Next Article in Journal
A Novel Lightweight Object Detection Network with Attention Modules and Hierarchical Feature Pyramid
Next Article in Special Issue
On Third Hankel Determinant for Certain Subclass of Bi-Univalent Functions
Previous Article in Journal
The Structural Properties of (2, 6)-Fullerenes
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Integral Operators Applied to Classes of Convex and Close-to-Convex Meromorphic p-Valent Functions

by
Elisabeta-Alina Totoi
1 and
Luminita-Ioana Cotirla
2,*
1
Department of Mathematics and Informatics, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
2
Department of Mathematics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
*
Author to whom correspondence should be addressed.
Symmetry 2023, 15(11), 2079; https://doi.org/10.3390/sym15112079
Submission received: 25 September 2023 / Revised: 3 November 2023 / Accepted: 14 November 2023 / Published: 17 November 2023
(This article belongs to the Special Issue Geometric Function Theory and Special Functions II)

Abstract

:
We consider a newly introduced integral operator that depends on an analytic normalized function and generalizes many other previously studied operators. We find the necessary conditions that this operator has to meet in order to preserve convex meromorphic functions. We know that convexity has great impact in the industry, linear and non-linear programming problems, and optimization. Some lemmas and remarks helping us to obtain complex functions with positive real parts are also given.

1. Introduction and Preliminaries

This paper belongs to the so-called “geometric functions theory”, which is perhaps, the most important field of complex analysis. This theory deals with normalized univalent functions, p-valent functions, meromorphic functions, meromorphic p-valent functions, harmonic functions, fractional regular functions, etc. The geometric function theory was first originated by Riemann in 1850. In 1907, Koebe introduced the concept of univalent functions in his monograph and a lot of important properties for different new classes of univalent functions are stated. In 1957, the class of meromorphic functions started to attract attention due to results from the work of Z. Nehari and E. Netanyahu [1]. Two years later, J. Clunie came up with a simplified proof in [2]. Some twenty years later, S. S. Miller and P. T. Mocanu revealed the theory of differential subordinations with the very useful method of admissible functions, and many authors returned to the study of meromorphic functions, as we can see from works [3,4,5,6]. Nowadays, although the class of meromorphic functions is not as used as other classes of functions, there are many recent papers that have dealt with its properties (see [7,8,9,10]).
The method of admissible functions, known for simplifying many proofs, is also used by the authors to prove some lemmas necessary for the results of the paper. These lemmas help us to obtain complex functions with positive real parts.
In this work, we use the integral operator (defined for the first time in [11]) to obtain some results regarding the conservation of the class of convex meromorphic functions. We chose to study the preservation of the class of convex meromorphic functions since convexity is a fundamental concept in mathematics and plays an essential role in optimization, programming, geometry, statistics, and many other fields.
We consider  U = { z C : | z | < 1 }  as the unit disc,  U ˙ = U { 0 }  as the punctured unit disc,  H ( U ) = { f : U C : f is holomorphic in U } , N = { 0 , 1 , 2 , } , and  N * = N { 0 } .
For  p N * , we have  Σ p = g / g ( z ) = a p z p + a 0 + a 1 z + , z U ˙ , a p 0  the class of meromorphic p-valent functions in U.
We also use the following notations:  Σ K p = g Σ p : Re 1 + z g ( z ) g ( z ) < 0 , z U Σ C p = g Σ p : there is φ Σ K p such that Re g ( z ) φ ( z ) > 0 , z U , and g φ | z = 0 = 1 , H [ a , n ] = { f H ( U ) : f ( z ) = a + a n z n + a n + 1 z n + 1 + }  for  a C ,   n N * ,   A n = { f H ( U ) : f ( z ) = z + a n + 1 z n + 1 + a n + 2 z n + 2 + } n N * , and, for  n = 1 , we denote  A 1  by A. This set is called the class of analytic functions normalized at the origin.
Since our results will use the “Open Door” function, we now give its defintion:
Definition 1
([12], p. 46). Let c be a complex number such that  Re c > 0 , let n be a positive integer, and let
C n = C n ( c ) = n Re c | c | 1 + 2 Re c n + Im c .
If  R ( z )  is the univalent function defined in U by  R ( z ) = 2 C n z 1 z 2 , then the “Open Door” function is defined by
R c , n ( z ) = R z + b 1 + b ¯ z = 2 C n ( z + b ) ( 1 + b ¯ z ) ( 1 + b ¯ z ) 2 ( z + b ) 2 ,
where  b = R 1 ( c ) .
Theorem 1
([12]). Let  p H [ a , n ]  with  Re a > 0 . If  ψ Ψ n { a } , then
Re ψ ( p ( z ) , z p ( z ) ; z ) > 0 , z U Re p ( z ) > 0 , z U .
We remember here that a function  ψ : C 2 × U C  belongs to the class  Ψ n { a }  (where  n N * , a C , Re a > 0 ), when we have
Re ψ ( ρ i , σ ; z ) 0 , for ρ , σ R , z U , with σ n 2 · | a i ρ | 2 Re a .
For the results of the present paper, we will use the operator  J p , γ , h , introduced for the first time in [11].
For  p N * γ C  with  Re γ > p  and  h A , we have
J p , γ , h : Σ p Σ p , J p , γ , h ( g ) = γ p h γ ( z ) 0 z g ( t ) h γ 1 ( t ) h ( t ) d t .
Theorem 2
([11]). Let  p N * γ C  with  Re γ > p  and  h A  with  h ( z ) z · h ( z ) 0 . Let  g Σ p  with
z g ( z ) g ( z ) + z h ( z ) h ( z ) + ( γ 1 ) z h ( z ) h ( z ) + 1 R γ p , p ( z ) , z U .
If  G = J p , γ , h ( g )  is defined by (3), then  G Σ p  with  z p G ( z ) 0 , z U ,  and
Re z G ( z ) G ( z ) + γ z h ( z ) h ( z ) > 0 , z U .
All powers in (3) are principal ones.

2. Main Results

First, for  p N * γ C  with  Re γ > p  and  h A  with  h ( z ) z · h ( z ) 0 , we denote by  Σ p , γ , h  the class of meromorphic functions  g Σ p  satisfying subordination (4).
It is clear that for  h ( z ) = z , we have the class  Σ p , γ , h  made of functions  g Σ p  which verify the following subordination
z g ( z ) g ( z ) + γ R γ p , p ( z ) , z U .
Moreover, since  Re γ > p , we have  g ( z ) = 1 z p Σ p , γ , h .
Remark 1.
Using the fact that, from  G = J p , γ , h ( g ) , we have the equality
γ · G · h + h · G = ( γ p ) · g · h ,
it is easy to verify that for g of the form
g ( z ) = a p z p + a 0 + a 1 z + , z U ˙ , a p 0 ,
we have G of the form
G ( z ) = a p z p + b 0 + b 1 z + , z U ˙ .
This means that
g G | z = 0 = 1 .
In order to prove the main results of this paper, we need the following lemma and some of its particular cases.
Lemma 1.
Let  a C  with  Re a > 0  and  n N * .  Let us consider the complex functions
A , B , C , D : U C ,
which verify the conditions:
  • Re A ( z ) > 0 , z U ;
  • n · Re A ( z ) + 2 Re a · Re B ( z ) > 0 , z U ;
  • n · Im a Re a · Im C ( z ) 2 [ n Re A ( z ) + 2 Re a · Re B ( z ) ] · [ n | a | 2 Re A ( z ) 2 Re a · Re D ( z ) ] .
If  p H [ a , n ] , then
Re A ( z ) z p ( z ) + B ( z ) p 2 ( z ) + C ( z ) p ( z ) + D ( z ) > 0 , z U Re p ( z ) > 0 , z U .
Proof. 
To prove this result, we use the class of admissible functions. We consider the function  ψ ( r , s ; z ) = A ( z ) s + B ( z ) r 2 + C ( z ) r + D ( z ) .
We need to show that  Re ψ ( ρ i , σ ; z ) 0 , when  ρ , σ R , z U ,  with
σ n 2 · | a i ρ | 2 Re a .
This means that we have  ψ Ψ n { a } .
We have
ψ ( ρ i , σ ; z ) = A ( z ) σ B ( z ) ρ 2 + C ( z ) ρ i + D ( z ) .
Therefore,
Re ψ ( ρ i , σ ; z ) = σ · Re A ( z ) ρ 2 · Re B ( z ) ρ · Im C ( z ) + Re D ( z ) .
Since  σ n 2 · | a i ρ | 2 Re a = n 2 Re a · | a | 2 2 ρ · Im a + ρ 2  and  Re A ( z ) > 0 , z U ,  we obtain from (5) that
Re ψ ( ρ i , σ ; z ) n 2 Re a · | a | 2 2 ρ · Im a + ρ 2 · Re A ( z ) ρ 2 · Re B ( z ) ρ · Im C ( z ) + Re D ( z ) = ρ 2 n 2 Re a · Re A ( z ) Re B ( z ) + ρ n Re a · Im a Im C ( z ) + Re D ( z ) n | a | 2 2 Re a · Re A ( z ) .
By using the notations:
  • n 2 Re a · Re A ( z ) Re B ( z ) = α ( z ) ;
  • n Re a · Im a Im C ( z ) = β ( z ) ;
  • Re D ( z ) n | a | 2 2 Re a · Re A ( z ) = γ ( z ) ;
we have
Re ψ ( ρ i , σ ; z ) ρ 2 α ( z ) + ρ β ( z ) + γ ( z ) , ρ R , z U .
If we consider
Δ ( z ) = β 2 ( z ) 4 α ( z ) γ ( z ) = n Re a · Im a I M C ( z ) 2 4 n 2 Re a · Re A ( z ) Re B ( z ) Re D ( z ) n | a | 2 2 Re a · Re A ( z ) = 1 ( Re a ) 2 n · Im a Re a · Im C ( z ) 2 [ n Re A ( z ) + 2 Re a · Re B ( z ) ] · [ n | a | 2 Re A ( z ) 2 Re a · Re D ( z ) ] ,
by using the last condition from the hypothesis, we obtain
Δ ( z ) 0 , z U .
We remark that, from the second condition of the hypothesis, we have  α ( z ) < 0 , z U . Therefore, the sign of the equation (in  ρ )
ρ 2 α ( z ) + ρ β ( z ) + γ ( z )
is less than or equal to zero.
Thus,  Re ψ ( ρ i , σ ; z ) 0 ,  when  ρ , σ R , z U ,  with
σ n 2 · | a i ρ | 2 Re a .
This means that we have  ψ Ψ n { a } .
From Theorem 1, since  ψ Ψ n { a }  and  Re ψ ( p ( z ) , z p ( z ) ; z ) > 0 ,  for  z U , we obtain  Re p ( z ) > 0 .   □
Particular cases of Lemma 1 may be found in different papers that have studied the admissible functions.
We will consider the following particular cases:
Remark 2.
( a > 0 , A = B ) Let  a > 0  and  n N * .  Let us consider the complex functions
A , C , D : U C ,
which verify the conditions:
  • Re A ( z ) > 0 , z U ;
  • a · Im C ( z ) 2 ( n + 2 a ) Re A ( z ) · [ n · a 2 Re A ( z ) 2 a · Re D ( z ) ] .
If  p H [ a , n ] , then
Re A ( z ) ( z p ( z ) + p 2 ( z ) ) + C ( z ) p ( z ) + D ( z ) > 0 , z U Re p ( z ) > 0 , z U .
We will need Remark 2 to prove Theorem 3.
Remark 3.
( a > 0 , D = 0 ) Let  a > 0  and  n N * .  Let us consider the complex functions
A , B , C : U C ,
which verify the conditions:
  • Re A ( z ) > 0 , z U ;
  • Re B ( z ) > 0 , z U ;
  • Im C ( z ) 2 n · Re A ( z ) · [ n Re A ( z ) + 2 a · Re B ( z ) ] .
If  p H [ a , n ] , then
Re A ( z ) z p ( z ) + B ( z ) p 2 ( z ) + C ( z ) p ( z ) > 0 , z U Re p ( z ) > 0 , z U .
Remark 4.
( a > 0 , D = B = 0 ) Let  a > 0  and  n N * .  Let us consider the complex functions  A , C : U C ,  which verify the conditions:
  • Re A ( z ) > 0 , z U ;
  • | Im C ( z ) | n · Re A ( z ) .
If  p H [ a , n ] , then
Re A ( z ) z p ( z ) + C ( z ) p ( z ) > 0 , z U Re p ( z ) > 0 , z U .
Considering in Remark 4 that  C ( z ) = 1 , we have the following result, which is necessary to prove one of our theorems:
Remark 5.
( a > 0 , D = B = 0 , C = 1 ) Let  a > 0  and  n N * .  Let us consider the complex function  A : U C ,  with  Re A ( z ) > 0 , z U .  If  p H [ a , n ] , then
Re A ( z ) z p ( z ) + p ( z ) > 0 , z U Re p ( z ) > 0 , z U .
Remark 6.
For  p N * γ C  with  Re γ > p h A  with  h ( z ) z · h ( z ) 0 , z U , we will consider some new functions defined as:
  • H ( z ) = h ( z ) h ( z ) ,
  • P ( z ) = 1 z G ( z ) G ( z ) , where  G = J p , γ , h ( g ) , g Σ p , γ , h ,
  • Q ( z ) = z γ + z H H ( P + 1 ) .
For Q with  Q ( z ) 0 , z U ,  let be:
  • A ( z ) = H ( z ) Q ( z ) ,
  • C ( z ) = z γ + 2 z H ( z ) 2 H ( z ) Q ( z ) ,
  • D ( z ) = z H ( z ) z 2 H ( z ) H ( z ) Q ( z ) .
Theorem 3.
Let  p N * γ C  with  Re γ > p  and  h A  with  h ( z ) z · h ( z ) 0 .
Additionally, let  g Σ p , γ , h  and  G = J p , γ , h ( g ) , with  z p + 1 G ( z ) 0 , z U .
We consider the functions  A , C , D : U C , defined as above, satisfying the conditions:
Re A ( z ) > 0 , z U p Im C ( z ) 2 ( 3 p + 1 ) Re A ( z ) · [ p ( p + 1 ) Re A ( z ) 2 · Re D ( z ) ] .
If  g Σ K p ,  then  G Σ K p  with  z p G ( z ) 0 , z U  and
Re z G ( z ) G ( z ) + γ z h ( z ) h ( z ) > 0 , z U .
Proof. 
Since the hypothesis of Theorem 2 is fulfilled, we have  G Σ p  with  z p G ( z ) 0 , z U ,  and
Re z G ( z ) G ( z ) + γ z h ( z ) h ( z ) > 0 , z U .
Since  G Σ p  and  z p + 1 G ( z ) 0 , z U ,  we have  P H [ p , p + 1 ] .
We want to prove now that we have  Re 1 z G G > 0 , z U ,  meaning that  Re P ( z ) > 0 , z U .
From  P = 1 z G G  we obtain
z G = G ( P + 1 ) , z 2 G = G [ ( P + 1 ) ( P + 2 ) z P ] .
On the other hand, from  G = J p , γ , h ( g ) = γ p h γ ( z ) 0 z g ( t ) h γ 1 ( t ) h ( t ) d t , we have
γ G + H G = ( γ p ) g .
Therefore,
γ G + H G + H G = ( γ p ) g z γ G + z H G + z H G = z ( γ p ) g
and, from (6), we obtain
z γ G + z H G H G ( P + 1 ) = z ( γ p ) g .
From  γ G + H G + H G = ( γ p ) g  we have
γ G + H G + 2 H G + H G = ( γ p ) g z 2 γ G + z 2 H G + 2 z 2 H G + z 2 H G = z 2 ( γ p ) g
and, from (6), we obtain
z γ G ( P + 1 ) + z 2 H G 2 z H G ( P + 1 ) + H G [ ( P + 1 ) ( P + 2 ) z P ] = z 2 ( γ p ) g .
Next, we divide (8) by (7), and we obtain
z g g = z γ ( P + 1 ) + z 2 H 2 z H ( P + 1 ) + H [ ( P + 1 ) ( P + 2 ) z P ] z γ + z H H ( P + 1 ) ,
so
1 z g g = 1 z γ ( P + 1 ) + z 2 H 2 z H ( P + 1 ) + H [ ( P + 1 ) ( P + 2 ) z P ] z γ + z H H ( P + 1 ) = z P H + P 2 H + ( γ z + 2 z H 2 H ) P + z H z 2 H H Q ( z ) = A ( z ) ( z P + P 2 ) + C ( z ) P + D ( z ) .
Therefore, we have
1 z g g = A ( z ) z P + A ( z ) P 2 + C ( z ) P + D ( z ) , z U .
By using the fact that  g Σ K p ,  which is equivalent to  Re 1 z g g > 0 , we obtain from (10) that
Re A ( z ) z P + A ( z ) P 2 + C ( z ) P + D ( z ) > 0 , z U .
Since we have  P H [ p , p = 1 ] , we see that the conditions from the hypothesis of Remark 2 are verified for  a = p  and  n = p + 1 .
Using now Remark 2, we obtain from
Re A ( z ) z P + A ( z ) P 2 + C ( z ) P + D ( z ) > 0 , z U ,
that  Re P ( z ) > 0 , z U .
Since  P = 1 z G G  we obtain  G Σ K p  with  z p G ( z ) 0 , z U  and
Re z G ( z ) G ( z ) + γ z h ( z ) h ( z ) > 0 , z U ,
which means that the proof of the theorem is complete. □
Before continuing with some corollaries of Theorem 3, we will show that the conditions given in the hypothesis of the theorem are met for some particular cases. Taking  h ( z ) = z γ R  with  γ > p  and  g ( z ) = 1 z p  we have
H ( z ) = z , Q ( z ) = z ( γ p ) , A ( z ) = 1 γ p , C ( z ) = γ γ p , D ( z ) = 0 .
This means that:
Re A ( z ) > 0 γ > p ( t r u e ) , p Im C ( z ) 2 ( 3 p + 1 ) Re A ( z ) · [ p ( p + 1 ) Re A ( z ) 2 · Re D ( z ) ] 0 ( 3 p + 1 ) p ( p + 1 ) ( γ p ) 2 ( t r u e ) .
Moreover, if we consider in Theorem 3 only that  h ( z ) = z ,  we have  J p , γ , h = J p , γ ,  (introduced in [13]),
z h ( z ) h ( z ) = 1 , H ( z ) = z , Q ( z ) = z γ z P ,
A ( z ) = H ( z ) Q ( z ) = 1 γ P , C ( z ) = γ γ P = γ · A ( z ) , D ( z ) = 0
and
z h ( z ) h ( z ) + ( γ 1 ) z h ( z ) h ( z ) + 1 = γ .
It is obvious that we have  Re A ( z ) > 0 Re P ( z ) < Re γ  and
Im C ( z ) 2 ( 3 p + 1 ) ( p + 1 ) [ Re A ( z ) ] 2 | Im γ P | ( 3 p + 1 ) ( p + 1 ) Re ( γ P ) .
Thus, we obtain:
Corollary 1.
Let  p N * γ C  with  Re γ > p g Σ p  and  G = J p , γ ( g )  with
z p + 1 G ( z ) 0 , z U .
We denote by P the function  P ( z ) = 1 z G ( z ) G ( z ) , z U .
Suppose that  Re P ( z ) < Re γ , z U ,  and  | Im γ P | Re ( γ P ) .
If  g Σ K p ,  such that
z g ( z ) g ( z ) + γ R γ p , p ( z ) , z U ,
then  G Σ K p  with  z p G ( z ) 0 , z U  and
Re z G ( z ) G ( z ) + γ > 0 , z U .
If we consider in Theorem 3 that  h A  satisfies the equality  z γ + 2 z H 2 H = 0 ,  where  H = h h ,  we obtain:
C ( z ) = 0 , D ( z ) = 0 , Q ( z ) = z γ 2 H P ,
so we may consider the next corollary:
Corollary 2.
Let  p N * γ C  with  Re γ > p  and  h A  with
h ( z ) z · h ( z ) 0 , z U , and z γ + 2 z H 2 H = 0 , where H = h h .
Let  g Σ p , γ , h  and  G = J p , γ , h ( g ) , with  z p + 1 G ( z ) 0 , z U .  We denote by P the function  P ( z ) = 1 z G ( z ) G ( z ) . Suppose that  Re P ( z ) < Re z γ h 2 h , z U .
If  g Σ K p ,  then  G Σ K p  with  z p G ( z ) 0 , z U  and
Re z G ( z ) G ( z ) + γ z h ( z ) h ( z ) > 0 , z U .
In order to prove the next theorem, we need the following lemma:
Lemma 2.
Let  p H [ a , n ] , where  n N * a C  with  Re a > 0 .
We have
Re z p ( z ) p ( z ) 1 p ( z ) > 0 , z U Re p ( z ) > 0 , z U .
Proof. 
To prove this result, we use the class of admissible functions. We consider the function  ψ ( r , s , t ; z ) = s 1 r .
We need to show that  Re ψ ( ρ i , σ , μ + i ν ; z ) 0 , when  ρ , σ , μ , ν R , z U ,  with
σ n 2 · | a i ρ | 2 Re a , σ + μ 0 .
We have
ψ ( ρ i , σ , μ + i ν ; z ) = σ 1 i ρ = ( 1 σ ) i ρ .
Therefore,
Re ψ ( ρ i , σ , μ + i ν ; z ) = Re ( 1 σ ) i ρ = 0 ,
for  ρ R * σ n 2 · | a i ρ | 2 Re a .
Thus,  Re ψ ( ρ i , σ , μ + i ν ; z ) 0 ,  when  ρ , σ , μ , ν R , z U ,  with
σ n 2 · | a i ρ | 2 Re a , σ + μ 0 .
This means that we have  ψ Ψ n { a } .
From Theorem 1, since  ψ Ψ n { a }  and  Re ψ ( p ( z ) , z p ( z ) , z 2 p ( z ) ; z ) > 0 ,  for  z U , we obtain  Re p ( z ) > 0 .   □
For  p N * γ C  with  Re γ > p  and  h A  with  h ( z ) z · h ( z ) 0 , let us define the classes:
Σ K p , γ , h = Σ K p Σ p , γ , h ,
Σ C p , γ , h = g Σ p , γ , h / ( ) φ Σ K p , γ , h such that Re g φ > 0 , z U , and g φ | z = 0 = 1 .
Remark 7.
Taking Remark 1 into account, it is not difficult to see that if we have  g Σ C p , γ , h , then
J p , γ , h ( g ) J p , γ , h ( φ ) | z = 0 = 1 .
Theorem 4.
Let  p N * γ C  with  Re γ > p  and  h A  with  h ( z ) z · h ( z ) 0 , such that
Re γ z · h ( z ) h ( z ) < 0 , z U .
If  J p , γ , h Σ K p , γ , h Σ K p , then  J p , γ , h Σ C p , γ , h Σ C p .
Proof. 
Let  g Σ C p , γ , h Σ p , γ , h  and  G = J p , γ , h ( g ) .  Since the hypothesis of Theorem 2 is fulfilled, we have  G Σ p  with  z p G ( z ) 0 , z U ,  and
Re z G ( z ) G ( z ) + γ z h ( z ) h ( z ) > 0 , z U .
From  G = J p , γ , h ( g ) , we have  γ G + H G = ( γ p ) g , where  H ( z ) = h ( z ) h ( z ) .  Therefore,
γ G + H G + H G = ( γ p ) g .
Because  g Σ C p , γ , h , we have from the definition of the class that there is a function  φ Σ K p , γ , h  such that
Re g φ > 0 , z U , and g φ | z = 0 = 1 .
Since  φ Σ K p , γ , h Σ p , γ , h ,  the hypothesis of Theorem 2 is fulfilled, so we have  Φ = J p , γ , h ( φ ) Σ p  with  z p Φ ( z ) 0 , z U ,  and
Re z Φ ( z ) Φ ( z ) + γ z h ( z ) h ( z ) > 0 , z U .
From  Φ = J p , γ , h ( φ )  we have  γ Φ + H Φ = ( γ p ) φ . Therefore,
γ Φ + H Φ + H Φ = ( γ p ) φ .
Because we have in the hypothesis of our theorem  J p , γ , h Σ K p , γ , h Σ K p , we obtain that  Φ = J p , γ , h ( φ ) Σ K p .
Let us denote  P ( z ) = G ( z ) Φ ( z ) , z U . First of all, we show that we have  P H [ 1 , p + 1 ] . It is not difficult to see, due to Remark 1, that
g G | z = 0 = 1 , φ Φ | z = 0 = 1
and, since  g φ | z = 0 = 1 , we obtain that  G Φ | z = 0 = 1 .
Using now the fact that  G , Φ Σ p ,  after a little computation, we obtain  G ( z ) Φ ( z ) H [ 1 , p + 1 ] .
From  P ( z ) = G ( z ) Φ ( z ) , z U , we have
G ( z ) = Φ ( z ) · P ( z ) and G ( z ) = Φ ( z ) · P ( z ) + Φ ( z ) · P ( z ) , z U .
By replacing  G  and  G  from (12) with the forms from (15), we obtain:
γ Φ P + H Φ P + H Φ P + H Φ P = ( γ p ) g .
Since from (14) we have  γ Φ + H Φ + H Φ = ( γ p ) φ , by replacing it in (16), we obtain
( γ p ) φ · P + H Φ · P = ( γ p ) g .
Therefore,
P + H Φ · P ( γ p ) φ = g φ ,
which is equivalent to
P ( z ) + A ( z ) · z P ( z ) = g ( z ) φ ( z ) , z U , where A ( z ) = H Φ ( γ p ) z φ .
From (13), we have  Re g ( z ) φ ( z ) > 0 , z U .  Thus, we obtain
Re P ( z ) + A ( z ) · z P ( z ) > 0 , z U .
Next, we prove that we have  Re A ( z ) > 0 , z U .
We know that  A = H Φ ( γ p ) z φ . Thus,  ( γ p ) z φ A = H Φ , and using now the logarithmic differential and then multiplying the result by z, we obtain
1 + z φ φ + z A A = z H H + z Φ Φ .
On the other hand, from  γ Φ + H Φ + H Φ = ( γ p ) φ  (see (14)) and  A = H Φ ( γ p ) z φ ,  we obtain that
1 A = ( γ p ) z φ H Φ = z γ Φ + z H Φ + z H Φ H Φ = z γ H + z H H + z Φ Φ .
This means that we have
z H H + z Φ Φ = 1 A z γ H .
Using now (19) in (18), we find that
1 + z φ φ + z A A = 1 A z γ H
1 + z φ φ + z γ H = 1 A z A A .
Now, on one hand, since  φ Σ K p , we have  Re 1 + z φ φ < 0 .
On the other hand, from the hypothesis of our theorem, we have  Re z γ H = Re z γ h h < 0 . Therefore, we obtain from (20) that
Re 1 A z A A < 0 Re z A A 1 A > 0 , z U .
It is not difficult to remark, from the definition of A, that we have  A H 1 γ p , 1 .
Since we have  Re 1 γ p > 0 A H 1 γ p , 1  and  Re z A A 1 A > 0 , z U , we may apply Lemma 2, and we obtain  Re A ( z ) > 0 , z U .
We use now Remark 5 since we have  A : U C ,  with  Re A ( z ) > 0 , z U ,  and  P H [ 1 , p + 1 ] , such that  Re A ( z ) z P ( z ) + P ( z ) > 0 , z U  (see (17)), and we obtain that  Re P ( z ) > 0 , z U .  This means that we have  Re G Φ > 0 , z U ,  so,  G = J p , γ , h ( g ) Σ C p .
Finally, we proved that  J p , γ , h Σ C p , γ , h Σ C p .   □

3. Discussion

The new integral operator on meromorphic functions, denoted by  J p , γ , h , is used to study the conditions that allow this operator to preserve the class of convex meromorphic multivalent functions.
In addition, the integral operator used in our work depends on an analytic normalized function h. In certain particular cases of the function h, we obtain operators that have been used to study either properties related to subordination or conservation of special classes of functions. We mention here the fact that the subordination relationship between two functions can also be seen as an inclusion relationship between two domains.
The first result of the present paper is a lemma that helps us to obtain complex functions with positive real parts. Of course, we need this lemma to prove the first theorem. This lemma is a generalization of other previous results, and some particular cases are grouped under remarks. They also may be useful to prove some new theorems.
Examples were given as corollaries for particular cases of the function h. We mention here that a result similar to Corollary 1 was proved in [13] (see Corollary 2 for  β = 1  combined with Theorem 14 for  α = 0 ); this is a result that has in the hypothesis fewer conditions. This means that Theorem 1 can be improved.
In the last theorem, we will find out in which situation the conservation of the class of convex meromorphic functions will attract the conservation of the class of close-to-convex meromorphic functions. A useful lemma, dealing with complex functions with positive real parts, is also stated to help with the proof of the theorem.
Of course, this new integral operator can be used to introduce other subclasses of meromorphic functions, and, also, new properties of it can be investigated.
We could have presented our results using the class of meromorphic p-valent functions normalized to one (which may be found in previous papers and is denoted by  Σ p , 0 ), without loss of generality, but we preferred to use the class  Σ p  instead of  Σ p , 0  because the notation was simpler.

Author Contributions

Conceptualization, E.-A.T.; methodology, E.-A.T.; software, E.-A.T. and L.-I.C.; validation, E.-A.T. and L.-I.C.; formal analysis, E.-A.T.; investigation, E.-A.T. and L.-I.C.; resources, E.-A.T.; data curation, E.-A.T.; writing—original draft preparation, E.-A.T.; writing—review and editing, E.-A.T.; visualization, E.-A.T.; supervision, E.-A.T. and L.-I.C.; project administration, E.-A.T.; funding acquisition, L.-I.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research was partially supported by the project 38 PFE in the frame of the programme PDI-PFE-CDI 2021.

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The authors declare no conflict of interest in this paper.

References

  1. Nehari, Z.; Netanyahu, E. Coefficients of meromorphic schlicht functions. Proc. Am. Math. Soc. 1957, 8, 15–23. [Google Scholar] [CrossRef]
  2. Clunie, J. On meromorphic schlicht functions. J. London Math. Soc. 1959, 34, 215–216. [Google Scholar] [CrossRef]
  3. Bajpai, S.K. A note on a class of meromorphic univalent functions. Rev. Roum. Math. Pures Appl. 1977, 22, 295–297. [Google Scholar]
  4. Goel, R.M.; Sohi, N.S. On a class of meromorphic functions. Glas. Mat. Ser. III 1981, 17, 19–28. [Google Scholar]
  5. Reddy, T.R.; Juneja, O.P. Integral operators on a class of meromorphic functions. C. R. Acad. Bulg. Sci. 1987, 40, 21–23. [Google Scholar]
  6. Mocanu, P.T.; Şt. Sălăgean, G. Integral operators and meromorphic starlike functions. Mathematica 1990, 32, 147–152. [Google Scholar]
  7. Breaz, D.; Karthikeyan, K.R.; Umadevi, E. Subclasses of Multivalent Meromorphic Functions with a Pole of Order p at the Origin. Mathematics 2022, 10, 600. [Google Scholar] [CrossRef]
  8. El-Qadeem, A.H.; Elshazly, I.S. Hadamard Product Properties for Certain Subclasses of p-Valent Meromorphic Functions. Axioms 2022, 11, 172. [Google Scholar] [CrossRef]
  9. Güney, H.Ö.; Breaz, D.; Owa, S. A New Operator for Meromorphic Functions. Mathematics 2022, 10, 1985. [Google Scholar] [CrossRef]
  10. El-Deeb, S.; Khan, N.; Arif, M.; Alburaikan, A. Fuzzy Differential Subordination for Meromorphic Function. Axioms 2022, 11, 534. [Google Scholar] [CrossRef]
  11. Totoi, E.-A.; Cotîrlă, L.-I. Preserving Classes of Meromorphic Functions through Integral Operators. Symmetry 2022, 14, 1545. [Google Scholar] [CrossRef]
  12. Miller, S.S.; Mocanu, P.T. Differential Subordinations. Theory and Applications; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
  13. Totoi, A. On integral operators for meromorphic functions. Gen. Math. 2010, 18, 91–108. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Totoi, E.-A.; Cotirla, L.-I. Integral Operators Applied to Classes of Convex and Close-to-Convex Meromorphic p-Valent Functions. Symmetry 2023, 15, 2079. https://doi.org/10.3390/sym15112079

AMA Style

Totoi E-A, Cotirla L-I. Integral Operators Applied to Classes of Convex and Close-to-Convex Meromorphic p-Valent Functions. Symmetry. 2023; 15(11):2079. https://doi.org/10.3390/sym15112079

Chicago/Turabian Style

Totoi, Elisabeta-Alina, and Luminita-Ioana Cotirla. 2023. "Integral Operators Applied to Classes of Convex and Close-to-Convex Meromorphic p-Valent Functions" Symmetry 15, no. 11: 2079. https://doi.org/10.3390/sym15112079

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop