Faber Polynomial Coefficient Estimates for Janowski Type bi-Close-to-Convex and bi-Quasi-Convex Functions
Abstract
1. Introduction and Preliminaries
2. The Faber Polynomial Expansion Method and Its Applications
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duren, P.L. Univalent Functions. In Grundehren der Mathematischen Wissenschaften; Springer: New York, NY, USA, 1983; Volume 259. [Google Scholar]
- Goodman, A.W. Univalent Functions; Mariner: Tampa, FL, USA, 1983; Volume I–II. [Google Scholar]
- Hayman, W.K. Multivalent Functions; Cambridge University Press: Cambridge, UK, 1967. [Google Scholar]
- Kaplan, W. Close-to-convex schlicht functions. Mich. Math. J. 1952, 1, 169–185. [Google Scholar] [CrossRef]
- Noor, K.I. On quasi-convex functions and related topics. Inter. J. Math. Math. Sci. 1987, 10, 241–258. [Google Scholar] [CrossRef]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Cluni, J. Aspects of Contemporary Complex Analysis; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1. Arch. Ration. March. Anal. 1967, 32, 100–112. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent function. Study. Univ. Babes Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Hayami, T.; Owa, S. Coefficient bounds for bi-univalent functions. Pan Am. Math. J. 2012, 22, 15–26. [Google Scholar]
- Khan, S.; Khan, N.; Hussain, S.; Ahmad, Q.Z.; Zaighum, M.A. Some classes of bi-univalent functions associated with Srivastava-Attiya operator. Bull. Math. Anal. Appl. 2017, 9, 37–44. [Google Scholar]
- Srivastava, H.M.; Bulut, S.; Caglar, M.; Yagmur, N. Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat 2013, 27, 831–842. [Google Scholar] [CrossRef]
- Faber, G. Uber polynomische Entwickelungen. Math. Ann. 1903, 57, 1569–1573. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomials coefficient estimates for analytic bi-close-to-convex functions. Comptes Rendus Math. 2014, 352, 17–20. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficients of bi-subordinate functions. Comptes Rendus Math. 2015, 41, 1103–1119. [Google Scholar] [CrossRef]
- Schiffer, M. Faber polynomials in the theory of univalent functions. Bull. Am. Soc. 1948, 54, 503–517. [Google Scholar] [CrossRef]
- Pommerenke, C. Uber die Faberschen Polynome schlichter Funktionen. Math. Z. 1964, 85, 197–208. [Google Scholar] [CrossRef]
- Pommerenke, C. Konform Abbildung und Fekete-Punkte. Math. Z. 1965, 89, 422–438. [Google Scholar] [CrossRef]
- Pommerenke, C. Uber die Verteilung der Fekete-Punkte. Math. Ann. 1967, 168, 111–127. [Google Scholar] [CrossRef]
- Curtiss, J.H. Faber polynomial and the faber series. Am. Mon. 1971, 78, 577–596. [Google Scholar] [CrossRef]
- Airault, H.; Bouali, H. Differential calculus on the Faber polynomials. Bull. Sci. Math. 2006, 130, 179–222. [Google Scholar] [CrossRef]
- Airault, H. Symmetric sums associated with the factorizations of Grunsky coefficients. In Proceedings of the Conference on Groups and Symmetries Honors John McKay, Montreal, QC, Canada, 27 April 2007. [Google Scholar]
- Hamidi, S.G.; Halim, S.A.; Jahangiri, J.M. Faber polynomial coefficient estimates for meromorphic bi-starlike functions. Int. J. Math. And Math. Sci. 2013, 2013, 498159. [Google Scholar] [CrossRef]
- Altinkaya, S.; Yalcin, S. Faber polynomial coefficient bounds for a subclass of bi-univalent functions. Comptes Rendus Math. 2015, 353, 1075–1080. [Google Scholar] [CrossRef]
- Altinkaya, S.; Yalcin, S. Faber polynomial coefficient bounds for a subclass of bi-univalent functions. Stud. Univ. Babes-Bolyai Math. 2016, 61, 37–44. [Google Scholar] [CrossRef]
- Bulut, S. Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions. Comptes Rendus Math. 2015, 353, 113–116. [Google Scholar] [CrossRef]
- Jia, Z.; Khan, S.; Khan, N.; Khan, B.; Asif, M. Faber Polynomial Coefficient Bounds for m-Fold Symmetric Analytic and Bi-univalent Functions Involving q-Calculus. J. Funct. Spaces 2021, 2021, 5232247. [Google Scholar] [CrossRef]
- Airault, H. Remarks on Faber polynomials. Int. Math. Forum. 2008, 3, 449–456. [Google Scholar]
- Bulut, S. Faber polynomial coefficients estimates for a comprehensive subclass of analytic bi-univalent functions. Comptes Rendus Math. 2014, 352, 479–484. [Google Scholar] [CrossRef]
- Gong, S. The Bieberbach conjecture, translated from the Chinese original and revised by the author. In AMS/IP Studies in Advanced Mathematics; American Mathematical Society: Providence, RI, USA, 1999. [Google Scholar]
- Hussain, S.; Khan, S.; Zaighum, M.A.; Darus, M.; Shareef, Z. Coefficients bounds for certain subclass of bi-univalent functions associated with Ruscheweyh q-differential operator. J. Complex Anal. 2017, 2017, 2826514. [Google Scholar]
- Srivastava, H.M.; Khan, S.; Ahmad, Q.Z.; Khan, N.; Hussain, S. The Faber polynomial expansion method and its application to the general coe cient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator. Stud. Univ. Babes-Bolyai Math. 2018, 63, 419–436. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Motamednezhad, A.; Adegani, E.A. Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator. Mathematics 2020, 8, 172. [Google Scholar] [CrossRef]
- Leinartas, E.K. Multidimensional Hadamard composition and sums with linear constraints on the summation indices. Sib. Math. J. 1989, 30, 250–255. [Google Scholar] [CrossRef]
- Jahangiri, M. On the coefficients of powers of a class of Bazilevic functions. Indian J. Pure Appl. Math. 1986, 17, 1140–1144. [Google Scholar]
- Saliu, A.; Al-Shbeil, I.; Gong, J.; Malik, S.N.; Aloraini, N. Properties of q-Symmetric Starlike Functions of Janowski Type. Symmetry 2022, 14, 1907. [Google Scholar] [CrossRef]
- Riaz, A.; Raza, M.; Binyamin, M.A.; Saliu, A. The second and third Hankel determinants for starlike and convex functions associated with Three-Leaf function. Heliyon 2023, 9, e12748. [Google Scholar] [CrossRef] [PubMed]
- Saliu, A.; Jabeen, K.; Al-Shbeil, I.; Aloraini, N.; Malik, S.N. On q-Limaçon Functions. Symmetry 2022, 14, 2422. [Google Scholar] [CrossRef]
- Taj, Y.; Zainab, S.; Xin, Q.; Tawfiq, F.M.O.; Raza, M.; Malik, S.N. Certain Coefficient Problems for q-Starlike Functions Associated with q-Analogue of Sine Function. Symmetry 2022, 14, 2200. [Google Scholar] [CrossRef]
- Raza, M.; Riaz, A.; Xin, Q.; Malik, S.N. Hankel Determinants and Coefficient Estimates for Starlike Functions Related to Symmetric Booth Lemniscate. Symmetry 2022, 14, 1366. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.; Altınkaya, Ş.; Xin, Q.; Tchier, F.; Malik, S.N.; Khan, N. Faber Polynomial Coefficient Estimates for Janowski Type bi-Close-to-Convex and bi-Quasi-Convex Functions. Symmetry 2023, 15, 604. https://doi.org/10.3390/sym15030604
Khan S, Altınkaya Ş, Xin Q, Tchier F, Malik SN, Khan N. Faber Polynomial Coefficient Estimates for Janowski Type bi-Close-to-Convex and bi-Quasi-Convex Functions. Symmetry. 2023; 15(3):604. https://doi.org/10.3390/sym15030604
Chicago/Turabian StyleKhan, Shahid, Şahsene Altınkaya, Qin Xin, Fairouz Tchier, Sarfraz Nawaz Malik, and Nazar Khan. 2023. "Faber Polynomial Coefficient Estimates for Janowski Type bi-Close-to-Convex and bi-Quasi-Convex Functions" Symmetry 15, no. 3: 604. https://doi.org/10.3390/sym15030604
APA StyleKhan, S., Altınkaya, Ş., Xin, Q., Tchier, F., Malik, S. N., & Khan, N. (2023). Faber Polynomial Coefficient Estimates for Janowski Type bi-Close-to-Convex and bi-Quasi-Convex Functions. Symmetry, 15(3), 604. https://doi.org/10.3390/sym15030604