An Introductory Overview of Bessel Polynomials, the Generalized Bessel Polynomials and the q-Bessel Polynomials
Abstract
:1. Introduction and Motivation
2. Hypergeometric Representations and the Associated Generating Functions
3. Orthogonality Relations and Polynomial Expansions
- (i)
- The path of integration is not a segment of the real axis but is rather a curve, that is, the unit circle in the complex z-plane;
- (ii)
- The integral in (58) is not the inner product with the kernel:
4. Asymptotic Expansions, Location of Zeros, and Luke’s Conjecture
- The zeros of are simple;
- None of the zeros of is also a zero of ;
- In the case when , the zeros of lie in the left half of the complex z-plane.
5. Basic (or Quantum or q-) Bessel Polynomials
- I.
- Big q-Jacobi Polynomials:
- II.
- Little q-Jacobi Polynomials:
- III.
- Continuous q-Jacobi Polynomials:
6. Concluding Remarks and Observations
Acknowledgments
Conflicts of Interest
References
- Watson, G.N. A Treatise on the Theory of Bessel Functions, 2nd ed.; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 1944. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume II. [Google Scholar]
- Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, 4th ed.; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 1927. [Google Scholar]
- Krall, H.L.; Frink, O. A new class of orthogonal polynomials: The Bessel polynomials. Trans. Amer. Math. Soc. 1949, 65, 100–115. [Google Scholar] [CrossRef]
- Grosswald, E. Bessel Polynomials; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1978; Volume 698. [Google Scholar]
- Bailey, W.N. Generalized Hypergeometric Series; Cambridge Tracts in Mathematics and Mathematical Physics; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 1935; Reprinted by Stechert-Hafner Service Agency: New York, NY, USA; London, UK, 1964; Volume 32. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
- Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 1966. [Google Scholar]
- Seaborn, J.B. Hypergeometric Functions and Their Applications; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1991. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series: Halsted Press (Ellis Horwood Limited, Chichester); John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Szegö, G. Orthogonal Polynomials, 4th ed.; American Mathematical Society Colloquium Publications, American Mathematical Society: Providence, RI, USA, 1975; Volume 23. [Google Scholar]
- Chaundy, T.W. An extension of hypergeometric functions (I). Quart. J. Math. Oxford Ser. 1943, 14, 55–78. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions: Halsted Press (Ellis Horwood Limited, Chichester); John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1984. [Google Scholar]
- Brafman, F. Generating functions of Jacobi and related polynomials. Proc. Amer. Math. Soc. 1951, 2, 942–949. [Google Scholar] [CrossRef]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1955; Volume III. [Google Scholar]
- Rainville, E.D. Generating functions for Bessel and related polynomials. Canad. J. Math. 1953, 5, 104–106. [Google Scholar] [CrossRef]
- Rainville, E.D. Special Functions; Macmillan Company: New York, NY, USA, 1960; Reprinted by Chelsea Publishing Company: Bronx, NY, USA, 1971. [Google Scholar]
- Kogbetliantz, E. Sur les développements de Laguerre. C. R. Acad. Sci. Paris 1932, 194, 1422–1424. [Google Scholar]
- Sonin, N.J. Researches sur les fonctions cylindriques et le développement des fonctions continues en séries. Math. Ann. 1880, 16, 1–80. [Google Scholar] [CrossRef] [Green Version]
- Brafman, F. Some generating functions of Laguerre and Hermite polynomials. Canad. J. Math. 1957, 9, 180–187. [Google Scholar]
- Gould, H.W.; Hopper, A.T. Operational formulas connected with two generalizations of Hermite polynomials. Duke Math. J. 1962, 29, 51–63. [Google Scholar] [CrossRef]
- Agarwal, R.P. On Bessel polynomials. Canad. J. Math. 1951, 6, 410–415. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some families of generating functions associated with orthogonal polynomials and other higher transcendental functions. Mathematics 2022, 10, 3730. [Google Scholar] [CrossRef]
- Burchnall, J.L. The Bessel polynomials. Canad. J. Math. 1951, 3, 62–68. [Google Scholar] [CrossRef]
- Carlitz, L. A note on the Bessel polynomials. Duke Math. J. 1957, 24, 151–162. [Google Scholar] [CrossRef]
- Al-Salam, W.A. The Bessel polynomials. Duke Math. J. 1957, 24, 529–545. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.W. On Burchnall’s generating relation for Bessel polynomials. Amer. Math. Monthly 1967, 74, 1104–1107. [Google Scholar] [CrossRef]
- McBride, E.B. Obtaining Generating Functions; Springer Tracts in Natural Philosophy; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1971. [Google Scholar]
- Burchnall, J.L.; Chaundy, T.W. Commutative ordinary differential operators. II: The identity Pn = Qm. Proc. Roy. Soc. London Ser. A 1931, 134, 471–485. [Google Scholar]
- Weisner, L. Group-theoretic origin of certain generating functions. Pacific J. Math. 1955, 5, 1033–1039. [Google Scholar] [CrossRef] [Green Version]
- Miller, W., Jr. Lie Theory and Special Functions: Mathematics in Science and Engineering; A Series of Monographs and Textbooks; Academic Press: London, UK; New York, NY, USA, 1968; Volume 43. [Google Scholar]
- Srivastava, H.M. Some bilateral generating functions for a certain class of special functions. I and II. Nederl. Akad. Wetensch. Indag. Math. 1980, 42, 221–233; 234–246. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.-P.; Srivasava, H.M. A note on certain generating functions for the generalized Bessel polynomials. J. Math. Anal. Appl. 1993, 180, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.-P.; Feng, C.-C.; Srivastava, H.M. Some generating functions for the generalized Bessel polynomials. Stud. Appl. Math. 1992, 87, 351–366. [Google Scholar] [CrossRef]
- Srivastava, H.M. Orthogonality relations and generating functions for the generalized Bessel polynomials. Appl. Math. Comput. 1994, 61, 99–134. [Google Scholar] [CrossRef]
- Lin, S.-D.; Chen, I.-C.; Srivastava, H.M. Certain classes of finite-series relationships and generating functions involving the generalized Bessel polynomials. Appl. Math. Comput. 2003, 137, 261–275. [Google Scholar] [CrossRef]
- Biswas, N.C.; Chongdar, A. On the extension of a class of bilateral generating function involving modified Bessel polynomials. South East Asian J. Math. Math. Sci. 2022, 18, 65–70. [Google Scholar] [CrossRef]
- Riordan, J. Combinatorial Identities: Wiley Tracts on Probability and Statistics; John Wiley and Sons: New York, NY, USA, 1968. [Google Scholar]
- Srivastava, H.M. Some families of generating functions associated with the Stirling numbers of the second kind. J. Math. Anal. Appl. 2000, 251, 752–769. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.-D.; Tu, S.-T.; Srivastava, H.M. Some generating functions involving the Stirling numbers of the second kind. Rend. Sem. Mat. Univ. Politec. Torino 2001, 59, 199–224. [Google Scholar]
- Ismail, M.E.-H.; Kelker, D.N. The Bessel polynomials and the student t-distribution. SIAM J. Math. Anal. 1976, 7, 82–91. [Google Scholar] [CrossRef]
- Berg, C.; Vignat, C. Linearization coefficients of Bessel polynomials and properties of student t-distributions. Constr. Approx. 2008, 27, 15–32. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M. On Bessel, Jacobi and Laguerre polynomials. Rend. Sem. Mat. Univ. Padova 1965, 35, 424–432. [Google Scholar]
- Srivastava, H.M.; Lavoie, J.-L. A certain method of obtaining bilateral generating functions. Nederl. Akad. Wetensch. Indag. Math. 1975, 37, 304–320. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.-P.; Feng, C.-C. Group theoretic origins of certain generalized Bessel polynomials. Tamkang J. Math. 1975, 6, 87–93. [Google Scholar]
- Srivastava, H.M. Some generating functions for Laguerre and Bessel polynomials. Bull. Inst. Math. Acad. Sinica 1980, 8, 571–579. [Google Scholar]
- Panda, R. On a new class of polynomials. Glasgow Math. J. 1977, 18, 105–108. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M. An equivalence theorem on generating functions. Proc. Amer. Math. Soc. 1975, 52, 159–165. [Google Scholar] [CrossRef]
- Galvez, F.; Dehesa, J.S. Some open problems of generalized Bessel polynomials. J. Phys. A Math. Gen. 1984, 17, 2759–2766. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Buschman, R.G. Some polynomials defined by generating relations. Trans. Amer. Math. Soc. 1975, 205, 360–370, see also Addendum in Trans. Amer. Math. Soc. 1977, 226, 393–394. [Google Scholar] [CrossRef]
- Barnes, C.W. Remarks on the Bessel polynomials. Amer. Math. Monthly 1973, 80, 1034–1040. [Google Scholar] [CrossRef]
- Hansen, E.R. A Table of Series and Products; Prentice-Hall: Englewood Cliffs, NY, USA, 1975. [Google Scholar]
- Beckmann, P. Orthogonal Polynomials for Engineers and Physicists; Golem Press: Boulder, CO, USA, 1973. [Google Scholar]
- Chatterjea, S.K. A note on generalized Bessel polynomials. Math. Balkanica 1973, 3, 23–24. [Google Scholar]
- Srivastava, H.M.; Singhal, J.P. New generating functions for Jacobi and related polynomials. J. Math. Anal. Appl. 1973, 41, 748–752. [Google Scholar] [CrossRef] [Green Version]
- Chatterjea, S.K. Sur les polynôme de Bessel, du point de vue de l’algèbre de Lie. C. R. Acad. Sci. Paris Sér. A-B 1970, 271, A357–A360. [Google Scholar]
- Das, M.K. Sur les polynôme de Bessel, du point de vue de l’algèbre de Lie. C. R. Acad. Sci. Paris Sér. A-B 1970, 271, A361–A364. [Google Scholar]
- Das, M.K. Sur les polynôme de Bessel. C. R. Acad. Sci. Paris Sér. A-B 1970, 271, A408–A411. [Google Scholar]
- Bhargava, S.K. Applications of some theorems of Srivastava and Lavoie. Indian J. Pure Appl. Math. 1982, 13, 769–771. [Google Scholar]
- Boas, R.P., Jr.; Buck, R.C. Polynomial Expansions of Analytic Functions; Springer: Berlin/Heidelberg, Germany, 1958. [Google Scholar]
- Özarslan, M.A.; Srivastava, R.; Kaanoglu, C. Certain families of mutivariable Chan-Chyan-Srivastava polynomials. Miskolc Math. Notes 2017, 18, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Lin, S.-D.; Liu, S.-J.; Lu, H.-C. Integral representations for the Lagrange polynomials, Shively’s Pseudo-Laguerre polynomials, and the generalized Bessel polynomials. Russian J. Math. Phys. 2012, 19, 121–130. [Google Scholar] [CrossRef]
- Bajpai, S.D. Formulae involving Bessel polynomial and Meijer’s G-function. J. Natur. Sci. Math. 1990, 30, 37–43. [Google Scholar]
- Srivastava, R. A theorem on generating functions and its applications. Appl. Math. Lett. 1990, 3, 71–73. [Google Scholar] [CrossRef] [Green Version]
- Bajpai, S.D.; Al-Hawaj, A.Y. Application of Bessel polynomial and Meijer’s G-function in the study of time-domain synthesis problem. J. Indian Acad. Math. 1991, 13, 1–5. [Google Scholar]
- Komarov, M.A. Rate of approximation of zf′(z) by special sums associated with the zeros of the Bessel polynomials. Indag. Math. 2020, 31, 450–457. [Google Scholar] [CrossRef] [Green Version]
- Willerton, S. The magnitude of odd balls via Hankel determinants of reverse Bessel polynomials. Discrete Anal. 2020, 2020, 1–42. [Google Scholar]
- Komarov, M.A. Note on power sums of the zeros of certain Laguerre and Bessel polynomials. Integral Transforms Spec. Funct. 2020, 31, 562–569. [Google Scholar] [CrossRef]
- Qi, F. Simplifying coefficients in differential equations related to generating functions of reverse Bessel and partially degenerate Bell polynomials. Bol. Soc. Parana. Mat. 2021, 39, 73–82. [Google Scholar] [CrossRef]
- Abdalla, M. On Hankel transforms of generalized Bessel matrix polynomials. AIMS Math. 2021, 6, 6122–6139. [Google Scholar] [CrossRef]
- Hidan, M.; Akel, M.; Boulaaras, S.M.; Abdalla, M. On behavior Laplace integral operators with generalized Bessel matrix polynomials and related functions. J. Funct. Spaces 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Abdalla, M.; Akel, M. Computation of Fourier transform representations involving the generalized Bessel matrix polynomials. Adv. Differ. Equ. 2021, 2021, 1–18. [Google Scholar] [CrossRef]
- Dunster, T.M.; Gil, A.; Ruiz-Antolín, D.; Segura, J. Computation of the reverse generalized Bessel polynomials and their zeros. Comput. Math. Methods 2021, 3, 1–12. [Google Scholar] [CrossRef]
- Mainar, E.; Peña, J.M.; Rubio, B. Accurate computations with Wronskian matrices of Bessel and Laguerre polynomials. Linear Algebra Appl. 2022, 647, 31–46. [Google Scholar] [CrossRef]
- Ercolani, N.M.; Waters, P. Relating random matrix map enumeration to a universal symbol calculus for recurrence operators in terms of Bessel-Appell polynomials. Random Matrices Theory Appl. 2022, 11, 1–152. [Google Scholar] [CrossRef]
- Aloui, B.; Souissi, J. Bessel polynomials and some connection formulas in terms of the action of linear differential operators. Ural Math. J. 2022, 8, 4–12. [Google Scholar] [CrossRef]
- Cheng, Y.; Srivastava, R.; Liu, J.-L. Applications of the q-derivative operator to new families of bi-univalent functions related to the Legendre polynomials. Axioms 2022, 11, 595. [Google Scholar] [CrossRef]
- Ricci, P.E.; Srivastava, R. A note on the Laguerre-type Appell and hypergeometric polynomials. Mathematics 2022, 10, 1951. [Google Scholar] [CrossRef]
- Yang, S.; Srivastava, H.M. Some families of generating functions for the Bessel polynomials. J. Math. Anal. Appl. 1997, 211, 314–325. [Google Scholar] [CrossRef] [Green Version]
- Salzer, H.E. Orthogonal polynomials arising in the evaluation of inverse Laplace transforms. Math. Tables Other Aids Comput. 1955, 9, 164–177. [Google Scholar] [CrossRef]
- Salzer, H.E. Additional formulas and tables for orthogonal polynomials originating from inversion integrals. J. Math. Phys. 1961, 40, 72–86. [Google Scholar] [CrossRef]
- Luke, Y.L. The Special Functions and Their Approximations; Vol. I, Mathematics in Science and Engineering, Vol. 53-I, A Series of Monographs and Textbooks; Academic Press: New York, NY, USA; London, UK, 1969. [Google Scholar]
- Luke, Y.L. The Special Functions and Their Approximations; Vol. II, Mathematics in Science and Engineering, Vol. 53-II, A Series of Monographs and Textbooks; Academic Press: New York, NY, USA; London, UK, 1969. [Google Scholar]
- Hamza, A.M. Integrals involving Bessel polynomials. Riv. Mat. Univ. Parma (Ser. 3) 1972, 1, 41–46, see also [85]. [Google Scholar]
- Hamza, A.M. Integrals involving Bessel polynomials. Proc. Math. Phys. Soc. A R. E. 1971, 35, 9–15, see also [84]. [Google Scholar]
- Srivastava, H.M. A note on the Bessel polynomials. Riv. Mat. Univ. Parma (Ser. 4) 1983, 9, 207–212. [Google Scholar]
- Meijer, C.S. On the G-function. I–VIII. In Section of Sciences, Koninklijke (Nederlandse) Akademie van Wetenschappen te Amsterdam; Koninklijke Akademie van Wetenschappen: Amsterdam, The Netherlands, 1946; Volume 49, pp. 227–237; 344–356; 457–469; 632–641; 765–772; 936–943; 1063–1072; 1165–1175. [Google Scholar]
- Fox, C. The G and H functions as symmetrical Fourier kernels. Trans. Amer. Math. Soc. 1961, 98, 395–429. [Google Scholar]
- Srivastava, H.M.; Panda, R. Some bilateral generating functions for a class of generalized hypergeometric polynomials. J. Reine Angew. Math. 1976, 283–284, 265–274. [Google Scholar]
- Srivastava, H.M.; Panda, R. Expansion theorems for the H function of several complex variables. J. Reine Angew. Math. 1976, 288, 129–145. [Google Scholar]
- Saxena, R.K.; Hamza, A.M. On some results involving Meijer’s G-function. Libyan J. Sci. 1976, 6B, 83–86. [Google Scholar]
- Mathai, A.M.; Saxena, R.K. The H-Function with Applications in Statistics and Other Disciplines; John Wiley and Sons (Halsted Press): New York, NY, USA, 1978. [Google Scholar]
- Saxena, R.K.; Kalla, S.L. An expansion formula for the H-function of two variables. Rev. Técn. Fac. Ingr. Univ. Zulia 1979, 2, 67–76. [Google Scholar]
- Gokhroo, D.C.; Saxena, P.K. An expansion formula for the H-function of several variables. Bull. Math. Soc. Sci. Math. R. S. Roumanie 1983, 27, 221–226. [Google Scholar]
- Exton, H. On the orthogonality of the Bessel polynomials. Riv. Mat. Univ. Parma (Ser. 4) 1986, 12, 213–215. [Google Scholar]
- Bajpai, S.D. Orthogonality properties of Bessel polynomials. Bull. Math. Assoc. India 1989, 21, 77–79. [Google Scholar]
- Bajpai, S.D. An orthogonal type property for the Bessel polynomials. Riv. Mat. Univ. Parma (Ser. 5) 1992, 1, 305–309. [Google Scholar]
- Bajpai, S.D. Orthogonal type relations for the Bessel polynomials. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 1994, 37, 285–289. [Google Scholar]
- Grosswald, E. On some algebraic properties of the Bessel polynomials. Trans. Amer. Math. Soc. 1951, 71, 197–210. [Google Scholar] [CrossRef]
- Obreshkov, N. About certain orthogonal polynomials in the complex plane. Bulgar. Akad. Nauk. Izv. Math. Inst. 1956, 2, 45–68. [Google Scholar]
- Kočev, K. On the generalized Bessel polynomials. Bulgar. Akad. Nauk. Izv. Math. Inst. 1962, 6, 89–94. [Google Scholar]
- Saff, E.B.; Varga, R.S. Zero-free parabolic regions for sequences of polynomials. SIAM J. Math. Anal. 1976, 7, 344–357. [Google Scholar] [CrossRef]
- Runckel, H.-J. Zero-free parabolic regions for polynomials with complex coefficients. Proc. Amer. Math. Soc. 1983, 88, 299–304. [Google Scholar] [CrossRef]
- Olver, F.W.J. The asymptotic expansion of Bessel functions of large order. Philos. Trans. Roy. Soc. London Ser. A 1954, 247, 307–327. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Applied Mathematics Series 55; National Bureau of Standards: Washington, DC, USA, 1964; Reprinted by Dover Publications: New York, NY, USA, 1965. [Google Scholar]
- Olver, F.W.J. Asymptotics and Special Functions; Academic Press: New York, NY, USA; London, UK, 1974; Reprinted under the series of the A. K. P. Classics, A. K. Peters Limited, Wellesley, MA, USA, 1997. [Google Scholar]
- Luke, Y.L. Mathematical Functions and Their Approximations; Academic Press: New York, NY, USA; San Francisco, CA, USA; London, UK, 1975. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; [With 1 CD-ROM (Windows, Macintosh and UNIX)]; U. S. Department of Commerce, National Institute of Standards and Technology: Washington, DC, USA, 2010; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 2010.
- Gasper, G.; Rahman, M. Basic Hypergeometric Series (with a Foreword by Richard Askey), 2nd ed.; Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 2004; Volume 96. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Exton, H. q-Hypergeometric Functions and Applications, Halsted Press (Ellis Horwood Limited, Chichester); John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1983. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Universitext; Springer: New York, NY, USA, 2002. [Google Scholar]
- Askey, R.; Wilson, J. Some Basic Hypergeometric Orthogonal Polynomials That Generalize Jacobi Polynomials: Memoirs of the American Mathematical Society; American Mathematical Society: Providence, RI, USA, 1985; Volume 54 (319). [Google Scholar]
- Hahn, W. Über Orthogonalpolynome, die q-Differenzengleichungen genügen. Math. Nachr. 1949, 2, 4–34. [Google Scholar] [CrossRef]
- Andrews, G.E.; Askey, R. Classical orthogonal polynomials. In Polynômes Orthogonaux et Applications; Brezeinski, C., Draux, A., Magnus, A.P., Maroni, P., Ronveaux, A., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1985; pp. 36–62. [Google Scholar]
- Koekoek, R.; Lesky, P.A.; Swarttouw, R.F. Hypergeometric Orthogonal Polynomials and Their q-Analogues; Springer Monographs in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2010. [Google Scholar]
- Srivastava, H.M. Certain q-polynomial expansions for functions of several variables. IMA J. Appl. Math. 1983, 30, 315–323. [Google Scholar] [CrossRef]
- Srivastava, H.M. Certain q-polynomial expansions for functions of several variables II. IMA J. Appl. Math. 1984, 33, 205–209. [Google Scholar] [CrossRef]
- Abdi, W.H. A basic analogue of the Bessel polynomials. Math. Nachr. 1965, 30, 209–219. [Google Scholar] [CrossRef]
- Ismail, M.E.-H. The basic Bessel functions and polynomials. SIAM J. Math. Anal. 1981, 12, 454–468. [Google Scholar] [CrossRef]
- Exton, H.; Srivastava, H.M. A certain class of q-Bessel polynomials. Math. Comput. Model. 1994, 19, 55–60. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, A.H. On some characterizations of q-Bessel polynomials. Acta Math. Vietnam 1990, 15, 55–59. [Google Scholar]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Riyasat, M.; Khan, S. A determinant approach to q-Bessel polynomials and applications. Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. 2019, 113, 1571–1583. [Google Scholar] [CrossRef]
- Riyasat, M.; Khan, S.; Haneef, M. Generalized 2D extension of the q-Bessel polynomials. Rep. Math. Phys. 2022, 90, 63–80. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Srivastava, H.M.; Wanas, A.K.; Srivastava, R. Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials. Symmetry 2021, 13, 1230. [Google Scholar] [CrossRef]
- Srivastava, H.M. A survey of some recent developments on higher transcendental functions of analytic number theory and applied mathematics. Symmetry 2021, 13, 2294. [Google Scholar] [CrossRef]
- Srivastava, H.M. On q-generating functions and certain formulas of David Zeitlin. Illinois J. Math. 1971, 15, 64–72. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some characterizations of Appell and q-Appell polynomials. Ann. Mat. Pura Appl. 1982, 130, 321–329. [Google Scholar] [CrossRef]
- Srivastava, H.M. An elementary proof of Bailey’s bilinear generating function for Jacobi polynomials and of its q-analogue. IMA J. Appl. Math. 1982, 29, 275–280. [Google Scholar] [CrossRef]
- Srivastava, H.M. A q-extension of Bailey’s bilinear generating function for the Jacobi polynomials. Rocky Mountain J. Math. 1983, 13, 461–465. [Google Scholar] [CrossRef]
- Cao, J.; Arjika, S. A note on generalized q-difference equations and their applications involving q-hypergeometric functions. Symmetry 2020, 12, 1816. [Google Scholar]
- Srivastava, H.M.; Arjika, S. A general family of q-hypergeometric polynomials and associated generating functions. Mathematics 2021, 9, 1161. [Google Scholar] [CrossRef]
- Vyas, Y.; Srivastava, H.M.; Pathak, S.; Fatawat, K. General summation formulas contiguous to the q-Kummer summation theorems and their applications. Symmetry 2021, 13, 1102. [Google Scholar] [CrossRef]
- Cao, J.; Srivastava, H.M.; Zhou, H.-L.; Arjika, S. Generalized q-difference equations for q-hypergeometric polynomials with double q-binomial coefficients. Mathematics 2022, 10, 556. [Google Scholar] [CrossRef]
- Werner, U.; Pietzsch, W. Die Polynome Sn(z) eur Darstellung der Encrgiespektralfunktionen idealer Turbulcnefclder. Zeitschr. Angew. Math. Mech. 1978, 58, 160–168. [Google Scholar]
- Srivastava, H.M. Some orthogonal polynomials representing the energy spectral functions for a family of isotropic turbulence fields. Zeitschr. Angew. Math. Mech. 1984, 64, 255–257. [Google Scholar] [CrossRef]
- Izadi, M.; Srivastava, H.M. A novel matrix technique for multi-order pantograph differential equations of fractional order. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Engrg. Sci. 2021, 477, 1–21. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Mathematics in Science and Engineering; Academic Press: New York, NY, USA; London, UK; Sydney, Australia; Tokyo, Japan; Toronto, ON, Canada, 1999; Volume 198. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204. [Google Scholar]
- Srivastava, H.M. Fractional-order derivatives and integrals: Introductory overview and recent developments. Kyungpook Math. J. 2020, 60, 73–116. [Google Scholar]
- Srivastava, H.M. An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions. J. Adv. Engrg. Comput. 2021, 5, 135–166. [Google Scholar] [CrossRef]
- Izadi, M.; Cattani, C. Generalized Bessel polynomial for multi-order fractional differential equations. Symmetry 2020, 12, 1260. [Google Scholar] [CrossRef]
- Izadi, M.; Srivastava, H.M. Numerical approximations to the nonlinear fractional-order logistic population model with fractional-order Bessel and Legendre bases. Chaos Solitons Fractals 2021, 145, 1–11. [Google Scholar] [CrossRef]
- Izadi, M.; Yüzbaşı, Ş.; Noeiaghdam, S. Approximating solutions of non-linear Troesch’s problem via an efficient quasi-linearization Bessel approach. Mathematics 2021, 9, 1841. [Google Scholar] [CrossRef]
- Izadi, M.; Srivastava, H.M. An efficient approximation technique applied to a non-linear Lane-Emden pantograph delay differential model. Appl. Math. Comput. 2021, 401, 1–10. [Google Scholar] [CrossRef]
- Izadi, M.; Yüzbaşı, Ş.; Adel, W. Two novel Bessel matrix techniques to solve the squeezing flow problem between infinite parallel plates. Comput. Math. Math. Phys. 2021, 61, 2034–2053. [Google Scholar] [CrossRef]
- Izadi, M.; Srivastava, H.M. Generalized Bessel quasilinearlization technique applied to Bratu and Lane-Emden type equations of arbitrary order. Fractal Fract. 2021, 5, 179. [Google Scholar] [CrossRef]
- Izadi, M. A combined approximation method for nonlinear foam drainage equation. Sci. Iran. 2022, 29, 70–78. [Google Scholar] [CrossRef]
- Izadi, M.; Srivastava, H.M.; Adel, W. An effective approximation algorithm for second-order singular functional differential equations. Axioms 2022, 11, 133. [Google Scholar] [CrossRef]
- Yüzbaşı, Ş.; Izadi, M. Bessel-quasilinearization technique to solve the fractional-order HIV-1 infection of CD4+ T-cells considering the impact of antiviral drug treatment. Appl. Math. Comput. 2022, 431, 1–14. [Google Scholar] [CrossRef]
- Izadi, M.; Yüzbaşı, Ş.; Cattani, C. Approximating solutions to fractional-order Bagley-Torvik equation via generalized Bessel polynomial on large domains. Ricerche Mat. 2021, 2021, 1–27. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M. An Introductory Overview of Bessel Polynomials, the Generalized Bessel Polynomials and the q-Bessel Polynomials. Symmetry 2023, 15, 822. https://doi.org/10.3390/sym15040822
Srivastava HM. An Introductory Overview of Bessel Polynomials, the Generalized Bessel Polynomials and the q-Bessel Polynomials. Symmetry. 2023; 15(4):822. https://doi.org/10.3390/sym15040822
Chicago/Turabian StyleSrivastava, Hari Mohan. 2023. "An Introductory Overview of Bessel Polynomials, the Generalized Bessel Polynomials and the q-Bessel Polynomials" Symmetry 15, no. 4: 822. https://doi.org/10.3390/sym15040822