Time–Energy Uncertainty Relation for Neutrino Oscillations: Historical Development, Applications, and Future Prospects
Abstract
:1. Introduction
2. TEUR for Oscillating and Unstable Particles
2.1. TEUR for Neutrino Oscillations (à-la Bilenky)
2.2. TEUR and Unstable Particles
3. Gravitational Effects on TEUR
3.1. TEUR in Curved Spacetime
3.1.1. Schwarzschild Spacetime
3.1.2. Lense–Thirring Spacetime
3.1.3. Rindler Spacetime
4. TEUR in Quantum Field Theory
4.1. Time–Energy Uncertainty Relations for Neutrino Oscillations: Pontecorvo Flavor States
4.2. Flavor Fock Space Approach to Neutrino Mixing and Oscillations
4.3. Time–Energy Uncertainty Relation for Neutrino Oscillations in QFT
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TEUR | Time–Energy Uncertainty Relation |
QFT | Quantum Field Theory |
QM | Quantum Mechanics |
References
- Bauer, M.; Mello, P.A. The Time-Energy Uncertainty Relation. Ann. Phys. 1978, 111, 38–60. [Google Scholar] [CrossRef]
- Busch, P. The Time-Energy Uncertainty Relation; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar] [CrossRef]
- Mandelstam, L.; Tamm, I. The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics. J. Phys. Mosc. 1945, 9, 249. [Google Scholar] [CrossRef]
- Wigner, E.P. On the Time-Energy Uncertainty Relation. In Special Relativity and Quantum Theory: A Collection of Papers on the Poincaré Group; Noz, M.E., Kim, Y.S., Eds.; Springer: Dordrecht, The Netherlands, 1988; pp. 199–209. [Google Scholar] [CrossRef]
- Bilenky, S.M. Neutrino oscillations and time-energy uncertainty relation. arXiv 2005, arXiv:hep-ph/0605228. [Google Scholar]
- Giunti, C.; Kim, C. Fundamentals of Neutrino Physics and Astrophysics; OUP Oxford: Oxford, UK, 2007. [Google Scholar]
- Bilenky, S.M.; von Feilitzsch, F.; Potzel, W. Time–energy uncertainty relations for neutrino oscillations and the Mössbauer neutrino experiment. J. Phys. Nucl. Part. Phys. 2008, 35, 095003. [Google Scholar] [CrossRef]
- Akhmedov, E.K.; Kopp, J.; Lindner, M. On application of the time-energy uncertainty relation to Mossbauer neutrino experiments. J. Phys. G 2009, 36, 078001. [Google Scholar] [CrossRef]
- Blasone, M.; Lambiase, G.; Luciano, G.G.; Petruzziello, L.; Smaldone, L. Time-energy uncertainty relation for neutrino oscillations in curved spacetime. Class. Quant. Grav. 2020, 37, 155004. [Google Scholar] [CrossRef]
- Blasone, M.; Jizba, P.; Smaldone, L. Flavor-energy uncertainty relations for neutrino oscillations in quantum field theory. Phys. Rev. D 2019, 99, 016014. [Google Scholar] [CrossRef]
- Blasone, M.; Vitiello, G. Quantum field theory of fermion mixing. Ann. Phys. 1995, 244, 283–311, Erratum in Ann. Phys. 1996, 249, 363–364. [Google Scholar] [CrossRef]
- Blasone, M.; Capolupo, A.; Romei, O.; Vitiello, G. Quantum field theory of boson mixing. Phys. Rev. D 2001, 63, 125015. [Google Scholar] [CrossRef]
- Bhattacharyya, K. Quantum decay and the Mandelstam-Tamm-energy inequality. J. Phys. A Math. Gen. 1983, 16, 2993. [Google Scholar] [CrossRef]
- Blasone, M.; Jizba, P.; Smaldone, L. Flavor neutrinos as unstable particles. J. Phys. Conf. Ser. 2020, 1612, 012004. [Google Scholar] [CrossRef]
- Bilenky, S.M.; von Feilitzsch, F.; Potzel, W. Different Schemes of Neutrino Oscillations in Mossbauer Neutrino Experiment. arXiv 2008, arXiv:0804.3409. [Google Scholar]
- Bilenky, S.M.; von Feilitzsch, F.; Potzel, W. Reply to the Comment on `On application of the time-energy uncertainty relation to Moessbauer neutrino experiments’ by E Kh Akhmedov, J Kopp and M Lindner. J. Phys. G 2009, 36, 078002. [Google Scholar] [CrossRef]
- Bilenky, S.M.; von Feilitzsch, F.; Potzel, W. Neutrino Oscillations and Uncertainty Relations. J. Phys. G 2011, 38, 115002. [Google Scholar] [CrossRef]
- Aliu, E.; Andringa, S.; Aoki, S.; Argyriades, J.; Asakura, K.; Ashie, R.; Berns, H.; Bhang, H.; Blondel, A.; Borghi, S.; et al. Evidence for muon neutrino oscillation in an accelerator-based experiment. Phys. Rev. Lett. 2005, 94, 081802. [Google Scholar] [CrossRef] [PubMed]
- Ashie, Y.; Hosaka, J.; Ishihara, K.; Itow, Y.; Kameda, J.; Koshio, Y.; Minamino, A.; Mitsuda, C.; Miura, M.; Moriyama, S.; et al. Evidence for an oscillatory signature in atmospheric neutrino oscillation. Phys. Rev. Lett. 2004, 93, 101801. [Google Scholar] [CrossRef] [PubMed]
- Apollonio, M.; Baldini, A.; Bemporad, C.; Caffau, E.; Cei, F.; Declais, Y.; De Kerret, H.; Dieterle, B.; Etenko, A.; George, J.; et al. Limits on neutrino oscillations from the CHOOZ experiment. Phys. Lett. B 1999, 466, 415–430. [Google Scholar] [CrossRef]
- Kells, W.P.; Schiffer, J.P. Possibility of observing recoilless resonant neutrino absorption. Phys. Rev. C 1983, 28, 2162–2164. [Google Scholar] [CrossRef]
- Akhmedov, E.K.; Kopp, J.; Lindner, M. Oscillations of Mossbauer neutrinos. J. High Energy Phys. 2008, 2008, 005. [Google Scholar] [CrossRef]
- Machado, P.A.N.; Nunokawa, H.; Pereira dos Santos, F.A.; Zukanovich Funchal, R. Testing Nonstandard Neutrino Properties with a Mössbauer Oscillation Experiment. J. High Energy Phys. 2011, 11, 136. [Google Scholar] [CrossRef]
- Raghavan, R.S.; Minic, D.; Takeuchi, T.; Tze, C.H. Using Neutrinos to test the Time-Energy Uncertainty Relation in an Extreme Regime. arXiv 2012, arXiv:1210.5639. [Google Scholar]
- Giunti, C.; Kim, C.W.; Lee, J.A.; Lee, U.W. On the treatment of neutrino oscillations without resort to weak eigenstates. Phys. Rev. D 1993, 48, 4310–4317. [Google Scholar] [CrossRef] [PubMed]
- Beuthe, M. Oscillations of neutrinos and mesons in quantum field theory. Phys. Rept. 2003, 375, 105–218. [Google Scholar] [CrossRef]
- Naumov, D.V.; Naumov, V.A. Relativistic wave packets in a field theoretical approach to neutrino oscillations. Russ. Phys. J. 2010, 53, 549–574. [Google Scholar] [CrossRef]
- Naumov, D.V.; Naumov, V.A. A Diagrammatic treatment of neutrino oscillations. J. Phys. G 2010, 37, 105014. [Google Scholar] [CrossRef]
- Griffiths, D. Introduction to Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- De Filippo, S.; Vitiello, G. Vacuum Structure for Unstable Particles. Lett. Nuovo Cim. 1977, 19, 92. [Google Scholar] [CrossRef]
- Umezawa, H.; Matsumoto, H.; Tachiki, M. Thermo Field Dynamics and Condensed States; North-Holland Publishing Company: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Umezawa, H. Advanced Field Theory: Micro, Macro, and Thermal Physics; American Inst. of Physics: Woodbury, NY, USA, 1993. [Google Scholar]
- Blasone, M.; Jizba, P.; Luciano, G.G. Unified formalism for Thermal Quantum Field Theories: A geometric viewpoint. Ann. Phys. 2018, 397, 213–233. [Google Scholar] [CrossRef]
- Israel, W. Thermo field dynamics of black holes. Phys. Lett. A 1976, 57, 107–110. [Google Scholar] [CrossRef]
- Vitiello, G. Dissipation and memory capacity in the quantum brain model. Int. J. Mod. Phys. B 1995, 9, 973. [Google Scholar] [CrossRef]
- Ahluwalia, D.V.; Burgard, C. Gravitationally induced quantum mechanical phases and neutrino oscillations in astrophysical environments. Gen. Rel. Grav. 1996, 28, 1161–1170. [Google Scholar] [CrossRef]
- Cardall, C.Y.; Fuller, G.M. Neutrino oscillations in curved space-time: An Heuristic treatment. Phys. Rev. D 1997, 55, 7960–7966. [Google Scholar] [CrossRef]
- Blasone, M.; Lambiase, G.; Luciano, G.G.; Petruzziello, L. Neutrino oscillations in accelerated frames. Europhys. Lett. 2018, 124, 51001. [Google Scholar] [CrossRef]
- Fornengo, N.; Giunti, C.; Kim, C.; Song, J. Gravitational effects on the neutrino oscillation. Phys. Rev. D 1997, 56, 1895–1902. [Google Scholar] [CrossRef]
- Capozziello, S.; Lambiase, G. Neutrino oscillations in Brans-Dicke theory of gravity. Mod. Phys. Lett. A 1999, 14, 2193. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rept. 2011, 509, 167–321. [Google Scholar] [CrossRef]
- Piriz, D.; Roy, M.; Wudka, J. Neutrino oscillations in strong gravitational fields. Phys. Rev. D 1996, 54, 1587–1599. [Google Scholar] [CrossRef]
- Lambiase, G. Pulsar kicks induced by spin flavor oscillations of neutrinos in gravitational fields. Mon. Not. Roy. Astron. Soc. 2005, 362, 867–871. [Google Scholar] [CrossRef]
- Buoninfante, L.; Luciano, G.G.; Petruzziello, L.; Smaldone, L. Neutrino oscillations in extended theories of gravity. Phys. Rev. D 2020, 101, 024016. [Google Scholar] [CrossRef]
- Dvornikov, M. Neutrino interaction with background matter in a non-inertial frame. Mod. Phys. Lett. A 2015, 30, 1530017. [Google Scholar] [CrossRef]
- Bhattacharya, T.; Habib, S.; Mottola, E. Gravitationally induced neutrino oscillation phases in static space-times. Phys. Rev. D 1999, 59, 067301. [Google Scholar] [CrossRef]
- Luciano, G.G.; Petruzziello, L. Testing gravity with neutrinos: From classical to quantum regime. Int. J. Mod. Phys. D 2020, 29, 2043002. [Google Scholar] [CrossRef]
- Lambiase, G.; Papini, G.; Punzi, R.; Scarpetta, G. Neutrino optics and oscillations in gravitational fields. Phys. Rev. D 2005, 71, 073011. [Google Scholar] [CrossRef]
- Visinelli, L. Neutrino flavor oscillations in a curved space-time. Gen. Rel. Grav. 2015, 47, 62. [Google Scholar] [CrossRef]
- Lambiase, G.; Mastrototaro, L.; Visinelli, L. Gravitational waves and neutrino oscillations in Chern-Simons axion gravity. J. Cosmol. Astropart. Phys. 2023, 1, 11. [Google Scholar] [CrossRef]
- Luciano, G.G.; Blasone, M. Gravitational Effects on Neutrino Decoherence in the Lense–Thirring Metric. Universe 2021, 7, 417. [Google Scholar] [CrossRef]
- Capolupo, A.; Lambiase, G.; Quaranta, A. Neutrinos in curved spacetime: Particle mixing and flavor oscillations. Phys. Rev. D 2020, 101, 095022. [Google Scholar] [CrossRef]
- Capolupo, A.; Quaranta, A.; Setaro, P.A. Boson mixing and flavor oscillations in curved spacetime. Phys. Rev. D 2022, 106, 043013. [Google Scholar] [CrossRef]
- Ahluwalia, D.V. Notes on the kinematic structure of the three flavor neutrino oscillation framework. Int. J. Mod. Phys. A 1997, 12, 5081–5102. [Google Scholar] [CrossRef]
- DeWitt, B.S. Quantum Field Theory in Curved Space-Time. Phys. Rept. 1975, 19, 295–357. [Google Scholar] [CrossRef]
- Kodama, H. Conserved Energy Flux for the Spherically Symmetric System and the Back Reaction Problem in the Black Hole Evaporation. Prog. Theor. Phys. 1980, 63, 1217. [Google Scholar] [CrossRef]
- Ciufolini, I.; Wheeler, J. Gravitation and Inertia; Princeton Series in Physics; Princeton University Press: Princeton, NJ, USA, 1995. [Google Scholar]
- Sciama, D.W.; Candelas, P.; Deutsch, D. Quantum field theory, horizons and thermodynamics. Adv. Phys. 1981, 30, 327–366. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W. H. Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Gribov, V.N.; Pontecorvo, B. Neutrino astronomy and lepton charge. Phys. Lett. B 1969, 28, 493. [Google Scholar] [CrossRef]
- Bilenky, S.M.; Pontecorvo, B. Quark-Lepton Analogy and Neutrino Oscillations. Phys. Lett. B 1976, 61, 248. [Google Scholar] [CrossRef]
- Bilenky, S.M.; Pontecorvo, B. Again on Neutrino Oscillations. Lett. Nuovo Cim. 1976, 17, 569. [Google Scholar] [CrossRef]
- Bilenky, S.M.; Pontecorvo, B. Lepton Mixing and the Solar Neutrino Puzzle. Comments Nucl. Part. Phys. 1977, 7, 149–152. [Google Scholar]
- Bilenky, S.M.; Petcov, S.T. Massive Neutrinos and Neutrino Oscillations. Rev. Mod. Phys. 1987, 59, 671, Erratum in Rev. Mod. Phys. 1989, 61, 169; Erratum in Rev. Mod. Phys. 1988, 60, 575. [Google Scholar] [CrossRef]
- Mannheim, P.D. Derivation of the formalism for neutrino matter oscillations from the neutrino relativistic field equations. Phys. Rev. D 1988, 37, 1935–1941. [Google Scholar] [CrossRef] [PubMed]
- Giunti, C.; Kim, C.W.; Lee, U.W. Remarks on the weak states of neutrinos. Phys. Rev. D 1992, 45, 2414–2420. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.M. On Neutrino Flavor States. J. High Energy Phys. 2012, 12, 022. [Google Scholar] [CrossRef]
- Lobanov, A.E. Particle quantum states with indefinite mass and neutrino oscillations. Ann. Phys. 2019, 403, 82–105. [Google Scholar] [CrossRef]
- Fantini, G.; Gallo Rosso, A.; Vissani, F.; Zema, V. Introduction to the Formalism of Neutrino Oscillations. Adv. Ser. Direct. High Energy Phys. 2018, 28, 37–119. [Google Scholar] [CrossRef]
- Alfinito, E.; Blasone, M.; Iorio, A.; Vitiello, G. Squeezed neutrino oscillations in quantum field theory. Phys. Lett. B 1995, 362, 91–96. [Google Scholar] [CrossRef]
- Fujii, K.; Habe, C.; Yabuki, T. Note on the field theory of neutrino mixing. Phys. Rev. D 1999, 59, 113003. [Google Scholar] [CrossRef]
- Hannabuss, K.C.; Latimer, D.C. The quantum field theory of fermion mixing. J. Phys. A 2000, 33, 1369–1373. [Google Scholar] [CrossRef]
- Fujii, K.; Habe, C.; Yabuki, T. Remarks on flavor-neutrino propagators and oscillation formulas. Phys. Rev. D 2001, 64, 013011. [Google Scholar] [CrossRef]
- Ji, C.R.; Mishchenko, Y. General theory of quantum field mixing. Phys. Rev. D 2002, 65, 096015. [Google Scholar] [CrossRef]
- Hannabuss, K.C.; Latimer, D.C. Fermion mixing in quasifree states. J. Phys. A 2003, 36, L69. [Google Scholar] [CrossRef]
- Lee, C.Y. Interactions and oscillations of coherent flavor eigenstates in beta decay. Mod. Phys. Lett. A 2020, 35, 2030015. [Google Scholar] [CrossRef]
- Luciano, G.G. On the flavor/mass dichotomy for mixed neutrinos: A phenomenologically motivated analysis based on lepton charge conservation in neutron decay. Eur. Phys. J. Plus 2023, 138, 83. [Google Scholar] [CrossRef]
- Blasone, M.; Dell’Anno, F.; De Siena, S.; Illuminati, F. Entanglement in neutrino oscillations. Europhys. Lett. 2009, 85, 50002. [Google Scholar] [CrossRef]
- Alok, A.K.; Banerjee, S.; Sankar, S.U. Quantum correlations in terms of neutrino oscillation probabilities. Nucl. Phys. B 2016, 909, 65–72. [Google Scholar] [CrossRef]
- Naikoo, J.; Kumari, S.; Banerjee, S.; Pan, A. Probing inequivalent forms of Leggett–Garg inequality in subatomic systems. J. Phys. G 2020, 47, 095004. [Google Scholar] [CrossRef]
- Blasone, M.; Illuminati, F.; Petruzziello, L.; Simonov, K.; Smaldone, L. No-signaling-in-time as a condition for macrorealism: The case of neutrino oscillations. Eur. Phys. J. C 2023, 83, 688. [Google Scholar] [CrossRef]
- Blasone, M.; Henning, P.A.; Vitiello, G. The Exact formula for neutrino oscillations. Phys. Lett. B 1999, 451, 140–145. [Google Scholar] [CrossRef]
- Blasone, M.; Jizba, P.; Mavromatos, N.E.; Smaldone, L. Some nontrivial aspects of Poincaré and CPT invariance of flavor vacuum. Phys. Rev. D 2020, 102, 025021. [Google Scholar] [CrossRef]
- Luciano, G.G.; Blasone, M. Nonextensive Tsallis statistics in Unruh effect for Dirac neutrinos. Eur. Phys. J. C 2021, 81, 995. [Google Scholar] [CrossRef]
- Kayser, B. On the quantum mechanics of neutrino oscillation. Phys. Rev. D 1981, 24, 110–116. [Google Scholar] [CrossRef]
- Berezin, J.; Berezin, F.; Firm, E.S.T.; Mugibayashi, N.; Jeffrey, A. The Method of Second Quantization; Pure and Applied Physics: A Series of Monographs and Textbooks. 24; Academic Press: Cambridge, MA, USA, 1966. [Google Scholar]
- Tanabashi, M.; Grp, P.D.; Hagiwara, K.; Hikasa, K.; Nakamura, K.; Sumino, Y.; Takahashi, F.; Tanaka, J.; Agashe, K.; Aielli, G.; et al. Review of Particle Physics. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef]
- Blasone, M.; Giacosa, F.; Smaldone, L.; Torrieri, G. Neutrino oscillations in the interaction picture. Eur. Phys. J. C 2023, 83, 736. [Google Scholar] [CrossRef]
- Capolupo, A.; Quaranta, A. Boson mixing and flavor vacuum in the expanding Universe: A possible candidate for the dark energy. Phys. Lett. B 2023, 840, 137889. [Google Scholar] [CrossRef]
- Addazi, A.; Capozziello, S.; Gan, Q.; Marcianò, A. Dark energy and neutrino superfluids. Phys. Dark Univ. 2022, 37, 101102. [Google Scholar] [CrossRef]
- Carrillo González, M.; Liang, Q.; Sakstein, J.; Trodden, M. Neutrino-Assisted Early Dark Energy: Theory and Cosmology. J. Cosmol. Astropart. Phys. 2021, 04, 063. [Google Scholar] [CrossRef]
- Amiri, H.R.; Salehi, A.; Noroozi, A.H. Constraining neutrino mass in dark energy dark matter interaction and comparison with 2018 Planck results. Eur. Phys. J. C 2021, 81, 479. [Google Scholar] [CrossRef]
- Blasone, M.; Dell’Anno, F.; De Siena, S.; Illuminati, F. Neutrino flavor entanglement. Nucl. Phys. B-Proc. Suppl. 2013, 237-238, 320–322. [Google Scholar] [CrossRef]
- Banerjee, S.; Alok, A.K.; Srikanth, R.; Hiesmayr, B.C. A quantum information theoretic analysis of three flavor neutrino oscillations. Eur. Phys. J. C 2015, 75, 487. [Google Scholar] [CrossRef]
- Bittencourt, V.A.S.V.; Blasone, M.; De Siena, S.; Matrella, C. Complete complementarity relations for quantum correlations in neutrino oscillations. Eur. Phys. J. C 2022, 82, 566. [Google Scholar] [CrossRef]
- Li, Y.W.; Li, L.J.; Song, X.K.; Wang, D.; Ye, L. Geuine tripartite entanglement in three-flavor neutrino oscillations. Eur. Phys. J. C 2022, 82, 799. [Google Scholar] [CrossRef]
- Wang, G.J.; Li, Y.W.; Li, L.J.; Song, X.K.; Wang, D. Monogamy properties of quantum correlations in neutrino oscillations. Eur. Phys. J. C 2023, 83, 801. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luciano, G.G.; Smaldone, L. Time–Energy Uncertainty Relation for Neutrino Oscillations: Historical Development, Applications, and Future Prospects. Symmetry 2023, 15, 2032. https://doi.org/10.3390/sym15112032
Luciano GG, Smaldone L. Time–Energy Uncertainty Relation for Neutrino Oscillations: Historical Development, Applications, and Future Prospects. Symmetry. 2023; 15(11):2032. https://doi.org/10.3390/sym15112032
Chicago/Turabian StyleLuciano, Giuseppe Gaetano, and Luca Smaldone. 2023. "Time–Energy Uncertainty Relation for Neutrino Oscillations: Historical Development, Applications, and Future Prospects" Symmetry 15, no. 11: 2032. https://doi.org/10.3390/sym15112032
APA StyleLuciano, G. G., & Smaldone, L. (2023). Time–Energy Uncertainty Relation for Neutrino Oscillations: Historical Development, Applications, and Future Prospects. Symmetry, 15(11), 2032. https://doi.org/10.3390/sym15112032