High-Frequency Ultrasonic Radiator Power Increase by Means of Summation of Vibrations of Symmetrically Arranged Langevin Transducers
Abstract
:1. Introduction
2. High-Frequency Radiator Design for Power Summation of Symmetrically Arranged Langevin Transducers
3. Research of the Radiator’s Functionality and Optimization of Its Design
4. Results of Experimental Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Riera, E.; Golás, Y.; Blanco, A.; Gallego-Juárez, J.A.; Blasco, M.; Mulet, A. Mass transfer enhancement in supercritical fluids extraction by means of power ultrasound. Ultrason. Sonochem. 2004, 11, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Zhang, S.; Wang, W.; Yan, J.; Su, M. Numerical investigation of PM2.5 size enlargement by heterogeneous condensation for particulate abatement. Process Saf. Environ. Prot. 2019, 125, 197–206. [Google Scholar] [CrossRef]
- Sarabia, E.; Gallego-Juarez, J.A.; Rodrigues-Corral, G.; Elvira-Segura, L.; Gonzalez-Gomaz, I. Application of high-power ultrasound enhance fluid/solid particle separation processes. Ultrasonics 2000, 38, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Kuzovnikov, Y.M.; Khmelev, S.S.; Tsyganok, S.N.; Khmelev, V.N. Studying of coagulation and sedimentation of small hard particles in liquid medium during ultrasonic treatment. In Proceedings of the EDM’2010: Conference, Erlagol, Russia, 30 June–4 July 2010; NSTU: Novosibirsk, Russia, 2010; pp. 281–284. [Google Scholar] [CrossRef]
- Avvaru, B.; Patil, M.N.; Gogate, P.R.; Pandit, A.B. Ultrasonic atomization: Effect of liquid phase properties. Ultrasonics 2006, 44, 146–158. [Google Scholar] [CrossRef]
- Ajay, M.; Anand, T.N. Study of ultrasonic atomization. In Proceedings of the ILASS ASIA 2013, Nagasaki, Japan, 18–19 December 2013. [Google Scholar] [CrossRef]
- Transducer, B.L.; Takahashi, T.; Adachi, K. Influence of static prestress on the characteristics of bolt-clamped Langevin-type transducers. Jpn. J. Appl. Phys. 1998, 37, 2982–2987. [Google Scholar] [CrossRef]
- Adachi, K.; Konno, Y.; Masaki, S. Development of bolt-clamped Langevin-type transducer factor for excitation of large torsional vibration with high mechanical quality. Jpn. J. Appl. Phys. 1994, 33, 1182–1188. [Google Scholar] [CrossRef]
- Abdullah, A.; Shahini, M.; Pak, A. An approach to design a high power piezoelectric ultrasonic transducer. J. Electroceram. 2009, 22, 369–382. [Google Scholar] [CrossRef]
- Shahini, M.; Abdullah, A.; Rezaei, M. Design and Manufacture of an Ultrasonic Transducer with 1 kW Power and 22 kHz Frequency Using Piezoceramics. Master’s Thesis, Faculty of Mechanical Engineering, AmirKabir University of Technology, Tehran, Iran, 2004. [Google Scholar]
- Lin, S. Study on the Langevin piezoelectric ceramic ultrasonic transducer of longitudinal–flexural composite vibrational mode. Ultrasonics 2006, 44, 109–114. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, F. Measurement of ultrasonic power and electro-acoustic efficiency of high power transducers. Ultrasonics 2000, 37, 549–554. [Google Scholar] [CrossRef]
- APC International Ltd. Piezoelectric Ceramics: Principles and Applications; APC International Ltd.: Mackeyville, PA, USA, 2002. [Google Scholar]
- Lin, S.; Xu, L.; Wenxu, H. A new type of high power composite ultrasonic transducer. J. Sound Vib. 2011, 330, 1419–1431. [Google Scholar] [CrossRef]
- Lais, H.; Lowe, P.S.; Gan, T.H.; Wrobel, L.C. Numerical modelling of acoustic pressure fields to optimize the ultrasonic cleaning technique for cylinders. Ultrason. Sonochem. 2018, 45, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Yang, Y.; Yao, W.; Zhang, L. PSpice Modeling of a Sandwich Piezoelectric Ceramic Ultrasonic Transducer in Longitudinal Vibration. Sensors 2017, 17, 2253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallego-Juarez, J.A.; Rodriguez, G.; Acosta, V.; Riera, E. Power ultrasonic transducer with extensive radiator for industrial processing. Ultrason. Sonochem. 2010, 17, 954–964. [Google Scholar] [CrossRef]
- Berlincourt, D.A.; Curran, D.R.; Jaffe, H. Piezoelectric and Piezomagnetic Materials and Their Function in Transducers. Phys. Acoust. 1964, 1, 169–270. [Google Scholar] [CrossRef]
- Piezoelectric Ceramic Products. Fundamentals, Characteristics and Applications; PI Ceramic: Lederhose, Germany, 2015. [Google Scholar]
- Khmelev, V.N.; Barsukov, R.V.; Tsyganok, S.N.; Steer, V.N.; Shalunov, A.V.; Lebedev, A.N. Adjusting and calibration electronic ultrasonic generators. In Proceedings of the Siberian Russian Workshop on Electron Devices and Materials: Conference, Erlagol, Russia, 1–3 July 2003; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2003; pp. 202–204. [Google Scholar] [CrossRef]
- Sultanova, S.A.; Safarov, J.E.; Useno, A.B.; Samandarov, D.I. Study of the design of ultrasonic electronic generators. Technovation 2021, 3, 216–224. [Google Scholar]
- Khmelev, V.N.; Tsyganok, S.N.; Barsukov, R.V.; Lebedev, A.N. A system of a automatic measurement of acoustic power of the ultrasonic equipment. In Proceedings of the International Siberian Workshop on Elctron Devices and Materials, Erlagol, Russia, 1–5 July 2004; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2004; pp. 205–206. [Google Scholar] [CrossRef]
- Kazancev, I.V.; Lebedev, A.N.; Abramenko, D.S. The method of oscillations amplitude measuring. In Proceedings of the 8th Siberian Workshop on Elctron Devices and Materials, Erlagol, Russia, 1–5 July 2007; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2007; pp. 282–284. [Google Scholar] [CrossRef]
- Leonov, G.V.; Khmelev, V.N.; Savin, I.I.; Abramenko, D.S. Automation of the amplitude measurement process of ultrasonic oscillatory systems irradiating surface. In Proceedings of the 6th Siberian Workshop on Elctron Devices and Materials, Erlagol, Russia, 1–5 July 2005; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2005; pp. 64–67. [Google Scholar] [CrossRef]
- Khmelev, V.N.; Levin, S.V.; Abramenko, D.S.; Khmelev, S.S.; Tsyganok, S.N. Control of vibration amplitude and its distribution at the design and operation of multi half-wave vibrating systems. In Proceedings of the International Conference and Seminar of Young Specialists on Micro/Nanotechnologies and Electron Devices, Erlagol, Russia, 2–6 July 2012; NSTU: Novosibirsk, Russia, 2012; pp. 145–147. [Google Scholar] [CrossRef]
Transducer Type | Frequency, kHz | Vibration Amplitude, μm | Electrical Power, W | Acoustic Power, W | Efficiency, % | Intensity, No More Than, W/cm2 |
---|---|---|---|---|---|---|
Summing | 31.67 | 22 | 1800 | 1200 | 66 | 35 |
Element | Material | Young’s Modulus, E, Pa | Density, ρ, kg/m3 | Poisson’s Ratio, µ |
---|---|---|---|---|
Summator | AA7075 | 7.1 × 1010 | 2800 | 0.31 |
Reflecting elements | Steel 1045 | 2 × 1011 | 7810 | 2.8 |
Piezoceramic disk | APC-841 | 7.6 × 1010 | 7600 | 0.33 |
Transducer Type | Frequency, kHz | Vibration Amplitude, μm | Electrical Power, W | Acoustic Power, W | Efficiency, % | Intensity, No More Than, W/cm2 |
---|---|---|---|---|---|---|
Summing, before optimization | 31.67 | 22 | 1800 | 1200 | 66 | 35 |
Optimized symmetricsumming | 30.05 | 26 | 1850 | 1540 | 78 | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khmelev, V.N.; Shalunov, A.V.; Nesterov, V.A.; Bochenkov, A.S. High-Frequency Ultrasonic Radiator Power Increase by Means of Summation of Vibrations of Symmetrically Arranged Langevin Transducers. Symmetry 2023, 15, 208. https://doi.org/10.3390/sym15010208
Khmelev VN, Shalunov AV, Nesterov VA, Bochenkov AS. High-Frequency Ultrasonic Radiator Power Increase by Means of Summation of Vibrations of Symmetrically Arranged Langevin Transducers. Symmetry. 2023; 15(1):208. https://doi.org/10.3390/sym15010208
Chicago/Turabian StyleKhmelev, Vladimir N., Andrey V. Shalunov, Victor A. Nesterov, and Alexander S. Bochenkov. 2023. "High-Frequency Ultrasonic Radiator Power Increase by Means of Summation of Vibrations of Symmetrically Arranged Langevin Transducers" Symmetry 15, no. 1: 208. https://doi.org/10.3390/sym15010208
APA StyleKhmelev, V. N., Shalunov, A. V., Nesterov, V. A., & Bochenkov, A. S. (2023). High-Frequency Ultrasonic Radiator Power Increase by Means of Summation of Vibrations of Symmetrically Arranged Langevin Transducers. Symmetry, 15(1), 208. https://doi.org/10.3390/sym15010208