Symmetries and Dynamics of Generalized Biquaternionic Julia Sets Defined by Various Polynomials
Abstract
1. Introduction
2. Preliminaries
2.1. Biquaternions and Their Properties
2.2. Julia Sets within Biquaternions
2.2.1. Power Polynomials
2.2.2. Monic Higher-Degree Polynomials
3. Symmetry of Biquaternionic Julia Sets
3.1. Symmetry of Biquaternionic Julia Sets Defined by Power Polynomials
3.2. Symmetry of Biquaternionic Julia Sets Defined by Monic Higher-Degree Polynomials
4. Stability of Biquaternionic Julia Sets
4.1. Stability of Biquaternionic Julia Sets Defined by Power Polynomials
4.1.1. 1-Cycle Stability
4.1.2. 2-Cycle Stability
4.1.3. 3-Cycle Stability
4.2. Stability of Biquaternionic Julia Sets Defined by Monic Higher-Degree Polynomials
4.2.1. 1-Cycle Stability
4.2.2. 2-Cycle Stability
4.2.3. 3-Cycle Stability
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
List of Symbols
complex elements of a biquaternion | |
complex elements of a biquaternion | |
constant value of the Julia/Mandelbrot set | |
complex number space | |
bicomplex number space | |
multicomplex number space | |
bicomplex number space | |
biquaternion number space | |
complex elements of the constant value of the biquaternionic Julia set | |
vector part of constant value of the biquaternionic Julia set | |
real elements of the extended representation of a biquaternion | |
real elements of the extended representation of a biquaternion | |
quaternion number space | |
imaginary units | |
invariant unit matrix | |
imaginary unit | |
generalized biquaternionic Julia set | |
natural number space | |
Landau symbol | |
octonion number space | |
power of the iterated variable of the Julia/Mandelbrot set | |
biquaternion | |
real number space | |
scalar parts of the iterated variable of the biquaternionic Julia set | |
sedenion number space | |
complex elements of vector parts of biquaternions | |
vector parts of the iterated variable of the biquaternionic Julia set | |
complex elements of vector parts of the iterated variable of the biquaternionic Julia set | |
complex elements of scalar parts of the iterated variable of the biquaternionic Julia set | |
complex elements of vector parts of the iterated variable of the biquaternionic Julia set | |
iterated variable of the Julia/Mandelbrot set | |
small perturbation parameter | |
eigenvalues | |
biquaternionic root of −1 | |
Pauli matrices | |
arbitrary complex numbers | |
symmetry plane along the axes of imaginary values and | |
symmetry plane along the axes of reals and imaginary values | |
symmetry plane along the axes of reals and imaginary values |
Appendix A
References
- Mandelbrot, B.B. The Fractal Geometry of Nature; Freeman and Company: New York, NY, USA, 1983. [Google Scholar]
- Falconer, K. Fractal Geometry: Mathematical Foundations and Applications, 3rd ed.; John Wiley and Sons: Chichester, UK, 2014. [Google Scholar]
- Norton, A.V. Generation and display of geometric fractals in 3-D. Comput. Graph. 1982, 16, 61–67. [Google Scholar] [CrossRef]
- Norton, A.V. Julia sets in the quaternions. Comput. Graph. 1989, 13, 267–278. [Google Scholar] [CrossRef]
- Holbrook, J.A.R. Quaternionic Fatou-Julia sets. Ann. Sci. Math. Que. 1987, 11, 79–94. [Google Scholar]
- Griffin, C.J.; Joshi, G.C. Octonionic Julia sets. Chaos Solitons Fract. 1992, 2, 11–24. [Google Scholar] [CrossRef]
- Griffin, C.J.; Joshi, G.C. Transition points in octonionic Julia sets. Chaos Solitons Fract. 1993, 3, 67–88. [Google Scholar] [CrossRef]
- Griffin, C.J.; Joshi, G.C. Associators in generalized octonionic maps. Chaos Solitons Fract. 1993, 3, 307–319. [Google Scholar] [CrossRef]
- Katunin, A. A Concise Introduction to Hypercomplex Fractals; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Dixon, S.L.; Steele, K.L.; Burton, R.P. Generation and graphical analysis of Mandelbrot and Julia sets in more than four dimensions. Comput. Graph. 1996, 20, 451–456. [Google Scholar] [CrossRef]
- Wang, X.Y.; Sun, Y.Y. The general quaternionic M-J sets on the mapping z ← zα + c (α ∈ N). Comput. Math. Appl. 2007, 53, 1718–1732. [Google Scholar] [CrossRef]
- Wang, X.Y.; Jin, T. Hyperdimensional generalized M–J sets in hypercomplex number space. Nonlinear Dyn. 2013, 73, 843–852. [Google Scholar] [CrossRef]
- Rochon, D. A generalized Mandelbrot set for bicomplex numbers. Fractals 2000, 8, 355–368. [Google Scholar] [CrossRef]
- Wang, X.Y.; Song, W.J. The generalized M–J sets for bicomplex numbers. Nonlinear Dyn. 2013, 72, 17–26. [Google Scholar] [CrossRef]
- Garant-Pelletier, V.; Rochon, D. On a generalized Fatou-Julia theorem in multicomplex spaces. Fractals 2009, 17, 241–255. [Google Scholar] [CrossRef]
- Parisé, P.O.; Rochon, D. A study of dynamics of the tricomplex polynomial ηp + c. Nonlinear Dyn. 2015, 82, 157–171. [Google Scholar] [CrossRef]
- Brouillette, G.; Rochon, D. Characterization of the principal 3D slices related to the multicomplex Mandelbrot set. Adv. Appl. Clifford Algebr. 2019, 29, 39. [Google Scholar] [CrossRef]
- Gintz, T.W. Artist’s statement CQUATS—A non-distributive quad algebra for 3D renderings of Mandelbrot and Julia sets. Comput. Graph. 2002, 26, 367–370. [Google Scholar] [CrossRef]
- Bogush, A.A.; Gazizov, A.Z.; Kurochkin, Y.A.; Stosui, V.T. Symmetry properties of quaternionic and biquaternionic analogs of Julia sets. Ukr. J. Phys. 2003, 48, 295–299. [Google Scholar]
- Katunin, A. Analysis of 4D hypercomplex generalizations of Julia sets. In Proceedings of the Computer Vision and Graphics, Warsaw, Poland, 19–21 September 2016; Chmielewski, L.J., Datta, A., Kozera, R., Wojciechowski, K., Eds.; Lecture Notes in Computer Science. Springer: Cham, Switzerland, 2016; Volume 9972, pp. 627–635. [Google Scholar]
- Katunin, A. The generalized biquaternionic M-J sets. J. Geom. Graph. 2018, 22, 49–58. [Google Scholar]
- Rosenfeld, B. Geometry of Lie Groups; Springer: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Francis, M.R.; Kosowsky, A. The construction of spinors in geometric algebra. Ann. Phys. 2005, 317, 383–409. [Google Scholar] [CrossRef][Green Version]
- Sangwine, S.J.; Alfsmann, D. Determination of the biquaternion divisors of zero, including the idempotents and nilpotents. Adv. Appl. Clifford Algebr. 2010, 20, 401–410. [Google Scholar] [CrossRef]
- Sangwine, S.J.; Ell, T.A.; Le Bihan, N. Fundamental representations and algebraic properties of biquaternions or complexified quaternions. Adv. Appl. Clifford Algebras 2011, 21, 607–636. [Google Scholar] [CrossRef]
- Branner, B.; Fagella, N. Homeomorphisms between limbs of the Mandelbrot set. J. Geom. Anal. 1999, 9, 327–390. [Google Scholar] [CrossRef][Green Version]
- Zireh, A. A generalized Mandelbrot set of polynomials of type Ed for bicomplex numbers. Georgian Math. J. 2008, 15, 189–194. [Google Scholar] [CrossRef]
- Katunin, A.; Fedio, K. On a visualization of the convergence of the boundary of generalized Mandelbrot set to (n − 1)-sphere. J. Appl. Math. Comput. Mech. 2015, 14, 63–69. [Google Scholar] [CrossRef][Green Version]
- Katunin, A. On the convergence of multicomplex M-J sets to the Steinmetz hypersolids. J. Appl. Math. Comput. Mech. 2016, 15, 67–74. [Google Scholar] [CrossRef][Green Version]
- Gomatam, J.; Doyle, J.; Steves, B.; McFarlane, I. Generalization of the Mandelbrot set: Quaternionic quadratic maps. Chaos Solitons Fract. 1995, 5, 971–986. [Google Scholar] [CrossRef]
- Berezin, A.V.; Kurochkin, U.A.; Tolkachov, E.A. Quaternions in Relativistic Physics, 2nd ed.; Editorial URSS: Moscow, Russia, 2003. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katunin, A. Symmetries and Dynamics of Generalized Biquaternionic Julia Sets Defined by Various Polynomials. Symmetry 2023, 15, 43. https://doi.org/10.3390/sym15010043
Katunin A. Symmetries and Dynamics of Generalized Biquaternionic Julia Sets Defined by Various Polynomials. Symmetry. 2023; 15(1):43. https://doi.org/10.3390/sym15010043
Chicago/Turabian StyleKatunin, Andrzej. 2023. "Symmetries and Dynamics of Generalized Biquaternionic Julia Sets Defined by Various Polynomials" Symmetry 15, no. 1: 43. https://doi.org/10.3390/sym15010043
APA StyleKatunin, A. (2023). Symmetries and Dynamics of Generalized Biquaternionic Julia Sets Defined by Various Polynomials. Symmetry, 15(1), 43. https://doi.org/10.3390/sym15010043