CrossRef]
- Balasubramanian, K. Nonrigid water octamer: Computations with the 8-cube. J. Comput. Chem. 2020, 41, 2469–2484. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, K. Relativistic double group spinor representations of nonrigid molecules. J. Chem. Phys. 2004, 120, 5524–5535. [Google Scholar] [CrossRef]
- Balasubramanian, K. Electronic-Structure of (GaAs)2. Chem. Phys. Lett. 1990, 171, 58–62. [Google Scholar] [CrossRef]
- Balasubramanian, K. Relativistic Effects in Chemistry, Part A: Theory & Techniques; Wiley-Interscience: New York, NY, USA, 1997; p. 327. ISBN 0-471-30400-X. [Google Scholar]
- Balasubramanian, K. Relativity and chemical bonding. J. Phys. Chem. 1989, 93, 6585–6596. [Google Scholar] [CrossRef]
- Balasubramanian, K. Relativistic calculations of electronic states and potential energy surfaces of Sn3. J. Chem. Phys. 1996, 85, 3401–3406. [Google Scholar] [CrossRef]
- Balasubramanian, K. Applications of Combinatorics and Graph Theory to Quantum Chemistry and Spectroscopy. Chem. Rev. 1985, 85, 599–618. [Google Scholar] [CrossRef]
- Balasubramanian, K. Generalization of De Bruijn’s Extension of Pólya’s Theorem to all characters. J. Math. Chem. 1993, 14, 113–120. [Google Scholar] [CrossRef]
- Balasubramanian, K. Generalization of the Harary-Palmer Power Group Theorem to all Irreducible Representations. J. Math. Chem. 2014, 52, 703–728. [Google Scholar] [CrossRef]
- Balasubramanian, K. Enumeration of Internal-Rotation Reactions and Their Reaction Graphs. Theor. Chim. Acta 1979, 53, 129–146. [Google Scholar] [CrossRef]
- Wallace, R. Spontaneous symmetry breaking in a non-rigid molecule approach to intrinsically disordered proteins. Mol. Biosyst. 2012, 8, 374–377. [Google Scholar] [CrossRef]
- Wallace, R. Tools for the Future: Hidden Symmetries. In Computational Psychiatry; Springer: Cham, Switzerland, 2017; pp. 153–165. [Google Scholar]
- Darafsheh, M.R.; Farjami, Y.; Ashrafi, A.R. Computing the Full Non-Rigid Group of Tetranitrocubane and Octanitrocubane Using Wreath Product. MATCH Commun. Math. Comput. Chem. 2005, 54, 53. [Google Scholar]
- Foote, R.; Mirchandani, G.; Rockmore, D. A two-dimensional Wreath Product Transforms. J. Symb. Comput. 2004, 37, 187–207. [Google Scholar] [CrossRef]
- Balasubramanian, K. A Generalized Wreath Product Method for the Enumeration of Stereo and Position Isomers of Polysubstituted Organic Compounds. Theor. Chim. Acta 1979, 51, 37–51. [Google Scholar] [CrossRef]
- Balasubramanian, K. Symmetry Simplifications of Space Types in Configuration-Interaction Induced by Orbital Degeneracy. Int. J. Quantum Chem. 1981, 20, 1255–1271. [Google Scholar] [CrossRef]
- Balasubramanian, K. Nested wreath groups and their applications to phylogeny in biology and Cayley trees in chemistry and physics. J. Math. Chem. 2017, 55, 195–222. [Google Scholar] [CrossRef]
- Nandini, G.K.; Rajan, R.S.; Shantrinal, A.A.; Rajalaxmi, T.M.; Rajasingh, I.; Balasubramanian, K. Topological and Thermodynamic Entropy Measures for COVID-19 Pandemic through Graph Theory. Symmetry 2020, 12, 1992. [Google Scholar] [CrossRef]
- Balasubramanian, K. Generators of the Character Tables of Generalized Wreath Product Groups. Theor. Chim. Acta 1990, 78, 31–43. [Google Scholar] [CrossRef]
- Liu, X.Y.; Balasubramanian, K. Computer Generation of Character Tables of Generalized Wreath Product Groups. J. Comput. Chem. 1990, 11, 589–602. [Google Scholar] [CrossRef]
- Balasubramanian, K. A Method for Nuclear-Spin Statistics in Molecular Spectroscopy. J. Chem. Phys. 1981, 74, 6824–6829. [Google Scholar] [CrossRef]
- Balasubramanian, K. Generating functions for the nuclear spin statistics of nonrigid molecules. J. Chem. Phys. 1981, 75, 4572–4585. [Google Scholar] [CrossRef]
- Balasubramanian, K. Operator and algebraic methods for NMR spectroscopy. I. Generation of NMR spin species. J. Chem. Phys. 1983, 78, 6358–6368. [Google Scholar] [CrossRef]
- Hui, Y. Recursivity and Contingency; Rowman & Littlefield International: London, UK; New York, NY, USA, 2019; p. 336. ISBN 978-1-78660-053-0. [Google Scholar]
- Coxeter, H.S.M. Regular Polytopes; Dover Publications: New York, NY, USA, 1973. [Google Scholar]
- Ruen, T. Public Domain Work Available to Anyone to Use for Any Purpose. Available online: https://en.wikipedia.org/wiki/8-cube#/media/File:8-cube.svg (accessed on 8 April 2023).
- Balasubramanian, K. Computational Multinomial Combinatorics for Colorings of hyperplanes of hypercubes for all irreducible representations and Applications. J. Math. Chem. 2019, 57, 655–689. [Google Scholar] [CrossRef]
- Balaban, A.T. A trivalent graph of girth ten. J. Comb. Theory Ser. B 1972, 12, 1–5. [Google Scholar] [CrossRef]
- Balaban, A.T. Trivalent graphs of girth nine and eleven, and relationships among cages. Rev. Roum. Math. Pures Appl. 1973, 18, 1033–1043. [Google Scholar]
- Warczewski, J.; Gusin, P.; Wojcieszyk, D. Spin Glass State and Other Magnetic Structures with Their Symmetries in Terms of the Fibre Bundle Approach. Mol. Cryst. Liq. Cryst. 2012, 554, 209–220. [Google Scholar] [CrossRef]
- Litvin, D. Wreath Groups. Physica A 1980, 101, 339–350. [Google Scholar] [CrossRef]
- Rousseau, R. On Certain Subgroups of a Wreath Product. Match 1982, 13, 3–6. [Google Scholar]
- Florek, W.; Lulek, T.; Mucha, M. Hyperoctahedral groups, wreath products, and a general Weyl’s recipe. Z. Krist.-Cryst. Mater. 1988, 184, 31–48. [Google Scholar]
- Fujihisa, H.; Akahama, Y.; Kawamura, H.; Ohishi, Y.; Shimomura, O.; Yamawaki, H.; Sakashita, M.; Gotoh, Y.; Takeya, S.; Honda, K. O8 Cluster Structure of the Epsilon Phase of Solid Oxygen. Phys. Rev. Lett. 2006, 97, 085503. [Google Scholar] [CrossRef]
- Sabirov, D.S.; Shepelevich, I.S. Information entropy of oxygen allotropes. A still open discussion about the closed form of ozone. Comput. Theor. Chem. 2015, 1073, 61–66. [Google Scholar] [CrossRef]
- Domnin, A.V.; Porsev, V.V.; Evarestov, R.A. DFT modeling of electronic and mechanical properties of polytwistane using line symmetry group theory. Comput. Mater. Sci. 2022, 214, 111704. [Google Scholar] [CrossRef]
- Arockiaraj, M.; Clement, J.; Balasubramanian, K. Topological indices and their applications to circumcised donut benzenoid systems, kekulenes and drugs. Polycycl. Aromat. Compd. 2020, 40, 280–303. [Google Scholar] [CrossRef]
Matrix Type | Order | Fd(x) | q = 1 | q = 2 | q = 3 | q = 4 | q = 5 | q = 6 | q = 7 | q = 8 | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 R | F1 = (1 + 2x)8 | 116 | 1112 | 1448 | 11120 | 11792 | 11792 | 11024 | 1256 | |
2 | 8 | F1 = (1 + 2x)7 F2 = (1 + 2x)8 | 114 2 | 184 214 | 1280284 | 15602280 | 16722560 | 14482672 | 11282448 | 2128 | |
3 | 28 R | F1 = (1 + 2x)6 F2 = (1 + 2x)8 | 112 22 | 160 226 | 11602144 | 12402440 | 11922800 | 1642864 | 2512 | 2128 | |
4 | 56 | F1 = (1 + 2x)5 F2 = (1 + 2x)8 | 110 23 | 140 236 | 1802184 | 1802520 | 1322880 | 2896 | 2512 | 2128 | |
5 | 70 R | F1 = (1 + 2x)4 F2 = (1 + 2x)8 | 18 24 | 124 244 | 1322208 | 1162552 | 2896 | 2896 | 2512 | 2128 | |
6 | 56 | F1 = (1 + 2x)3 F2 = (1 + 2x)8 | 16 25 | 112 250 | 182220 | 2560 | 2896 | 2896 | 2512 | 2128 | |
7 | 28 R | F1 = (1 + 2x)2 F2 = (1 + 2x)8 | 14 26 | 14 254 | 2224 | 2560 | 2896 | 2896 | 2512 | 2128 | |
8 | 8 | F1 = (1 + 2x) F2 = (1 + 2x)8 | 12 27 | 256 | 2224 | 2560 | 2896 | 2896 | 2512 | 2128 | |
9 | 1 R | F1 = 1 F2 = (1 + 2x)8 | 28 | 256 | 2224 | 2560 | 2896 | 2896 | 2512 | 2128 | |
10 | 840 R | F1 = (1 + 2x)4(1 + 2x2)2 F2 = (1 + 2x)8 | 1824 | 128242 | 1642192 | 11162502 | 11602816 | 11602816 | 11282448 | 164296 | |
11 | 1080 | F1 = (1 + 2x)4(1 + 2x2) F2 = (1 + 2x)6 F4 = (1 + 2x)8 | 18224 | 126217413 | 148256472 | 1642884220 | 1642644400 | 1322164432 | 4256 | 464 | |
12 | 3360 | F1 = (1 + 2x)3(1 + 2x2)2 F2 = (1 + 2x)8 | 1625 | 116248 | 1322208 | 1522534 | 1562868 | 1482872 | 1322496 | 2128 | |
13 | 6720 R | F1 = (1 + 2x)3(1 + 2x2) F2 = (1 + 2x)6 F4 = (1 + 2x)8 | 16234 | 114223413 | 120270472 | 12421084220 | 1162884400 | 2324432 | 4256 | 464 | |
14 | 5020 R | F1 = (1 + 2x)2(1 + 2x2)2 F2 = (1 + 2x)8 | 1426 | 18252 | 1162216 | 1202550 | 1162888 | 1162888 | 2512 | 2128 | |
15 | 10,080 | F1 = (1 + 2x)2(1 + 2x2) F2 = (1 + 2x)6 F4 = (1 + 2x)8 | 14244 | 16227413 | 18276472 | 1821164220 | 2964400 | 2324432 | 4256 | 464 | |
16 | 840 R | F1 = (1 + 2x)4 F2 = (1 + 2x)4 F4 = (1 + 2x)8 | 1842 | 124422 | 1324104 | 1164276 | 4448 | 4448 | 4256 | 464 | |
17 | 3360 | F1 = (1 + 2x)3 F2 = (1 + 2x)4 F4 = (1 + 2x)8 | 162 42 | 11226422 | 182124104 | 284276 | 4448 | 4448 | 4256 | 464 | |
18 | 5040 R | F1 = (1 + 2x)2 F2 = (1 + 2x)4 F4 = (1 + 2x)8 | 1422 42 | 14210422 | 2164104 | 284276 | 4448 | 4448 | 4256 | 464 | |
19 | 3360 | F1 = (1 + 2x)(1 + 2x2)2 F2 = (1 + 2x)8 | 1227 | 14254 | 182220 | 142558 | 182892 | 2896 | 2512 | 2128 | |
20 | 6720 R | F1 = (1 + 2x)(1 + 2x2) F2 = (1 + 2x)6 F4 = (1 + 2x)8 | 12254 | 12229413 | 14278472 | 21204220 | 2964400 | 2324432 | 4256 | 464 | |
21 | 3360 | F1 = (1 + 2x) F2 = (1 + 2x)4 F4 = (1 + 2x)8 | 1223 42 | 212422 | 2164104 | 284276 | 4448 | 4448 | 4256 | 464 | |
22 | 840 R | F1 = (1 + 2x2)2 F2 = (1 + 2x)8 | 28 | 14254 | 2224 | 142558 | 2896 | 2896 | 2512 | 2128 | |
23 | 1080 | F1 = (1 + 2x2) F2 = (1 + 2x)6 F4 = (1 + 2x)8 | 264 | 12229413 | 280472 | 21204220 | 2964400 | 2324432 | 4256 | 464 | |
24 | 840 R | F1 = 1 F2 = (1 + 2x)4 F4 = (1 + 2x)8 | 2442 | 212422 | 2164104 | 284276 | 4448 | 4448 | 4256 | 464 | |
25 | 448 R | F1 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x)8 | 110 32 | 140324 | 1823122 | 11003340 | 11123560 | 11603544 | 11603288 | 164364 | |
26 | 2240 | F1 = (1 + 2x)4(1 + 2x3) F2 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x)7 F6 = (1 + 2x)8 | 182 32 | 12428 32062 | 134224 382620 | 132234 3176682 | 148232 32086176 | 164248 3128 6208 | 132264 3326128 | 232632 | |
27 | 4480 R | F1 = (1 + 2x)3(1 + 2x3) F2 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x)6 F6 = (1 + 2x)8 | 1622 32 | 112214 31664 | 110236 350636 | 112244 3766132 | 124244 3566252 | 116272 3166264 | 2806144 | 232632 | |
28 | 4480 | F1 = (1 + 2x)2(1 + 2x3) F2 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x)5 F6 = (1 + 2x)8 | 1423 32 | 14218 31266 | 12240 326648 | 18246 3246158 | 18252 386276 | 2806272 | 2806144 | 232632 | |
29 | 448 | F1 = (1 + 2x)5 F2 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x)5 F6 = (1 + 2x)8 | 1106 | 140612 | 1802661 | 1802106170 | 1322406280 | 2806272 | 2806144 | 232632 | |
30 | 2240 R | F1 = (1 + 2x)4 F2 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x)4 F6 = (1 + 2x)8 | 182 6 | 12428612 | 132225661 | 1162426170 | 2566280 | 2806272 | 2806144 | 232632 | |
31 | 4480 | F1 = (1 + 2x)3 F2 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x)3 F6 = (1 + 2x)8 | 1622 6 | 112214612 | 18237661 | 2506170 | 2566280 | 2806272 | 2806144 | 232632 | |
32 | 4480 R | F1 = (1 + 2x)2 F2 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x)2 F6 = (1 + 2x)8 | 1423 6 | 14218612 | 241661 | 2506170 | 2566280 | 2806272 | 2806144 | 232632 | |
33 | 2240 R | F1 = (1 + 2x)(1 + 2x3) F2 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x)4 F6 = (1 + 2x)8 | 1224 32 | 2203868 | 12240310656 | 14248 346168 | 2566280 | 2806272 | 2806144 | 232632 | |
34 | 2240 | F1 = (1 + 2x) F2 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x) F6 = (1 + 2x)8 | 1224 6 | 220612 | 241661 | 2506170 | 2566280 | 2806272 | 2806144 | 232632 | |
35 | 448 | F1 = (1 + 2x3) F2 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x)3 F6 = (1 + 2x)8 | 2532 | 22034610 | 12240 32660 | 2506170 | 2566280 | 2806272 | 2806144 | 232632 | |
36 | 448 R | F2 = (1 + 2x)5(1 + 2x3) F6 = (1 + 2x)8 F1 = 1 F3 = 1 | 256 | 220612 | 241661 | 2506170 | 2566280 | 2806272 | 2806144 | 232632 | |
37 | 3360 | F1 = (1 + 2x)4(1 + 2x4) F2 = (1 + 2x)4(1 + 2x2)2 F4 = (1 + 2x)8 | 1842 | 12422421 | 132216496 | 1182494251 | 1162724408 | 1482564408 | 1642324224 | 132216448 | |
38 | 3360 R | F1 = (1 + 2x)4 F2 = (1 + 2x)4 F4 = (1 + 2x)4 F8 = (1 + 2x)8 | 188 | 124811 | 132852 | 1168138 | 8224 | 8224 | 8128 | 832 | |
39 | 13440 R | F1 = (1 + 2x)3(1 + 2x4) F2 = (1 + 2x)4(1 + 2x2)2 F4 = (1 + 2x)8 | 162 42 | 11228421 | 18228496 | 122574251 | 1122744408 | 1242684408 | 1162564224 | 232448 | |
40 | 13440 | F1 = (1 + 2x)3 F2 = (1 + 2x)4 F4 = (1 + 2x)4 F8 = (1 + 2x)8 | 16 2 8 | 11226811 | 18212852 | 288138 | 8224 | 8224 | 8128 | 832 | |
41 | 20,160 | F1 = (1 + 2x)2(1 + 2x4) F2 = (1 + 2x)4(1 + 2x2)2 F4 = (1 + 2x)8 | 1422 42 | 14212421 | 232496 | 122574251 | 182764408 | 182764408 | 2644224 | 232448 | |
42 | 20,160 R | F1 = (1 + 2x)2 F2 = (1 + 2x)4 F4 = (1 + 2x)4 F8 = (1 + 2x)8 | 1422 8 | 14210811 | 216852 | 288138 | 8224 | 8224 | 8128 | 832 | |
43 | 13440 R | F1 = (1 + 2x)(1 + 2x4) F2 = (1 + 2x)4(1 + 2x2)2 F4 = (1 + 2x)8 | 1223 42 | 214421 | 232496 | 122574251 | 142784408 | 2804408 | 2644224 | 232448 | |
44 | 13440 | F1 = (1 + 2x) F2 = (1 + 2x)4 F4 = (1 + 2x)4 F8 = (1 + 2x)8 | 1223 8 | 212811 | 216852 | 288138 | 8224 | 8224 | 8128 | 832 | |
45 | 3360 | F1 = (1 + 2x4) F2 = (1 + 2x)4(1 + 2x2)2 F4 = (1 + 2x)8 | 2442 | 214421 | 232496 | 122574251 | 2804408 | 2804408 | 2644224 | 232448 | |
46 | 3360 R | F1 = 1 F2 = (1 + 2x)4 F4 = (1 + 2x)4 F8 = (1 + 2x)8 | 248 | 212811 | 216852 | 288138 | 8224 | 8224 | 8128 | 832 | |
47 | 26880 R | F1 = (1 + 2x)(1 + 2x2)2(1 + 2x3) F2 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x)4(1 + 2x2)2 F6 = (1 + 2x)8 | 1224 32 | 14218 3868 | 110236 318652 | 18246 336652 | 116248 3486256 | 116272 3486248 | 18276 3406124 | 116224 316624 | |
48 | 53,760 | F1 = (1 + 2x)(1 + 2x2)(1 + 2x3) F2 = (1 + 2x)3(1 + 2x3) F3 = (1 + 2x)4(1 + 2x2) F4 = (1 + 2x)5(1 + 2x3) F6 = (1 + 2x)6 F12 = (1 + 2x)8 | 1222 324 | 12253847 64 122 | 1622314418 618 1218 | 1424320422 628 1266 | 14210320422 618 12126 | 182438436 64 12132 | 4401272 | 4161216 | |
49 | 26880 | F1 = (1 + 2x2)2(1 + 2x3) F2 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x2)2(1 + 2x)3 F6 = (1 + 2x)8 | 2532 | 14218 34610 | 12240 310656 | 14248 3166162 | 18252 3166272 | 2803166264 | 18276 386140 | 232632 | |
50 | 53,760 R | F1 = (1 + 2x2)(1 + 2x3) F2 = (1 + 2x)3(1 + 2x3) F3 = (1 + 2x2)(1 + 2x)3 F4 = (1 + 2x)5(1 + 2x3) F6 = (1 + 2x)6 F12 = (1 + 2x)8 | 2332 4 | 1225 3447 66 122 | 1224 36418 622 1218 | 2638422 634 1266 | 14210 34422 626 12126 | 28436 6812132 | 4401272 | 4161216 | |
51 | 26880 | F1 = (1 + 2x)(1 + 2x2)2 F2 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x)(1 + 2x2)2 F6 = (1 + 2x)8 | 1224 6 | 14218612 | 18237661 | 142486170 | 182526280 | 2806272 | 2806144 | 232632 | |
52 | 53,760 R | F1 = (1 + 2x)(1 + 2x2) F2 = (1 + 2x)3(1 + 2x3) F3 = (1 + 2x)(1 + 2x2) F4 = (1 + 2x)5(1 + 2x3) F6 = (1 + 2x)6 F12 = (1 + 2x)8 | 1222 4 6 | 122547 68 122 | 1423418 6251218 | 26422 6381266 | 212422 62812126 | 28436 6812132 | 4401272 | 4161216 | |
53 | 26880 R | F1 = (1 + 2x2)2 F2 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x2)2 F6 = (1 + 2x)8 | 256 | 14218612 | 241661 | 142486170 | 2566280 | 2806272 | 2806144 | 232632 | |
54 | 53,760 | F1 = (1 + 2x2) F2 = (1 + 2x)3(1 + 2x3) F3 = (1 + 2x2) F4 = (1 + 2x)5(1 + 2x3) F6 = (1 + 2x)6 F12 = (1 + 2x)8 | 234 6 | 122547 68 122 | 25418 6251218 | 26422 6381266 | 212422 62812126 | 28436 6812132 | 4401272 | 4161216 | |
55 | 26880 R | F1 = (1 + 2x)(1 + 2x3) F2 = (1 + 2x)(1 + 2x3) F3 = (1 + 2x)4 F4 = (1 + 2x)5(1 + 2x3) F6 = (1 + 2x)4 F12 = (1 + 2x)8 | 1232 42 | 38410124 | 12310 4201228 | 1434 4241284 | 42812140 | 44012136 | 4401272 | 4161216 | |
56 | 26880 | F1 = (1 + 2x3) F2 = (1 + 2x)(1 + 2x3) F3 = (1 + 2x)3 F4 = (1 + 2x)5(1 + 2x3) F6 = (1 + 2x)4 F12 = (1 + 2x)8 | 2 32 42 | 34410 62124 | 1232420 641228 | 22424 621284 | 42812140 | 44012136 | 4401272 | 4161216 | |
57 | 26880 | F1 = (1 + 2x) F2 = (1 + 2x)(1 + 2x3) F3 = (1 + 2x) F4 = (1 + 2x)5(1 + 2x3) F6 = (1 + 2x)4 F12 = (1 + 2x)8 | 1242 6 | 41064124 | 2 420 651228 | 22424 621284 | 42812140 | 44012136 | 4401272 | 4161216 | |
58 | 26880 R | F1 = 1 F2 = (1 + 2x)(1 + 2x3) F3 = 1 F4 = (1 + 2x)5(1 + 2x3) F6 = (1 + 2x)4 F12 = (1 + 2x)8 | 2 42 6 | 41064124 | 2 420 651228 | 22424 621284 | 42812140 | 44012136 | 4401272 | 4161216 | |
59 | 107,520 | F1 = (1 + 2x)(1 + 2x3)(1 + 2x4) F2 = (1 + 2x)(1 + 2x3)(1 + 2x2)2 F3 = (1 + 2x)4(1 + 2x4) F4 = (1 + 2x)5(1 + 2x3) F6 = (1 + 2x)4(1 + 2x2)2 F12 = (1 + 2x)8 | 1232 42 | 2238 49124 | 1224 310418 64 1226 | 162 34423 616 1276 | 1426 34424 622 12128 | 28316436 616 12124 | 1422 320438 610 1262 | 1824 38412 64 1212 | |
60 | 107,520 R | F1 = (1 + 2x)(1 + 2x3) F2 = (1 + 2x)(1 + 2x3) F3 = (1 + 2x)4 F4 = (1 + 2x)(1 + 2x3) F6 = (1 + 2x)4 F8 = (1 + 2x)5(1 + 2x3) F12 = (1 + 2x)4 F24 = (1 + 2x)8 | 1232 8 | 3885242 | 12310 8102414 | 1434 8122442 | 8142470 | 8202468 | 8202436 | 88248 | |
61 | 107,520 R | F1 = (1 + 2x3)(1 + 2x4) F2 = (1 + 2x)(1 + 2x3)(1 + 2x2)2 F3 = (1 + 2x)3(1 + 2x4) F4 = (1 + 2x)5(1 + 2x3) F6 = (1 + 2x)4(1 + 2x2)2 F12 = (1 + 2x)8 | 2 3242 | 223449 62 124 | 1224 32418 68 1226 | 1223 4236181276 | 2834424622 12128 | 2838 436620 12124 | 1422 34438 618 1262 | 28412 681212 | |
62 | 107,520 | F1 = (1 + 2x3) F2 = (1 + 2x)(1 + 2x3) F3 = (1 + 2x)3 F4 = (1 + 2x)(1 + 2x3) F6 = (1 + 2x)4 F8 = (1 + 2x)5(1 + 2x3) F12 = (1 + 2x)4 F24 = (1 + 2x)8 | 2 328 | 3462 85242 | 123264 8102414 | 2262 8122442 | 8142470 | 8202468 | 8202436 | 88248 | |
63 | 107,520 R | F1 = (1 + 2x)(1 + 2x4) F2 = (1 + 2x)(1 + 2x3)(1 + 2x2)2 F3 = (1 + 2x)(1 + 2x4) F4 = (1 + 2x)5(1 + 2x3) F6 = (1 + 2x)4(1 + 2x2)2 F12 = (1 + 2x)8 | 1242 6 | 2249 64124 | 25418 691226 | 1223 423618 1276 | 1426424 624 12128 | 28436 62412124 | 24438 620 1262 | 28412 68 1212 | |
64 | 107,520 | F1 = (1 + 2x) F2 = (1 + 2x)(1 + 2x3) F3 = (1 + 2x) F4 = (1 + 2x)(1 + 2x3) F6 = (1 + 2x)4 F8 = (1 + 2x)5(1 + 2x3) F12 = (1 + 2x)4 F24 = (1 + 2x)8 | 126 8 | 6485242 | 2 65 8102414 | 2262 8122442 | 8142470 | 8202468 | 8202436 | 88248 | |
65 | 107,520 | F1 = (1 + 2x4) F2 = (1 + 2x)(1 + 2x3)(1 + 2x2)2 F3 = (1 + 2x4) F4 = (1 + 2x)5(1 + 2x3) F6 = (1 + 2x)4(1 + 2x2)2 F12 = (1 + 2x)8 | 2 42 6 | 2249 64124 | 25418 691226 | 1223423 6181276 | 28424 62412128 | 28436 62412124 | 24438 620 1262 | 28412 68 1212 | |
66 | 107,520 R | F1 = 1 F2 = (1 + 2x)(1 + 2x3) F3 = 1 F4 = (1 + 2x)(1 + 2x3) F6 = (1 + 2x)4 F8 = (1 + 2x)5(1 + 2x3) F12 = (1 + 2x)4 F24 = (1 + 2x)8 | 2 6 8 | 6485 242 | 2 65 8102414 | 2262 8122442 | 8142470 | 8202468 | 8202436 | 88248 | |
67 | 56 | F1 = (1 + 2x)6(1 + 2x2) F2 = (1 + 2x)8 | 112 22 | 162225 | 11842132 | 13602380 | 15122640 | 15442624 | 13842320 | 1128264 | |
68 | 56 R | F1 = (1 + 2x)6 F2 = (1 + 2x)6 F4 = (1 + 2x)8 | 1124 | 160413 | 1160472 | 12404220 | 11924400 | 1644432 | 4256 | 464 | |
69 | 336 R | F1 = (1 + 2x)5(1 + 2x2) F2 = (1 + 2x)8 | 110 23 | 142235 | 11002174 | 11602480 | 11922800 | 11602816 | 1642480 | 2128 | |
70 | 336 | F1 = (1 + 2x)5 F2 = (1 + 2x)6 F4 = (1 + 2x)8 | 1102 4 | 140210413 | 180240472 | 1802804220 | 1322804400 | 2324432 | 4256 | 464 | |
71 | 840 | F1 = (1 + 2x)4(1 + 2x2) F2 = (1 + 2x)8 | 1824 | 126243 | 1482200 | 1642528 | 1642864 | 1322880 | 2512 | 2128 | |
72 | 840 R | F1 = (1 + 2x)4 F2 = (1 + 2x)6 F4 = (1 + 2x)8 | 1822 4 | 124218413 | 132264472 | 11621124220 | 2964400 | 2324432 | 4256 | 464 | |
73 | 1120 R | F1 = (1 + 2x)3(1 + 2x2) F2 = (1 + 2x)8 | 16 25 | 114249 | 1202214 | 1242548 | 1162888 | 2896 | 2512 | 2128 | |
74 | 1120 | F1 = (1 + 2x)3 F2 = (1 + 2x)6 F4 = (1 + 2x)8 | 16 234 | 112224413 | 18276472 | 21204220 | 2964400 | 2324432 | 4256 | 464 | |
75 | 840 | F1 = (1 + 2x)2(1 + 2x2) F2 = (1 + 2x)8 | 14 26 | 16253 | 182220 | 182556 | 2896 | 2896 | 2512 | 2128 | |
76 | 840 R | F1 = (1 + 2x)2 F2 = (1 + 2x)6 F4 = (1 + 2x)8 | 14 244 | 14228413 | 280472 | 21204220 | 2964400 | 2324432 | 4256 | 464 | |
77 | 336 R | F1 = (1 + 2x)(1 + 2x2) F2 = (1 + 2x)8 | 12 27 | 12255 | 142222 | 2560 | 2896 | 2896 | 2512 | 2128 | |
78 | 336 | F1 = (1 + 2x) F2 = (1 + 2x)6 F4 = (1 + 2x)8 | 12 254 | 230413 | 280472 | 21204220 | 2964400 | 2324432 | 4256 | 464 | |
79 | 56 | F1 = (1 + 2x2) F2 = (1 + 2x)8 | 28 | 12255 | 2224 | 2560 | 2896 | 2896 | 2512 | 2128 | |
80 | 56 R | F1 = 1 F2 = (1 + 2x)6 F4 = (1 + 2x)8 | 264 | 230413 | 280472 | 21204220 | 2964400 | 2324432 | 4256 | 464 | |
81 | 8960 | F1 = (1 + 2x)3(1 + 2x2)(1 + 2x3) F2 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x)6(1 + 2x2) F6 = (1 + 2x)8 | 16 22 32 | 114213 31664 | 122230 354634 | 136232 31086116 | 144234 31566202 | 140260 31686188 | 148256 3112688 | 132216 332 616 | |
82 | 8960 R | F1 = (1 + 2x)3(1 + 2x3) F2 = (1 + 2x)3(1 + 2x3) F3 = (1 + 2x)6 F4 = (1 + 2x)5(1 + 2x3) F6 = (1 + 2x)6 F12 = (1 + 2x)8 | 16 324 | 112316 47122 | 110350 4181218 | 112376 4221266 | 124356 42212126 | 116316 43612132 | 4401272 | 4161216 | |
83 | 8960 R | F1 = (1 + 2x)3(1 + 2x2) F2 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x)3(1 + 2x2) F6 = (1 + 2x)8 | 16 226 | 114213612 | 120231661 | 1242386170 | 1162486280 | 2806272 | 2806144 | 232632 | |
84 | 8960 | F1 = (1 + 2x)3 F2 = (1 + 2x)3(1 + 2x3) F3 = (1 + 2x)3 F4 = (1 + 2x)5(1 + 2x3) F6 = (1 + 2x)6 F12 = (1 + 2x)8 | 16 4 6 | 11247 68122 | 182418 6251218 | 26422 6381266 | 212422 62812126 | 28436 6812132 | 4401272 | 4161216 | |
85 | 26880 R | F1 = (1 + 2x)2(1 + 2x2)(1 + 2x3) F2 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x)5(1 + 2x2) F6 = (1 + 2x)8 | 14 23 32 | 16217 31266 | 110236 330646 | 116242 3486146 | 112250 3606250 | 116272 3486248 | 116272 3166136 | 232632 | |
86 | 26880 | F1 = (1 + 2x)2(1 + 2x3) F2 = (1 + 2x)3(1 + 2x3) F3 = (1 + 2x)5 F4 = (1 + 2x)5(1 + 2x3) F6 = (1 + 2x)6 F12 = (1 + 2x)8 | 142 32 4 | 1424 31247 62 122 | 1224 326418 612 1218 | 1822 324422 626 1266 | 1828 38422 624 12126 | 28436 6812132 | 4401272 | 4161216 | |
87 | 26880 | F1 = (1 + 2x)2(1 + 2x2) F2 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x)2(1 + 2x2) F6 = (1 + 2x)8 | 14 236 | 16217612 | 18237661 | 182466170 | 2566280 | 2806272 | 2806144 | 232632 | |
88 | 26880 R | F1 = (1 + 2x)2 F2 = (1 + 2x)3(1 + 2x3) F3 = (1 + 2x)2 F4 = (1 + 2x)5(1 + 2x3) F6 = (1 + 2x)6 F12 = (1 + 2x)8 | 142 4 6 | 142447 68122 | 25418 6251218 | 26422 6381266 | 212422 62812126 | 28436 6812132 | 4401272 | 4161216 | |
89 | 26880 | F1 = (1 + 2x)(1 + 2x2)(1 + 2x3) F2 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x)4(1 + 2x2) F6 = (1 + 2x)8 | 12 24 32 | 12219 3868 | 16238 314654 | 14248 3206160 | 14254 3206270 | 18276 386268 | 2806144 | 232632 | |
90 | 26880 R | F1 = (1 + 2x)(1 + 2x3) F2 = (1 + 2x)3(1 + 2x3) F3 = (1 + 2x)4 F4 = (1 + 2x)5(1 + 2x3) F6 = (1 + 2x)6 F12 = (1 + 2x)8 | 12 22 324 | 263847 64122 | 1224 310418 6201218 | 1424 34422 6361266 | 212422 62812126 | 28436 6812132 | 4401272 | 4161216 | |
91 | 26880 R | F1 = (1 + 2x)(1 + 2x2) F2 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x)(1 + 2x2) F6 = (1 + 2x)8 | 12 246 | 12219612 | 14239661 | 2506170 | 2566280 | 2806272 | 2806144 | 232632 | |
92 | 26880 | F1 = (1 + 2x) F2 = (1 + 2x)3(1 + 2x3) F3 = (1 + 2x) F4 = (1 + 2x)5(1 + 2x3) F6 = (1 + 2x)6 F12 = (1 + 2x)8 | 12 224 6 | 2647 68122 | 25418 6251218 | 26422 6381266 | 212422 62812126 | 28436 6812132 | 4401272 | 4161216 | |
93 | 8960 R | F1 = (1 + 2x2)(1 + 2x3) F2 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x2)(1 + 2x)3 F6 = (1 + 2x)8 | 25 32 | 12219 34610 | 12240 36658 | 250386166 | 14254 346278 | 2806272 | 2806144 | 232632 | |
94 | 8960 | F1 = (1 + 2x3) F2 = (1 + 2x)3(1 + 2x3) F3 = (1 + 2x)3 F4 = (1 + 2x)5(1 + 2x3) F6 = (1 + 2x)6 F12 = (1 + 2x)8 | 23 32 4 | 2634 4766 122 | 1224 32418 6241218 | 26422 6381266 | 212422 62812126 | 28436 6812132 | 4401272 | 4161216 | |
95 | 8960 | F1 = (1 + 2x2) F2 = (1 + 2x)5(1 + 2x3) F3 = (1 + 2x2) F6 = (1 + 2x)8 | 25 6 | 12219612 | 241661 | 2506170 | 2566280 | 2806272 | 2806144 | 232632 | |
96 | 8960 R | F1 = 1 F2 = (1 + 2x)3(1 + 2x3) F3 = 1 F4 = (1 + 2x)5(1 + 2x3) F6 = (1 + 2x)6 F12 = (1 + 2x)8 | 23 4 6 | 2647 68122 | 25418 6251218 | 26422 6381266 | 212422 62812126 | 28436 6812132 | 4401272 | 4161216 | |
97 | 40,320 R | F1 = (1 + 2x)2(1 + 2x2)(1 + 2x4) F2 = (1 + 2x)4(1 + 2x2)2 F4 = (1 + 2x)8 | 14 22 42 | 16211 421 | 18228496 | 110253 4251 | 18276 4408 | 11227 44408 | 116256 4224 | 116224 448 | |
98 | 40,320 | F1 = (1 + 2x)2(1 + 2x2) F2 = (1 + 2x)4 F4 = (1 + 2x)4 F8 = (1 + 2x)8 | 14 228 | 1629 811 | 18212 852 | 1824 8138 | 8224 | 8224 | 8128 | 832 | |
99 | 80,640 | F1 = (1 + 2x)(1 + 2x2)(1 + 2x4) F2 = (1 + 2x)4(1 + 2x2)2 F4 = (1 + 2x)8 | 12 23 42 | 12213 421 | 14230 496 | 12257 4251 | 14278 4408 | 14278 4408 | 18260 4224 | 232448 | |
100 | 80,640 R | F1 = (1 + 2x)(1 + 2x2) F2 = (1 + 2x)4 F4 = (1 + 2x)4 F8 = (1 + 2x)8 | 12 23 8 | 12211 811 | 14214 852 | 288138 | 8224 | 8224 | 8128 | 832 | |
101 | 40,320 | F1 = (1 + 2x)2(1 + 2x4) F2 = (1 + 2x)2(1 + 2x2)2 F4 = (1 + 2x)8 | 14 43 | 1422 426 | 284108 | 1229 4275 | 1824 4444 | 1824 4444 | 4256 | 464 | |
102 | 40,320 R | F1 = (1 + 2x)2 F2 = (1 + 2x)2 F4 = (1 + 2x)4 F8 = (1 + 2x)8 | 14 4 8 | 1445 811 | 48852 | 448138 | 8224 | 8224 | 8128 | 832 | |
103 | 80,640 R | F1 = (1 + 2x)(1 + 2x4) F2 = (1 + 2x)2(1 + 2x2)2 F4 = (1 + 2x)8 | 12 2 43 | 24426 | 284108 | 1229 4275 | 1426 4444 | 284444 | 4256 | 464 | |
104 | 80,640 | F1 = (1 + 2x) F2 = (1 + 2x)2 F4 = (1 + 2x)4 F8 = (1 + 2x)8 | 12 2 4 8 | 2245 811 | 48852 | 448138 | 8224 | 8224 | 8128 | 832 | |
105 | 40,320 R | F1 = (1 + 2x2)(1 + 2x4) F2 = (1 + 2x)4(1 + 2x2)2 F4 = (1 + 2x)8 | 24 42 | 12213 421 | 232496 | 12257 4251 | 2804408 | 14278 4408 | 2644224 | 232448 | |
106 | 40,320 | F1 = (1 + 2x2) F2 = (1 + 2x)4 F4 = (1 + 2x)4 F8 = (1 + 2x)8 | 24 8 | 12211 811 | 216852 | 288138 | 8224 | 8224 | 8128 | 832 | |
107 | 40,320 | F1 = (1 + 2x4) F2 = (1 + 2x)2(1 + 2x2)2 F4 = (1 + 2x)8 | 22 43 | 24426 | 284108 | 1229 4275 | 284444 | 284444 | 4256 | 464 | |
108 | 40,320 R | F1 = 1 F2 = (1 + 2x)2 F4 = (1 + 2x)4 F8 = (1 + 2x)8 | 22 4 8 | 2245 811 | 48852 | 448138 | 8224 | 8224 | 8128 | 832 | |
109 | 40,320 | F1 = (1 + 2x2)2(1 + 2x4) F2 = (1 + 2x)4(1 + 2x2)2 F4 = (1 + 2x)8 | 24 42 | 14212 421 | 232496 | 16255 4251 | 2804408 | 18276 4408 | 2644224 | 18228 448 | |
110 | 80,640 R | F1 = (1 + 2x2)(1 + 2x4) F2 = (1 + 2x)2(1 + 2x2)2 F4 = (1 + 2x)8 | 22 43 | 1223 426 | 284108 | 1229 4275 | 284444 | 1426 4444 | 4256 | 464 | |
111 | 40,320 R | F1 = (1 + 2x2)2 F2 = (1 + 2x)4 F4 = (1 + 2x)4 F8 = (1 + 2x)8 | 24 8 | 14210 811 | 216852 | 1426 8138 | 8224 | 8224 | 8128 | 832 | |
112 | 80,640 | F1 = (1 + 2x2) F2 = (1 + 2x)2 F4 = (1 + 2x)4 F8 = (1 + 2x)8 | 22 4 8 | 122 45811 | 48852 | 448138 | 8224 | 8224 | 8128 | 832 | |
113 | 40,320 | F1 = (1 + 2x4) F2 = (1 + 2x2)2 F4 = (1 + 2x)8 | 44 | 22427 | 4112 | 122 4279 | 4448 | 4448 | 4256 | 464 | |
114 | 40,320 R | F1 = 1 F2 = 1 F4 = (1 + 2x)4 F8 = (1 + 2x)8 | 428 | 46811 | 48852 | 448138 | 8224 | 8224 | 8128 | 832 | |
115 | 1680 R | F1 = (1 + 2x2)4 F2 = (1 + 2x)8 | 28 | 18252 | 2224 | 1242548 | 2896 | 1322880 | 2512 | 1162120 | |
116 | 6720 | F1 = (1 + 2x2)3 F2 = (1 + 2x)6 F4 = (1 + 2x)8 | 264 | 16227 413 | 280472 | 1122114 4220 | 2964400 | 18228 4432 | 4256 | 464 | |
117 | 10,080 R | F1 = (1 + 2x2)2 F2 = (1 + 2x)4 F4 = (1 + 2x)8 | 24 42 | 14210 422 | 2164104 | 1426 4276 | 4448 | 4448 | 4256 | 464 | |
118 | 6720 | F1 = (1 + 2x2) F2 = (1 + 2x)2 F4 = (1 + 2x)8 | 22 43 | 122 427 | 4112 | 4280 | 4448 | 4448 | 4256 | 464 | |
119 | 1680 R | F1 = 1 F2 = 1 F4 = (1 + 2x)8 | 44 | 428 | 4112 | 4280 | 4448 | 4448 | 4256 | 464 | |
120 | 17,920 R | F1 = (1 + 2x)2(1 + 2x3)2 F3 = (1 + 2x)8 | 14 34 | 14336 | 143148 | 1163368 | 1163592 | 143596 | 1163336 | 116380 | |
121 | 35,840 | F1 = (1 + 2x)2(1 + 2x3) F2 = (1 + 2x)2(1 + 2x3)2 F3 = (1 + 2x)5 F6 = (1 + 2x)8 | 14 326 | 14312 612 | 122 326661 | 1824 3246172 | 1824 386292 | 226298 | 286168 | 28640 | |
122 | 17,920 R | F1 = (1 + 2x)2 F2 = (1 + 2x)2(1 + 2x3)2 F3 = (1 + 2x)2 F6 = (1 + 2x)8 | 14 62 | 14618 | 22674 | 286184 | 286296 | 226298 | 286168 | 28640 | |
123 | 35,840 | F1 = (1 + 2x)(1 + 2x3)2 F2 = (1 + 2x)2(1 + 2x3)2 F3 = (1 + 2x)7 F6 = (1 + 2x)8 | 12 2 34 | 22328 64 | 14392 628 | 1824 3184692 | 283224 6184 | 143148 6224 | 1824 3406148 | 28640 | |
124 | 71,680 R | F1 = (1 + 2x)(1 + 2x3) F2 = (1 + 2x)2(1 + 2x3)2 F3 = (1 + 2x)4 F6 = (1 + 2x)8 | 12 2 326 | 2238 614 | 122 310669 | 1426 346182 | 286296 | 226298 | 286168 | 28640 | |
125 | 35,840 | F1 = (1 + 2x) F2 = (1 + 2x)2(1 + 2x3)2 F3 = (1 + 2x) F6 = (1 + 2x)8 | 12 2 62 | 22618 | 22674 | 286184 | 286296 | 226298 | 286168 | 28640 | |
126 | 17,920 R | F1 = (1 + 2x3)2 F2 = (1 + 2x)2(1 + 2x3)2 F3 = (1 + 2x)6 F6 = (1 + 2x)8 | 22 34 | 22320 68 | 14352 648 | 28380 6144 | 28364 6264 | 14320 6288 | 286168 | 28640 | |
127 | 35,840 | F1 = (1 + 2x3) F2 = (1 + 2x)2(1 + 2x3)2 F3 = (1 + 2x)3 F6 = (1 + 2x)8 | 22 326 | 2234 616 | 122 32673 | 286184 | 286296 | 226298 | 286168 | 28640 | |
128 | 17,920 R | F1 = 1 F2 = (1 + 2x)2(1 + 2x3)2 F3 = 1 F6 = (1 + 2x)8 | 22 62 | 22618 | 22674 | 286184 | 286296 | 226298 | 286168 | 28640 | |
129 | 35,840 | F1 = (1 + 2x2)(1 + 2x3)2 F2 = (1 + 2x)2(1 + 2x3)2 F3 = (1 + 2x2)(1 + 2x)6 F6 = (1 + 2x)8 | 22 34 | 122 32068 | 14360 644 | 283120 6124 | 1824 31686212 | 143180 6208 | 283128 6104 | 1824 340620 | |
130 | 71,680 R | F1 = (1 + 2x2)(1 + 2x3) F2 = (1 + 2x)2(1 + 2x3)2 F3 = (1 + 2x2)(1 + 2x)3 F6 = (1 + 2x)8 | 22 326 | 122 34616 | 122 36671 | 2838 6180 | 1426 346294 | 226298 | 286168 | 28640 | |
131 | 35,840 | F1 = (1 + 2x2) F2 = (1 + 2x)2(1 + 2x3)2 F3 = (1 + 2x2) F6 = (1 + 2x)8 | 2262 | 122 618 | 22674 | 286184 | 286296 | 226298 | 286168 | 28640 | |
132 | 35,840 R | F1 = (1 + 2x3)2 F2 = (1 + 2x3)2 F3 = (1 + 2x)6 F4 = (1 + 2x)2(1 + 2x3)2 F6 = (1 + 2x)6 F12 = (1 + 2x)8 | 34 4 | 3204 124 | 14352 1224 | 38044 1272 | 36444 12132 | 14320 12144 | 441284 | 441220 | |
133 | 71,680 | F1 = (1 + 2x3) F2 = (1 + 2x3)2 F3 = (1 + 2x)3 F4 = (1 + 2x)2(1 + 2x3)2 F6 = (1 + 2x)6 F12 = (1 + 2x)8 | 32 4 6 | 344 68124 | 122 326251224 | 44640 1272 | 44632 12132 | 22610 12144 | 441284 | 441220 | |
134 | 35,840 R | F1 = 1 F2 = (1 + 2x3)2 F3 = 1 F4 = (1 + 2x)2(1 + 2x3)2 F6 = (1 + 2x)6 F12 = (1 + 2x)8 | 4 62 | 4 610124 | 22626 1224 | 44640 1272 | 44632 12132 | 22610 12144 | 441284 | 441220 | |
135 | 3360 | F1 = (1 + 2x)2(1 + 2x2)3 F2 = (1 + 2x)8 | 14 26 | 110251 | 1242212 | 1362542 | 1482872 | 1562868 | 1322496 | 1322112 | |
136 | 10,080 R | F1 = (1 + 2x)2(1 + 2x2)2 F2 = (1 + 2x)6 F4 = (1 + 2x)8 | 14 24 4 | 18226 413 | 116272 472 | 1202110 4220 | 116288 4400 | 116224 4432 | 4256 | 464 | |
137 | 10,080 | F1 = (1 + 2x)2(1 + 2x2) F2 = (1 + 2x)4 F4 = (1 + 2x)8 | 14 22 42 | 1629 422 | 18212 4104 | 1824 4276 | 4448 | 4448 | 4256 | 464 | |
138 | 6720 R | F1 = (1 + 2x)(1 + 2x2)3 F2 = (1 + 2x)8 | 12 27 | 16253 | 1122218 | 1122554 | 1242884 | 182892 | 1162504 | 2128 | |
139 | 20,160 | F1 = (1 + 2x)(1 + 2x2)2 F2 = (1 + 2x)6 F4 = (1 + 2x)8 | 12 25 4 | 14228 413 | 18276 472 | 142118 4220 | 18292 4400 | 2324432 | 4256 | 464 | |
140 | 20,160 R | F1 = (1 + 2x)(1 + 2x2) F2 = (1 + 2x)4 F4 = (1 + 2x)8 | 12 23 42 | 12211 422 | 14214 4104 | 284276 | 4448 | 4448 | 4256 | 464 | |
141 | 3360 R | F1 = (1 + 2x)2 F2 = (1 + 2x)2 F4 = (1 + 2x)8 | 14 43 | 14427 | 4112 | 4280 | 4448 | 4448 | 4256 | 464 | |
142 | 6720 | F1 = (1 + 2x) F2 = (1 + 2x)2 F4 = (1 + 2x)8 | 12 2 43 | 22427 | 4112 | 4280 | 4448 | 4448 | 4256 | 464 | |
143 | 3360 | F1 = (1 + 2x2)3 F2 = (1 + 2x)8 | 28 | 16253 | 2224 | 1122554 | 2896 | 182892 | 2512 | 2128 | |
144 | 10,080 R | F1 = (1 + 2x2)2 F2 = (1 + 2x)6 F4 = (1 + 2x)8 | 26 4 | 14228 413 | 280472 | 142118 4220 | 2964400 | 2324432 | 4256 | 464 | |
145 | 10,080 | F1 = (1 + 2x2) F2 = (1 + 2x)4 F4 = (1 + 2x)8 | 24 42 | 12211 422 | 2164104 | 284276 | 4448 | 4448 | 4256 | 464 | |
146 | 3360 R | F1 = 1 F2 = (1 + 2x)2 F4 = (1 + 2x)8 | 22 43 | 22427 | 4112 | 4280 | 4448 | 4448 | 4256 | 464 | |
147 | 102,520 | F1 = (1 + 2x)2(1 + 2x6) F2 = (1 + 2x)2(1 + 2x3)2 F3 = (1 + 2x)2(1 + 2x2)3 F6 = (1 + 2x)8 | 14 62 | 1432 617 | 2238 670 | 28312 6178 | 28316 6288 | 122 3186289 | 1824 386164 | 1824 38636 | |
148 | 102,520 R | F1 = (1 + 2x)2 F2 = (1 + 2x)2 F3 = (1 + 2x)2 F4 = (1 + 2x)2(1 + 2x3)2 F6 = (1 + 2x)2 F12 = (1 + 2x)8 | 14 12 | 14129 | 4 1237 | 441292 | 4412148 | 4 12149 | 441284 | 441220 | |
149 | 205,040 R | F1 = (1 + 2x)(1 + 2x6) F2 = (1 + 2x)2(1 + 2x3)2 F3 = (1 + 2x)(1 + 2x2)3 F6 = (1 + 2x)8 | 12 2 62 | 2232 617 | 2234 672 | 2834 6182 | 2838 6292 | 122 326297 | 1426 346166 | 28640 | |
150 | 205,040 | F1 = (1 + 2x) F2 = (1 + 2x)2 F3 = (1 + 2x) F4 = (1 + 2x)2(1 + 2x3)2 F6 = (1 + 2x)2 F12 = (1 + 2x)8 | 12 2 12 | 22129 | 4 1237 | 441292 | 4412148 | 4 12149 | 441284 | 441220 | |
151 | 102,520 | F1 = (1 + 2x6) F2 = (1 + 2x)2(1 + 2x3)2 F3 = (1 + 2x2)3 F6 = (1 + 2x)8 | 22 62 | 2232 617 | 22674 | 2834 6182 | 286296 | 122 326297 | 286168 | 28640 | |
152 | 102,520 R | F1 = 1 F2 = (1 + 2x)2 F3 = 1 F4 = (1 + 2x)2(1 + 2x3)2 F6 = (1 + 2x)2 F12 = (1 + 2x)8 | 22 12 | 22129 | 4 1237 | 441292 | 4412148 | 4 12149 | 441284 | 441220 | |
153 | 215,040 R | F1 = (1 + 2x2)(1 + 2x6) F2 = (1 + 2x)2(1 + 2x3)2 F3 = (1 + 2x2)4 F6 = (1 + 2x)8 | 22 62 | 122 32617 | 22674 | 2838 6180 | 286296 | 122 3106293 | 286168 | 1426 34638 | |
154 | 215,040 | F1 = (1 + 2x2) F2 = (1 + 2x)2 F3 = (1 + 2x2) F4 = (1 + 2x)2(1 + 2x3)2 F6 = (1 + 2x)2 F12 = (1 + 2x)8 | 22 12 | 122 129 | 4 1237 | 441292 | 4412148 | 4 12149 | 441284 | 441220 | |
155 | 215,040 | F1 = (1 + 2x6) F2 = (1 + 2x3)2 F3 = (1 + 2x2)3 F4 = (1 + 2x)2(1 + 2x3)2 F6 = (1 + 2x)6 F12 = (1 + 2x)8 | 4 62 | 324 69124 | 22626 1224 | 3444 6381272 | 44632 12132 | 12232 6912144 | 441284 | 441220 | |
156 | 215,040 R | F1 = 1 F2 = 1 F3 = 1 F4 = (1 + 2x)2(1 + 2x3)2 F6 = 1 F12 = (1 + 2x)8 | 4 12 | 4 129 | 4 1237 | 441292 | 4412148 | 4 12149 | 441284 | 441220 | |
157 | 80,640 R | F1 = (1 + 2x4)2 F2 = (1 + 2x2)4 F4 = (1 + 2x)8 | 44 | 24426 | 4112 | 14210 4274 | 4448 | 2164440 | 4256 | 1426 460 | |
158 | 161,280 | F1 = (1 + 2x4) F2 = (1 + 2x2)2 F4 = (1 + 2x)4 F8 = (1 + 2x)8 | 42 8 | 2245 811 | 48852 | 122 438138 | 8224 | 8224 | 8128 | 832 | |
159 | 80,640 R | F1 = 1 F2 = 1 F4 = 1 F8 = (1 + 2x)8 | 82 | 814 | 856 | 8140 | 8224 | 8224 | 8128 | 832 | |
160 | 21,504 R | F1 = (1 + 2x)3(1 + 2x5) F5 = (1 + 2x)8 | 16 52 | 112520 | 18588 | 5224 | 125358 | 1125356 | 1245200 | 116548 | |
161 | 64,512 | F1 = (1 + 2x)2(1 + 2x5) F2 = (1 + 2x)3(1 + 2x5) F5 = (1 + 2x)7 F10 = (1 + 2x)8 | 14 2 52 | 1424 516102 | 24556 1016 | 5112 1056 | 125134 10112 | 1822 58810134 | 1828 5241088 | 281024 | |
162 | 21,504 | F1 = (1 + 2x)3 F2 = (1 + 2x)3(1 + 2x5) F5 = (1 + 2x)3 F10 = (1 + 2x)8 | 16 10 | 1121010 | 181044 | 10112 | 2 10179 | 2610178 | 212 10100 | 281024 | |
163 | 64,512 R | F1 = (1 + 2x)2 F2 = (1 + 2x)3(1 + 2x5) F5 = (1 + 2x)2 F10 = (1 + 2x)8 | 14 2 10 | 1424 1010 | 241044 | 10112 | 2 10179 | 2610178 | 212 10100 | 281024 | |
164 | 64,512 R | F1 = (1 + 2x)(1 + 2x5) F2 = (1 + 2x)3(1 + 2x5) F5 = (1 + 2x)6 F10 = (1 + 2x)8 | 12 22 52 | 26512 104 | 24532 1028 | 5481088 | 12538 10160 | 1424 51210172 | 21210100 | 281024 | |
165 | 64,512 | F1 = (1 + 2x) F2 = (1 + 2x)3(1 + 2x5) F5 = (1 + 2x) F10 = (1 + 2x)8 | 12 22 10 | 261010 | 241044 | 10112 | 2 10179 | 2610178 | 212 10100 | 281024 | |
166 | 21,504 | F1 = (1 + 2x5) F2 = (1 + 2x)3(1 + 2x5) F5 = (1 + 2x)5 F10 = (1 + 2x)8 | 23 52 | 2658 106 | 24516 1036 | 51610104 | 1256 10176 | 2610178 | 21210100 | 281024 | |
167 | 64,512 R | F1 = 1 F2 = (1 + 2x)3(1 + 2x5) F5 = 1 F10 = (1 + 2x)8 | 23 10 | 261010 | 241044 | 10112 | 2 10179 | 2610178 | 21210100 | 281024 | |
168 | 129,024 | F1 = (1 + 2x)(1 + 2x2)(1 + 2x5) F2 = (1 + 2x)3(1 + 2x5) F5 = (1 + 2x)6(1 + 2x2) F10 = (1 + 2x)8 | 12 22 52 | 1225 512104 | 1422 5361026 | 5721076 | 125102 10128 | 1424 5108 10124 | 14210 5761062 | 1824 5241012 | |
169 | 129,024 R | F1 = (1 + 2x)(1 + 2x5) F2 = (1 + 2x)(1 + 2x5) F4 = (1 + 2x)3(1 + 2x5) F5 = (1 + 2x)6 F10 = (1 + 2x)6 F20 = (1 + 2x)8 | 12 4 52 | 43512 202 | 42532 2014 | 5482044 | 12538 2080 | 1442 512 2086 | 462050 | 442012 | |
170 | 129,024 R | F1 = (1 + 2x)(1 + 2x2) F2 = (1 + 2x)3(1 + 2x5) F5 = (1 + 2x)(1 + 2x2) F10 = (1 + 2x)8 | 12 22 10 | 1225 1010 | 1422 1044 | 10112 | 2 10179 | 26 10178 | 212 10100 | 281024 | |
171 | 129,024 | F1 = (1 + 2x) F2 = (1 + 2x)(1 + 2x5) F4 = (1 + 2x)3(1 + 2x5) F5 = (1 + 2x) F10 = (1 + 2x)6 F20 = (1 + 2x)8 | 12 4 10 | 43106 202 | 421016 2014 | 10242044 | 2 10192080 | 2242 1062086 | 462050 | 442012 | |
172 | 129,024 R | F1 = (1 + 2x2)(1 + 2x5) F2 = (1 + 2x)3(1 + 2x5) F5 = (1 + 2x2)(1 + 2x)5 F10 = (1 + 2x)8 | 23 52 | 1225 58106 | 24520 1034 | 5321096 | 12538 10160 | 26532 10162 | 14210 5121094 | 281024 | |
173 | 129,024 | F1 = (1 + 2x5) F2 = (1 + 2x)(1 + 2x5) F4 = (1 + 2x)3(1 + 2x5) F5 = (1 + 2x)5 F10 = (1 + 2x)6 F20 = (1 + 2x)8 | 2 4 52 | 4358 102202 | 42516 1082014 | 5161016 2044 | 1256 10162080 | 2242 1062086 | 462050 | 442012 | |
174 | 129,024 | F1 = (1 + 2x2) F2 = (1 + 2x)3(1 + 2x5) F5 = (1 + 2x2) F10 = (1 + 2x)8 | 23 10 | 1225 1010 | 241044 | 10112 | 2 10179 | 2610178 | 212 10100 | 281024 | |
175 | 129,024 R | F1 = 1 F2 = (1 + 2x)(1 + 2x5) F4 = (1 + 2x)3(1 + 2x5) F5 = 1 F10 = (1 + 2x)6 F20 = (1 + 2x)8 | 2 4 10 | 43106 202 | 421016 2014 | 10242044 | 2 10192080 | 2242 1062086 | 462050 | 442012 | |
176 | 368,640 R | F1 = (1 + 2x)(1 + 2x7) F7 = (1 + 2x)8 | 12 72 | 716 | 764 | 7160 | 7256 | 7256 | 127146 | 14736 | |
177 | 368,640 | F1 = (1 + 2x) F2 = (1 + 2x)(1 + 2x7) F7 = (1 + 2x) F14 = (1 + 2x)8 | 12 14 | 148 | 1432 | 1480 | 14128 | 14128 | 2 1473 | 221418 | |
178 | 368,640 R | F1 = (1 + 2x7) F2 = (1 + 2x)(1 + 2x7) F7 = (1 + 2x)7 F14 = (1 + 2x)8 | 2 72 | 712142 | 7401412 | 7801440 | 7961480 | 7641496 | 12718 1464 | 221418 | |
179 | 368,640 | F1 = 1 F2 = (1 + 2x)(1 + 2x7) F7 = 1 F14 = (1 + 2x)8 | 2 14 | 148 | 1432 | 1480 | 14128 | 14128 | 2 1473 | 221418 | |
180 | 64,5120 | F1 = (1 + 2x8) F2 = (1 + 2x4)2 F4 = (1 + 2x2)4 F8 = (1 + 2x)8 | 82 | 42813 | 856 | 2245 8137 | 8224 | 488220 | 8128 | 122 43830 | |
181 | 64,5120 R | F1 = 1 F2 = 1 F4 = 1 F8 = 1 F16 = (1 + 2x)8 | 16 | 167 | 1628 | 1670 | 16112 | 16112 | 1664 | 1616 | |
182 | 172,032 R | F1 = (1 + 2x3)(1 + 2x5) F3 = (1 + 2x)3(1 + 2x5) F5 = (1 + 2x3)(1 + 2x)5 F15 = (1 + 2x)8 | 32 52 | 3458 154 | 1232 5161524 | 5201568 | 12522 15112 | 34532 15108 | 38532 1556 | 1434 5121512 | |
183 | 172,032 | F1 = (1 + 2x3) F2 = (1 + 2x3)(1 + 2x5) F3 = (1 + 2x)3 F5 = (1 + 2x3) F6 = (1 + 2x)3(1 + 2x5) F10 = (1 + 2x3)(1 + 2x)5 F15 = (1 + 2x)3 F30 = (1 + 2x)8 | 32 10 | 34104 302 | 1232 1083012 | 10103034 | 2 10113056 | 62 10163054 | 64 10163028 | 2262 106306 | |
184 | 172,032 | F1 = (1 + 2x5) F2 = (1 + 2x3)(1 + 2x5) F3 = (1 + 2x5) F5 = (1 + 2x)5 F6 = (1 + 2x)3(1 + 2x5) F10 = (1 + 2x3)(1 + 2x)5 F15 = (1 + 2x)5 F30 = (1 + 2x)8 | 52 6 | 5862 302 | 2 516 6 3012 | 516102 3034 | 1256 108 3056 | 62 1016 3054 | 641016 3028 | 2262 106306 | |
185 | 172,032 R | F1 = 1 F2 = (1 + 2x3)(1 + 2x5) F3 = 1 F5 = 1 F6 = (1 + 2x)3(1 + 2x5) F10 = (1 + 2x3)(1 + 2x)5 F15 = 1 F30 = (1 + 2x)8 | 6 10 | 62 104302 | 2 6 1083012 | 10103034 | 2 1011 3056 | 62 10163054 | 641016 3028 | 2262 106306 |
[λ] | N(A1) | N(A3) | N(A4) | N(A5) | N(A7) | N(A8) | N(A9) | N(A10) |
---|---|---|---|---|---|---|---|---|
16 0 0 0 | 1 | 0 | 0 | |||||
15 1 0 0 | 1 | 1 | 1 | |||||
14 2 0 0 | 2 | 2 | 1 | |||||
13 3 0 0 | 2 | 3 | 2 | |||||
12 4 0 0 | 3 | 4 | 2 | |||||
11 5 0 0 | 3 | 5 | 3 | |||||
10 6 0 0 | 4 | 6 | 3 | |||||
9 7 0 0 | 4 | 7 | 4 | |||||
8 8 0 0 | 5 | 1 | 7 | 4 | ||||
14 1 1 0 | 2 | 3 | 3 | |||||
13 2 1 0 | 3 | 6 | 5 | |||||
12 3 1 0 | 4 | 9 | 7 | |||||
11 4 1 0 | 5 | 12 | 9 | |||||
10 5 1 0 | 6 | 15 | 11 | |||||
9 6 1 0 | 7 | 18 | 13 | |||||
8 7 1 0 | 8 | 1 | 1 | 20 | 15 | |||
12 2 2 0 | 6 | 12 | 8 | |||||
11 3 2 0 | 7 | 18 | 13 | |||||
10 4 2 0 | 10 | 25 | 16 | |||||
9 5 2 0 | 11 | 31 | 21 | |||||
8 6 2 0 | 14 | 1 | 1 | 37 | 24 | |||
7 7 2 0 | 14 | 1 | 2 | 39 | 27 | |||
10 3 3 0 | 10 | 28 | 20 | |||||
9 4 3 0 | 13 | 39 | 27 | |||||
8 5 3 0 | 16 | 1 | 1 | 49 | 34 | |||
7 6 3 0 | 18 | 1 | 1 | 56 | 39 | |||
8 4 4 0 | 19 | 1 | 1 | 55 | 36 | |||
7 5 4 0 | 21 | 1 | 2 | 67 | 46 | |||
6 6 4 0 | 24 | 1 | 2 | 73 | 48 | |||
6 5 5 0 | 24 | 1 | 2 | 78 | 54 | |||
13 1 1 1 | 4 | 9 | 9 | |||||
12 2 1 1 | 7 | 18 | 16 | |||||
11 3 1 1 | 9 | 27 | 23 | |||||
10 4 1 1 | 12 | 37 | 30 | |||||
9 5 1 1 | 14 | 46 | 37 | |||||
8 6 1 1 | 17 | 1 | 2 | 55 | 44 | |||
7 7 1 1 | 18 | 3 | 5 | 58 | 48 | |||
11 2 2 1 | 12 | 36 | 30 | |||||
10 3 2 1 | 17 | 56 | 45 | |||||
9 4 2 1 | 22 | 77 | 60 | |||||
8 5 2 1 | 27 | 1 | 2 | 97 | 75 | |||
7 6 2 1 | 31 | 3 | 7 | 111 | 87 | |||
9 3 3 1 | 24 | 88 | 70 | |||||
8 4 3 1 | 33 | 1 | 2 | 124 | 96 | |||
7 5 3 1 | 39 | 3 | 7 | 152 | 119 | |||
6 6 3 1 | 43 | 3 | 9 | 166 | 129 | |||
7 4 4 1 | 44 | 3 | 7 | 171 | 1 | 132 | ||
6 5 4 1 | 51 | 3 | 9 | 202 | 2 | 1 | 156 | |
5 5 5 1 | 54 | 3 | 9 | 219 | 3 | 3 | 171 | |
10 2 2 2 | 24 | 75 | 57 | |||||
9 3 2 2 | 32 | 117 | 91 | |||||
8 4 2 2 | 45 | 1 | 2 | 165 | 122 | |||
7 5 2 2 | 52 | 3 | 9 | 202 | 1 | 154 | ||
6 6 2 2 | 59 | 6 | 15 | 221 | 1 | 1 | 166 | |
8 3 3 2 | 48 | 1 | 2 | 189 | 146 | |||
7 4 3 2 | 64 | 3 | 9 | 262 | 2 | 201 | ||
6 5 3 2 | 75 | 6 | 18 | 311 | 5 | 3 | 240 | |
6 4 4 2 | 87 | 6 | 18 | 354 | 9 | 5 | 266 | |
5 5 4 2 | 91 | 6 | 1 | 21 | 386 | 14 | 10 | 297 |
7 3 3 3 | 71 | 3 | 9 | 303 | 2 | 237 | ||
6 4 3 3 | 95 | 6 | 21 | 411 | 11 | 6 | 319 | |
5 5 3 3 | 102 | 10 | 1 | 30 | 450 | 17 | 14 | 354 |
5 4 4 3 | 117 | 10 | 2 | 34 | 516 | 28 | 20 | 402 |
4 4 4 4 | 138 | 15 | 3 | 45 | 594 | 43 | 30 | 456 |
n1 | N(A1) | N(A2) | N(A3) | N(A4) |
---|---|---|---|---|
0 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 |
2 | 8 | 0 | 4 | 0 |
3 | 32 | 0 | 32 | 0 |
4 | 373 | 1 | 313 | 1 |
5 | 4647 | 119 | 4647 | 119 |
6 | 91028 | 13908 | 89722 | 13852 |
7 | 2074059 | 794855 | 2074059 | 794855 |
8 | 51107344 | 31177061 | 51073158 | 31174193 |
9 | 1245930065 | 965191516 | 1245930065 | 965191516 |
10 | 28900653074 | 25308942504 | 28899849712 | 25308861906 |
11 | 625715497344 | 583809974962 | 625715497344 | 583809974962 |
12 | 12562875567065 | 12113697810612 | 12562859327210 | 12113696094241 |
13 | 233750783834504 | 229300148849871 | 233750783834504 | 229300148849871 |
14 | 4038807303045625 | 3997804386459912 | 4038807021195271 | 3997804356178806 |
15 | 65003434860142353 | 64650435886116058 | 65003434860142353 | 64650435886116058 |
16 | 977872935273906860 | 975020351847385105 | 977872931016186973 | 975020351387480625 |
17 | 13795944871933252078 | 13774222202187964657 | 13795944871933252078 | 13774222202187964657 |
18 | 183113271146620771933 | 182956842576531615461 | 183113271089874321619 | 182956842570390661781 |
19 | 2293288191579045041618 | 2292219628052032359534 | 2293288191579045041618 | 2292219628052032359534 |
20 | 27172601104679810308230 | 27165657543252057055741 | 27172601104004619255357 | 27165657543178941093106 |
21 | 305350757901312578538505 | 305307729144669187569341 | 305350757901312578538505 | 305307729144669187569341 |
22 | 3261598821371763396803511 | 3261343947923445791656883 | 3261598821364520795113233 | 3261343947922661301616505 |
23 | 33182648967085223933532504 | 33181202911152729471133510 | 33182648967085223933532504 | 33181202911152729471133510 |
24 | 322145133157474420333016643 | 322137259656650456105184415 | 322145133157403806248865438 | 322137259656642806740494424 |
25 | 2989490904329310130221003214 | 2989449691542891602751761316 | 2989490904329310130221003214 | 2989449691542891602751761316 |
26 | 26560397643022444157021925451 | 26560189924181869244434933109 | 26560397643021814066608055393 | 26560189924181800986480480083 |
27 | 226254859185460885384656777972 | 226253849597184975434171952862 | 226254859185460885384656777972 | 226253849597184975434171952862 |
28 | 1850439767413213381676300410605 | 1850435028989367701109667239854 | 1850439767413208205948337138938 | 1850435028989367140412294430685 |
n1 | N(A1) | N(A2) | N(A3) | N(A4) |
---|---|---|---|---|
0 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
2 | 14 | 0 | 4 | 0 |
3 | 216 | 0 | 153 | 0 |
4 | 13143 | 1285 | 12071 | 1274 |
5 | 1368944 | 579841 | 1357322 | 579593 |
6 | 179718686 | 129821262 | 179515891 | 129822963 |
7 | 23649956067 | 20897467555 | 23647435977 | 20897539088 |
8 | 2893910524721 | 2760276878890 | 2893871387345 | 2760280157691 |
9 | 321959734753775 | 316179169443213 | 321959246156199 | 316179239889735 |
10 | 32497054656052201 | 32271572199062564 | 32497047828556262 | 32271573699877343 |
11 | 2989231824380170346 | 2981221656585795852 | 2989231740547005833 | 2981221682328226491 |
12 | 252133297490831881715 | 251871989699732625444 | 252133296410532691241 | 251871990120247195309 |
13 | 19621374682741244060254 | 19613492123348498937956 | 19621374669883641851551 | 19613492129491101473396 |
14 | 1416769496997564229002044 | 1416548308266662098844372 | 1416769496843104025248968 | 1416548308351788104311581 |
15 | 95391267226534335414344124 | 95385464119630857035122481 | 95391267224778314580202835 | 95385464120726678222923561 |
16 | 6015500298569544153993662343 | 6015357312352442891027589816 | 6015500298549822020138555174 | 6015357312365881101185952048 |
17 | 356681204098702555735994657211 | 356677882377176721030402271213 | 356681204098490475804398300875 | 356677882377332607124361022833 |
18 | 19954275394810936617446090999298 | 19954202386450506779938248001657 | 19954275394808706716919606533385 | 19954202386452238537914701133372 |
n1 | N(A1) | N(A2) | N(A3) | N(A4) |
---|---|---|---|---|
0 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
2 | 17 | 0 | 3 | 0 |
3 | 502 | 8 | 325 | 16 |
4 | 71333 | 24354 | 63612 | 25469 |
5 | 17405405 | 12681606 | 17036302 | 12854742 |
6 | 4637637972 | 4212888299 | 4615175164 | 4228812207 |
7 | 1144154282643 | 1111013093508 | 1142833213165 | 1112152780844 |
8 | 252694411554530 | 250418661767733 | 252621360494651 | 250486917059594 |
9 | 49933006129016491 | 49793580872480751 | 49929316161439255 | 49797157352752701 |
10 | 8894464990395578492 | 8886752121307484548 | 8894294667459034186 | 8886919926687320706 |
11 | 1440472783586317238393 | 1440083733481783945901 | 1440465574963715354994 | 1440090890477948652349 |
12 | 213770312441853780512224 | 213752271869558123835303 | 213770031051943657246139 | 213752552262354430991274 |
13 | 29269240908200356802347666 | 29268466577556962305262111 | 29269230719024210548536477 | 29268476748627548133819831 |
14 | 3719250527778112615739134335 | 3719219584194378214567008273 | 3719250183675186524528404499 | 3719219927985383328745758341 |
15 | 440853907156944454398222081566 | 440852750059160355141914968142 | 440853896266243008648327879143 | 440852760944756455945032626186 |
16 | 48962293141051882905412809207021 | 48962252475152977331838347830739 | 48962292816629300670347138945445 | 48962252799495751305458642354391 |
n1 | N(A1) | N(A2) | N(A3) | N(A4) |
---|---|---|---|---|
0 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
2 | 17 | 0 | 2 | 0 |
3 | 520 | 12 | 197 | 31 |
4 | 73190 | 23955 | 51521 | 33050 |
5 | 17658730 | 12519173 | 15593690 | 14108134 |
6 | 4670541393 | 4184082830 | 4460002235 | 4377662001 |
7 | 1147944547821 | 1107379772627 | 1128227990017 | 1126561130037 |
8 | 253070289097552 | 250047877926328 | 251418412879773 | 251684384321815 |
9 | 49965338520426373 | 49761394798932364 | 49841404217974456 | 49884926827502047 |
10 | 8896911981316427886 | 8884308904139556609 | 8888517541896747821 | 8892693620617688255 |
11 | 1440638022063010631910 | 1439918584060756071731 | 1440120252561468192126 | 1440436135220492411513 |
12 | 213780388559484507191771 | 213742197694885298807844 | 213751077431815470552985 | 213771504232215034965055 |
13 | 29269801356205901555855379 | 29267906169133085641583032 | 29268268014083092931288337 | 29269439420444435412633656 |
14 | 3719279200778578000458180353 | 3719190911951887456836672038 | 3719204640030812101745972736 | 3719265471000672398359114098 |
15 | 440855265990629080980664890644 | 440851391239200521016160622915 | 440851878646143680714866519271 | 440854778553508389820473453710 |
16 | 48962353150087477418358489750594 | 48962192466353422956421447365043 | 48962208733183359241696473980451 | 48962336882746820615764869368554 |
n1 | N(A1) | N(A2) | N(A3) | N(A4) |
---|---|---|---|---|
0 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
2 | 14 | 0 | 1 | 0 |
3 | 271 | 0 | 44 | 10 |
4 | 18436 | 1755 | 6563 | 5422 |
5 | 2193367 | 878552 | 1310579 | 1462703 |
6 | 316843509 | 215441296 | 244997541 | 277130468 |
7 | 45385903112 | 38264656379 | 39915467721 | 43430408845 |
8 | 6032761198299 | 5577971407013 | 5656630241981 | 5945904368147 |
9 | 730228248478031 | 703689117001293 | 706979787447992 | 726738931053597 |
10 | 80357795001409842 | 78935801832625872 | 79059004752041424 | 80230215709062022 |
11 | 8072061169923281815 | 8001805117194789623 | 8005990292904955004 | 8067787788823615438 |
12 | 744350299080496007833 | 741136858948772220225 | 741267190289028028069 | 744218331077926971583 |
13 | 63372848789530529909508 | 63236254250272123668115 | 63240005325330608561992 | 63369069612560717297062 |
14 | 5008288556152866356535055 | 5002872178636514348211030 | 5002972617541373275912117 | 5008187668616345917852635 |
15 | 369178651343422851704804726 | 368977568670922245142254944 | 368980084480516795405801544 | 369176128846755941869855695 |
16 | 25492963441401967651387305634 | 25485950009552151553394643036 | 25486009235978749090972053270 | 25492904121555310159685722022 |
n1 | N(A1) | N(A2) | N(A3) | N(A4) |
---|---|---|---|---|
0 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
2 | 9 | 0 | 0 | 0 |
3 | 83 | 0 | 1 | 0 |
4 | 1752 | 3 | 117 | 63 |
5 | 53631 | 2959 | 9571 | 13129 |
6 | 2206678 | 478390 | 765645 | 1186490 |
7 | 100831126 | 43280345 | 52757897 | 76988844 |
8 | 4655630517 | 2869803113 | 3126093034 | 4145344517 |
9 | 206159944002 | 155185722872 | 161095026870 | 196198260213 |
10 | 8552744534853 | 7214285370452 | 7333825654985 | 8374506027325 |
11 | 329462356516427 | 297042684545365 | 299205065844492 | 326523850764241 |
12 | 11762768558587306 | 11035832262497428 | 11071306010739393 | 11717875989405083 |
13 | 389788558944470907 | 374644306545546766 | 375177718301384463 | 389149723370338717 |
14 | 12022008920943629364 | 11727821396700243253 | 11735235648893519051 | 12013501431327418719 |
15 | 346243083080541945354 | 340895758256810378725 | 340991677499412431387 | 346136617589280701403 |
16 | 9343358594200843070436 | 9252109766228033928271 | 9253271398670725746098 | 9342101964148242810759 |
17 | 237003980460152929758378 | 235537560933998269545497 | 235550794325997486640218 | 236989945316393042010695 |
18 | 5668492308224642598946637 | 5646233383620513247159980 | 5646375791809126585493380 | 5668343540316085225671505 |
n1 | N(A1) | N(A2) | N(A3) | N(A4) |
---|---|---|---|---|
0 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
2 | 5 | 0 | 0 | 0 |
3 | 19 | 0 | 0 | 0 |
4 | 97 | 0 | 1 | 0 |
5 | 523 | 0 | 7 | 0 |
6 | 3364 | 12 | 113 | 100 |
7 | 23495 | 468 | 1841 | 2900 |
8 | 177163 | 11566 | 26634 | 49872 |
9 | 1381168 | 202782 | 340001 | 641523 |
10 | 10815219 | 2764805 | 3817127 | 6806701 |
11 | 82876768 | 31064151 | 38036025 | 62678809 |
12 | 610666743 | 298841335 | 339544103 | 515757045 |
13 | 4277230169 | 2526305247 | 2739178116 | 3859880393 |
14 | 28291585986 | 19112520435 | 20122716541 | 26567032313 |
15 | 176133023346 | 131124054411 | 135519699197 | 169412236898 |
16 | 1030800460602 | 823890406748 | 841577934079 | 1006017212919 |
17 | 5671131339771 | 4777193964007 | 4843480433125 | 5584418861048 |
18 | 29353498288379 | 25714973280273 | 25947719387923 | 29064956439595 |
19 | 143105988701069 | 129121616153798 | 129891161595220 | 142191025038525 |
20 | 658063307862705 | 607198937700202 | 609605218691334 | 655293632298405 |
21 | 2858457998939006 | 2683015733790681 | 2690157639471948 | 2850441762739161 |
22 | 11746243530321863 | 11171273635072019 | 11191457507488421 | 11724027454457595 |
23 | 45730471397391867 | 43936844692101295 | 43991306801661762 | 45671434719950791 |
24 | 168913836578625999 | 163578906149612869 | 163719543899932333 | 168763207445340396 |
25 | 592737125111757011 | 577583393796842496 | 577931661515814991 | 592367656948196051 |
26 | 1978559832758151399 | 1937393462655462502 | 1938221987321702846 | 1977687567195144310 |
27 | 6289941346098637974 | 6182840640010272518 | 6184737193473689864 | 6287956989620704957 |
28 | 19065234710132878894 | 18798043092395561933 | 18802226237533170532 | 19060880013556511457 |
29 | 55155926406439783261 | 54515970479244152862 | 54524872037731254044 | 55146698500000142941 |
30 | 152448370819991091907 | 150975194909849530476 | 150993490533551033564 | 152429470569138848128 |
31 | 402931631210964655490 | 399668880173423084086 | 399705237549199768826 | 402894182587955370920 |
32 | 1019267441120735541170 | 1012308316233298718335 | 1012378237193154664252 | 1019195601065459214731 |
N(Γ672-2) | [16] | N(Γ672-2) | [16] |
---|---|---|---|
1 | 10 5 1 | 19 | 8 2 6 |
2 | 9 6 1 | 62 | 7 3 6 |
3 | 8 7 1 | 116 | 6 4 6 |
3 | 7 8 1 | 142 | 5 5 6 |
2 | 6 9 1 | 116 | 4 6 6 |
1 | 5 10 1 | 62 | 3 7 6 |
1 | 11 3 2 | 19 | 2 8 6 |
5 | 10 4 2 | 2 | 1 9 6 |
12 | 9 5 2 | 3 | 8 1 7 |
19 | 8 6 2 | 22 | 7 2 7 |
22 | 7 7 2 | 62 | 6 3 7 |
19 | 6 8 2 | 99 | 5 4 7 |
12 | 5 9 2 | 99 | 4 5 7 |
5 | 4 10 2 | 62 | 3 6 7 |
1 | 3 11 2 | 22 | 2 7 7 |
1 | 11 2 3 | 3 | 1 8 7 |
8 | 10 3 3 | 3 | 7 1 8 |
24 | 9 4 3 | 19 | 6 2 8 |
46 | 8 5 3 | 46 | 5 3 8 |
62 | 7 6 3 | 60 | 4 4 8 |
62 | 6 7 3 | 46 | 3 5 8 |
46 | 5 8 3 | 19 | 2 6 8 |
24 | 4 9 3 | 3 | 1 7 8 |
8 | 3 10 3 | 2 | 6 1 9 |
1 | 2 11 3 | 12 | 5 2 9 |
5 | 10 2 4 | 24 | 4 3 9 |
24 | 9 3 4 | 24 | 3 4 9 |
60 | 8 4 4 | 12 | 2 5 9 |
99 | 7 5 4 | 2 | 1 6 9 |
116 | 6 6 4 | 1 | 5 1 10 |
99 | 5 7 4 | 5 | 4 2 10 |
60 | 4 8 4 | 8 | 3 3 10 |
24 | 3 9 4 | 5 | 2 4 10 |
5 | 2 10 4 | 1 | 1 5 10 |
1 | 10 1 5 | 1 | 3 2 11 |
12 | 9 2 5 | 1 | 2 3 11 |
46 | 8 3 5 | ||
99 | 7 4 5 | ||
142 | 6 5 5 | ||
142 | 5 6 5 | ||
99 | 4 7 5 | ||
46 | 3 8 5 | ||
12 | 2 9 5 | ||
1 | 1 10 5 | ||
2 | 9 1 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balasubramanian, K. Recursive Symmetries: Chemically Induced Combinatorics of Colorings of Hyperplanes of an 8-Cube for All Irreducible Representations. Symmetry 2023, 15, 1031. https://doi.org/10.3390/sym15051031
Balasubramanian K. Recursive Symmetries: Chemically Induced Combinatorics of Colorings of Hyperplanes of an 8-Cube for All Irreducible Representations. Symmetry. 2023; 15(5):1031. https://doi.org/10.3390/sym15051031
Chicago/Turabian StyleBalasubramanian, Krishnan. 2023. "Recursive Symmetries: Chemically Induced Combinatorics of Colorings of Hyperplanes of an 8-Cube for All Irreducible Representations" Symmetry 15, no. 5: 1031. https://doi.org/10.3390/sym15051031
APA StyleBalasubramanian, K. (2023). Recursive Symmetries: Chemically Induced Combinatorics of Colorings of Hyperplanes of an 8-Cube for All Irreducible Representations. Symmetry, 15(5), 1031. https://doi.org/10.3390/sym15051031