Computational, Investigational Explorations on Structural, Electro-Optic Behavior of Pelargonidin Organic Colorant for TiO2 Based DSSCs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of DSSCs
2.2. Computational Information
3. Results and Discussion
3.1. Structural Studies
3.2. Morphological Analysis
3.3. IR Vibrational Symmetry Analysis
3.4. Physicochemical & Electronic Parameter Computation
3.5. FMO (Frontier Molecular Orbital) Analysis
3.6. UV–Visible Spectral Analysis
3.7. Molecular Electrostatic Potential Map
3.8. IPCE Analysis
3.9. Efficiency Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gojznikar, J.; Zdravković, B.; Vidak, M.; Leskošek, B.; Ferk, P. TiO2 Nanoparticles and Their Effects on Eukaryotic Cells: A Double-Edged Sword. Int. J. Mol. Sci. 2022, 23, 12353. [Google Scholar] [CrossRef] [PubMed]
- Shanmugama, V.; Manoharan, S.; Sharafalia, A.; Anandan, S.; Murugan, R. Green grasses as light harvesters in dye sensitized solar cells, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 135, 947–952. [Google Scholar] [CrossRef]
- Chalkias, D.A.; Charalampopoulos, C.; Aivali, S.; Andreopoulou, A.K.; Karavioti, A.; Stathatos, E. A Di-Carbazole-Based Dye as a Potential Sensitizer for Greenhouse-Integrated Dye-Sensitized Solar Cells. Energies 2021, 14, 1159. [Google Scholar] [CrossRef]
- Tecush Mohammadi, T.; Sharifi, S.; Ghayeb, Y.; Sharifi, T.; Momeni, M.M. Photoelectrochemical Water Splitting and H2 Generation Enhancement Using an Effective Surface Modification of W-Doped TiO2 Nanotubes (WT) with Co-Deposition of Transition Metal Ions. Sustainability 2022, 14, 13251. [Google Scholar] [CrossRef]
- Konstantinova, E.; Zaitsev, V.; Marikutsa, A.; Ilin, A. Comparative Study: Catalytic Activity and Rhodamine Dye Luminescence at the Surface of TiO2-Based Nano heterostructures. Symmetry 2021, 13, 1758. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Tian, Z.; Yao, J. Dye-Sensitized Solar Cell Based on TiO2 Anode Thin Film with Three-Dimensional Web-like Structure. Materials 2022, 15, 5875. [Google Scholar] [CrossRef] [PubMed]
- Dragonetti, C.; Colombo, A. Recent Advances in Dye-Sensitized Solar Cells. Molecules 2021, 26, 2461. [Google Scholar] [CrossRef]
- Sarrato, J.; Pinto, A.L.; Cruz, H.; Jordão, N.; Malta, G.; Branco, P.S.; Lima, J.C.; Branco, L.C. Effect of Iodide-Based Organic Salts and Ionic Liquid Additives in Dye-Sensitized Solar Cell Performance. Nanomaterials 2022, 12, 2988. [Google Scholar] [CrossRef]
- Zaky, A.A.; Alhumade, H.; Yousri, D.; Fathy, A.; Rezk, H.; Givalou, L.; Falaras, P. Modeling and Optimization of Triple Diode Model of Dye-Sensitized Solar Panel Using Heterogeneous Marine Predators Algorithm. Mathematics 2022, 10, 3143. [Google Scholar] [CrossRef]
- Chinchillas-Chinchillas, M.J.; Garrafa-Gálvez, H.E.; Orozco-Carmona, V.M.; Luque-Morales, P.A. Comparative Study of SnO2 and ZnO Semiconductor Nanoparticles (Synthesized Using Randia echinocarpa) in the Photocatalytic Degradation of Organic Dyes. Symmetry 2022, 14, 1970. [Google Scholar] [CrossRef]
- Ananth, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P. Enhanced photovoltaic behavior of dye sensitized solar cells fabricated using pre dye treated titanium dioxide nanoparticles. J. Mater. Sci. Mater. Electron. 2016, 27, 146–153. [Google Scholar] [CrossRef]
- Lupaş, A.A.; Cătaş, A. An Application of the Principle of Differential Subordination to Analytic Functions Involving Atangana–Baleanu Fractional Integral of Bessel Functions. Symmetry 2021, 13, 971. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, S.; Khan, M.; Luque, R.; Alsaiari, M.J.M.A. Microwave Assisted Preparation of Barium Doped Titania (Ba/TiO2) as Photoanode in Dye Sensitized Solar Cells. Appl. Sci. 2022, 12, 9280. [Google Scholar] [CrossRef]
- Kang, H.S.; Kim, W.S.; Kshetri, Y.K.; Kim, H.S.; Kim, H.H. Enhancement of Efficiency of a TiO2-BiFeO3 Dye-Synthesized Solar Cell through Magnetization. Materials 2022, 15, 6367. [Google Scholar] [CrossRef]
- Ananth, S.; Vivek, P.; Arumanayagam, T.; Murugakoothan, P. Pre dye treated titanium dioxide nanoparticles synthesized by modified sol–gel method for efficient dye-sensitized solar cells. App. Phy. A 2015, 119, 989–995. [Google Scholar] [CrossRef]
- Cingolani, S.; Gallo, M.; Tanaka, K. Symmetric Ground States for Doubly Nonlocal Equations with Mass Constraint. Symmetry 2021, 13, 1199. [Google Scholar] [CrossRef]
- Ndiaye, A.; Dioum, A.; Oprea, C.I.; Dumbrava, A.; Lungu, J.; Georgescu, A.; Moscalu, F.; Gîrţu, M.A.; Beye, A.C.; Youm, I.; et al. A Combined Experimental and Computational Study of Chrysanthemin as a Pigment for Dye-Sensitized Solar Cells. Molecules 2021, 26, 225. [Google Scholar] [CrossRef]
- Holliman, P.J.; Mohsen, M.; Connell, A.; Kershaw, C.P.; Meza-Rojas, D.; Jones, E.W.; Geatches, D.; Sen, K.; Hsiao, Y.W. Double Linker Triphenylamine Dyes for Dye-Sensitized Solar Cells. Energies 2020, 13, 4637. [Google Scholar] [CrossRef]
- Elegbeleye, I.F.; Maluta, N.E.; Maphanga, R.R. Density Functional Theory Study of Optical and Electronic Properties of (TiO2)n=5,8,68 Clusters for Application in Solar Cells. Molecules 2021, 26, 955. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Theoretical Study of 5-HTP. Potential New Drug Resulting from the Complexation of 5-HTP with ATP. Comp. Chem. 2013, 1, 1–5. [Google Scholar]
- O’boyle, N.M.; Tenderholt, N.A.L.; Langner, K.M. A library for package-independent computational chemistry algorithms. J. Comput. Chem. 2008, 29, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Blaney, B.L.; Ewing, G.E. Van Der Waals Molecules. Annu. Rev. Phys. Chem. 1976, 27, 553–584. [Google Scholar] [CrossRef]
- Franzen, S. Use of Periodic Boundary Conditions to Calculate Accurate β-Sheet Frequencies Using Density Functional Theory. J. Phys. Chem. A 2003, 107, 9898–9902. [Google Scholar] [CrossRef]
- Howard-Lock, H.E.; Lock, C.J.L.; Martins, M.L. Amino acid/zwitterion equilibria II: Vibrational and NMR studies of substituted thiazolidine-4-carboxylic acids. Can. J. Chem. 1991, 69, 1721–1727. [Google Scholar] [CrossRef]
- Howard-Lock, H.E.; Lock, C.J.L.; Martins, M.L.; Smalley, P.S.; Bell, R.A. Amino-acid zwitterion equilibria: Vibrational and nuclear magnetic resonance studies of methyl-substituted thiazolidine-4-carboxylic acids. Can. J. Chem. 1986, 64, 1215–1219. [Google Scholar] [CrossRef] [Green Version]
- Howard-Lock, H.E.; Lock, C.J.L.; Smalley, P.S. The crystal structure of racemicDL-penicillamine and a spectroscopic study ofD-(−)-penicillamine. J. Chem. Crystallogr. 1983, 13, 333–353. [Google Scholar] [CrossRef]
- Suvitha, A.; El-Mansy, M.A.M.; Kothandan, G.; Steephen, A. Molecular Structure, ft-raman, ir, nlo, nbo, homo–lumo analysis, physicochemical descriptors, adme parameters, and pharmacokinetic bioactivity of 2,3,5,6-tetrachloro-p-benzoquinone. J Struct Chem. 2021, 62, 1339–1356. [Google Scholar] [CrossRef]
- El-Mansy, M.A.; Suvitha, A.; Ibrahim, M. Quantum Chemical Studies on Structural, Spectroscopic, Thermochemistry, Photo-physical and Bioactivity Properties of m-Cresol Purple Dye. Biointerface Res. Appl. Chem. 2021, 12, 1006–1021. [Google Scholar] [CrossRef]
- Ebrahimi, H.P.; Hadi, J.S.; Almayah, A.A.; Bolandnazar, Z.; Swadi, A.G.; Ebrahimi, A. Metal-based biologically active azoles and β-lactams derived from sulfa drugs. Bioorg. Med. Chem. 2016, 24, 1121–1131. [Google Scholar] [CrossRef]
- Suvitha, A.R.; Maharani, N.Y.; Karikkad, H.K.; Varun, K.C.; Steephen, A. Quantitative Experimental and Theoretical Research using the DFT Technique on the Structural, UV, Electronic, and FMO Properties of Gammaxene. Biointerface Res. Appl. Chem. 2021, 6, 14240–14250. [Google Scholar]
- Bradha, M.; Balakrishnan, N.; Suvitha, A.; Arumanayagam, T.; Rekha, M.; Vivek, P.; Ajay, P.; Sangeetha, V.; Steephen, A. Experimental, computational analysis of Butein and Lanceoletin for natural dye-sensitized solar cells and stabilizing efficiency by IoT. Environ. Dev. Sustain. 2022, 24, 8807–8822. [Google Scholar] [CrossRef]
- Hiremath, S.M.; Khemalapure, S.S.; Hiremath, C.S.; Patil, A.S.; Basanagouda, M. Quantum chemical computational and spectroscopic (IR, Raman, NMR, and UV) studies on the 5-(5-methoxy-benzofuran-3-ylmethyl)-3h-[1,3,4]oxadiazole-2-thione. J. Mol. Struct. 2020, 1210, 128041. [Google Scholar] [CrossRef]
- Wang, G.; Guo, W.; Xu, D.; Liu, D.; Qin, M. Graphene Oxide Hybridised TiO2 for Visible Light Photocatalytic Degradation of Phenol. Symmetry 2020, 12, 1420. [Google Scholar] [CrossRef]
- Niu, S.; Yang, W.; Wei, H.; Danilov, M.; Rusetskyi, I.; Popat, K.C.; Wang, Y.; Kipper, M.J.; Belfiore, L.A.; Tang, J. Heterostructures of Cut Carbon Nanotube-Filled Array of TiO2 Nanotubes for New Module of Photovoltaic Devices. Nanomaterials 2022, 12, 3604. [Google Scholar] [CrossRef] [PubMed]
Physicochemical Properties | |
---|---|
Formula | C15H11O5+ |
Molecular weight | 271.24 g/mol |
Num. heavy atoms | 20 |
Num. aromatic heavy atoms | 16 |
Fraction Csp3 | 0.00 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 5 |
Num. H-bond donors | 4 |
Molar refractivity | 74.15 |
TPSA | 94.06 Ų |
Energy | 542.416 kJ/mol |
Dipole moment | 2.072D |
Electronic Parameters | B3LYP/6-311G++(d, p) in GAS Phase PGN | |||
---|---|---|---|---|
Spin symmetry doublet | (α) | (β) | ||
EL (eV) | −1.2363 | −2.034 | ||
EH (eV) | −4.454 | −6.128 | ||
EL/EH (eV) | 0.278 | 0.3319 | ||
Ionization-potential factor (I) (eV) | +4.454 | +6.128 | ||
Electron-affinity factor (A) (eV) | +1.2363 | +2.034 | ||
Global hardness factor (η) (eV) | 1.6078 | 2.047 | ||
Chemical potential factor (μ) (eV) | −2.8461 | −4.081 | ||
Global electrophilicity factor (ω) (eV) | 2.5596 | 4.068 | ||
Global softness factor (ζ) (eV−1) | 0.6219 | 0.4884 | ||
Electronic spatial extent (a.u) | 7604.76 | |||
Nuclear repulsion energy (Hartrees) | 1399.85 | |||
Rotational constants (GHZ) | 0.7756 | 0.152 | 0.133 |
Semi-Conductor | Jsc mAcm−2 | Voc V | Jmax mAcm−2 | Vmax V | Fill Factor % | Efficiency η % |
---|---|---|---|---|---|---|
TiO2 by sol-gel process (best cell) | 2 | 0.42 | 1.65 | 0.34 | 68 | 0.68 |
TiO2 by sol-gel process (test cell 1) | 1.64 | 0.61 | 1.34 | 0.5 | 66.97 | 0.67 |
TiO2 by sol-gel process (test cell 2) | 1.95 | 0.49 | 1.55 | 0.39 | 63.27 | 0.6 |
P25 Degussa TiO2 (best cell) | 4.9 | 0.55 | 4.1 | 0.4 | 61.6 | 1.18 |
P25 Degussa TiO2 (test cell 1) | 3.3 | 0.49 | 2.72 | 0.40 | 67.26 | 1.1 |
P25 Degussa TiO2 (test cell 2) | 2.99 | 0.5 | 2.44 | 0.41 | 66.92 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palanisamy, S.K.; Udayakumar, A.K.; Abed, A.M.; Panchatcharam, P.; Athisaya Rajah, S.; Madhavan, B.; Steephen, A. Computational, Investigational Explorations on Structural, Electro-Optic Behavior of Pelargonidin Organic Colorant for TiO2 Based DSSCs. Symmetry 2023, 15, 22. https://doi.org/10.3390/sym15010022
Palanisamy SK, Udayakumar AK, Abed AM, Panchatcharam P, Athisaya Rajah S, Madhavan B, Steephen A. Computational, Investigational Explorations on Structural, Electro-Optic Behavior of Pelargonidin Organic Colorant for TiO2 Based DSSCs. Symmetry. 2023; 15(1):22. https://doi.org/10.3390/sym15010022
Chicago/Turabian StylePalanisamy, Satish Kumar, Arun Kumar Udayakumar, Azher M. Abed, Parthasarathy Panchatcharam, Suvitha Athisaya Rajah, Bradha Madhavan, and Ananth Steephen. 2023. "Computational, Investigational Explorations on Structural, Electro-Optic Behavior of Pelargonidin Organic Colorant for TiO2 Based DSSCs" Symmetry 15, no. 1: 22. https://doi.org/10.3390/sym15010022
APA StylePalanisamy, S. K., Udayakumar, A. K., Abed, A. M., Panchatcharam, P., Athisaya Rajah, S., Madhavan, B., & Steephen, A. (2023). Computational, Investigational Explorations on Structural, Electro-Optic Behavior of Pelargonidin Organic Colorant for TiO2 Based DSSCs. Symmetry, 15(1), 22. https://doi.org/10.3390/sym15010022