Uniform Convexity in Variable Exponent Sobolev Spaces
Abstract
:1. Introduction
2. Inequalities
3. Variable Exponent Spaces
- (1)
- if and only if ;
- (2)
- , if ;
- (3)
- , for any and any .
- (a)
- Let and be given. DefineSet
- (b)
- ϱ is said to satisfy if for every and , there exists depending on s and ε such that
4. Modular Uniform Convexity in Variable Exponent Lebesgue–Sobolev Spaces
5. Uniform Convexity of the Luxemburg Norm on
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dincă, G.; Matei, P. Geometry of Sobolev spaces with variable exponent: Smoothness and uniform convexity. Comptes Rendus Mathematique 2009, 347, 885–889. [Google Scholar] [CrossRef]
- Diening, L.; Harjulehto, P.; Hästö, P.; Ruẑiĉka, M. Lebesgue and Sobolev Spaces with Variable Exponents; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2011; Volume 2017. [Google Scholar]
- Kováčik, O.; Rákosník, J. On spaces Lp(x) and Wk,p(x). Czechoslovak Math. J. 1991, 41, 592–618. [Google Scholar] [CrossRef]
- Adams, A.R.; Fournier, J.F. Sobolev Spaces, 2nd ed.; Academic Press: Cambridge, MA, USA, 2003; p. 320. [Google Scholar]
- Fan, X.; Zhao, D. On the Spaces Lp(x)(Ω) and Wm,p(x)(Ω). J. Math. Anal. Appl. 2001, 263, 424–446. [Google Scholar] [CrossRef]
- Bachar, M.; Mendez, O.; Bounkhel, M. Modular Uniform Convexity of Lebesgue Spaces of Variable Integrability. Symmetry 2018, 10, 708. [Google Scholar] [CrossRef]
- Sundaresan, K. Uniform convexity of Banach spaces 1({pi}). Studia Math. 1971, 39, 227–231. [Google Scholar] [CrossRef]
- Clarkson, J.A. Uniformly convex spaces. Trans. Am. Math. Soc. 1936, 40, 396–414. [Google Scholar] [CrossRef]
- Méndez, O.; Lang, J. Analysis on Function Spaces of Musielak-Orlicz Type; Monographs and Research Notes in Mathematics; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Musielak, J. Orlicz Spaces and Modular Spaces; Lecture Notes in Math; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; Tokyo, Japan, 1983. [Google Scholar]
- Nakano, H. Modulared Semi-Ordered Linear Spaces; Tokyo Mathematical Book Series; Maruzen Company: Tokyo, Japan, 1951. [Google Scholar]
- Nakano, H. Modulared sequence spaces. Proc. Jpn. Acad. 1951, 27, 508–512. [Google Scholar] [CrossRef]
- Nakano, H. Topology of Linear Topological Spaces; Tokyo Mathematical Book Series; Maruzen Company: Tokyo, Japan, 1951. [Google Scholar]
- Khamsi, M.A.; Kołowski, W.M. Fixed Point Theory in Modular Function Spaces; Birkhäuser/Springer: Cham, Switzerland, 2015. [Google Scholar]
- Orlicz, W. Über konjugierte Exponentenfolgen. Stud. Math. 1931, 3, 200–211. [Google Scholar] [CrossRef]
- Lang, J.; Méndez, O. Extension of a result by Lindquist to Lebesgue spaces with variable exponents. J. Differ. Equ. 2015, 259, 562–595. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bachar, M.; Khamsi, M.A.; Méndez, O. Uniform Convexity in Variable Exponent Sobolev Spaces. Symmetry 2023, 15, 1988. https://doi.org/10.3390/sym15111988
Bachar M, Khamsi MA, Méndez O. Uniform Convexity in Variable Exponent Sobolev Spaces. Symmetry. 2023; 15(11):1988. https://doi.org/10.3390/sym15111988
Chicago/Turabian StyleBachar, Mostafa, Mohamed A. Khamsi, and Osvaldo Méndez. 2023. "Uniform Convexity in Variable Exponent Sobolev Spaces" Symmetry 15, no. 11: 1988. https://doi.org/10.3390/sym15111988
APA StyleBachar, M., Khamsi, M. A., & Méndez, O. (2023). Uniform Convexity in Variable Exponent Sobolev Spaces. Symmetry, 15(11), 1988. https://doi.org/10.3390/sym15111988