Next Article in Journal
Innovative CODAS Algorithm for q-Rung Orthopair Fuzzy Information and Cancer Risk Assessment
Previous Article in Journal
How Fluid Particle Interaction Affects the Flow of Dusty Williamson Fluid
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On a System of Coupled Langevin Equations in the Frame of Generalized Liouville–Caputo Fractional Derivatives

by
Hassan J. Al Salman
1,
Muath Awadalla
1,*,
Muthaiah Subramanian
2,* and
Kinda Abuasbeh
1
1
Department of Mathematics and Statistics, College of Science, King Faisal University, Hofuf 319832, Al Ahsa, Saudi Arabia
2
Department of Mathematics, KPR Institute of Engineering and Technology, Coimbatore 641407, India
*
Authors to whom correspondence should be addressed.
Symmetry 2023, 15(1), 204; https://doi.org/10.3390/sym15010204
Submission received: 6 December 2022 / Revised: 4 January 2023 / Accepted: 8 January 2023 / Published: 10 January 2023

Abstract

:
We investigate the existence and uniqueness results for coupled Langevin differential equations of fractional order with Katugampola integral boundary conditions involving generalized Liouville–Caputo fractional derivatives. Furthermore, we discuss Ulam–Hyers stability in the context of the problem at hand. The results are shown with examples. Results are asymmetric when a generalised Liouville–Caputo fractional derivative ( ρ ) parameter is changed. With its novel results, this paper makes a significant contribution to the relevant literature.

1. Introduction

The Langevin equation (LE) is a powerful mathematical physics tool for describing processes such as anomalous diffusion in a systematic fashion. Price index fluctuations [1,2], harmonic oscillators, and other similar processes are examples of such processes. A general Langevin equation (GLE) for noise sources with correlations is also used a lot in the theory of critical dynamics [3]. To comprehend the nature of the quantum noise, a GLE [4] can be employed. When applied to systems of fractional order, such as reaction–diffusion systems of fractional order [5,6], the LE has a very elegant and rich function. The fractional analogue of the common LE is proposed for situations where the distinction between macroscopic and microscopic time scales is not apparent; this equation is sometimes referred to as the stochastic differential equation. See, for example, [1]. In [7], the author explored moments, variances, position, and velocity correlation for a generalized fractional LE of the Liouville–Caputo fractional derivative. The results were compared with those found for the same GLE. The aforementioned papers [8,9,10,11,12,13] and their relevant references contain recent findings on the LE with varied boundary conditions. In light of the numerous applications that it has in the fields of engineering, the social sciences, and the technical sciences, the study of fractional calculus has arisen as an important subject in which to do research. Due to their ability to reflect the history of current events and processes, integral and differential operators of fractional order based mathematical models are regarded as more realistic and applicable than their integer-order counterparts. This area of mathematics analysis has advanced significantly in recent years and currently includes a wide range of intriguing findings, such as [14,15,16,17,18,19,20,21,22,23]. Recently, the literature on the subject has included Hadamard, Caputo (Liouville–Caputo), Riemann–Liouville type derivatives, among others, as well as fractional order differential equations. See [24,25,26,27,28,29,30,31,32,33] and the list of references for some recent works on the subject. The authors [34] discussed the existence of solutions for fractional Langevin differential equations using Liouville–Caputo derivatives:
c ρ D a + α ( c ρ D a + β + λ ) x ( t ) = f ( t , x ( t ) ) , t J : = [ a , T ] , λ R , 1 < α 2 , 0 < β < 1 , ρ > 0
x ( a ) = 0 , x ( η ) = 0 , x ( T ) = μ ρ I a + γ x ( ξ ) , γ > 0 , ρ > 0 ,
where c ρ D a + α , c ρ D a + β denote the generalized Liouville–Caputo fractional derivatives (GLCFD), ρ I a + γ is the generalized fractional integral (Katugampola). The main results were proven using fixed point index theory. In [35], the authors studied existence results for coupled system of FDEs with Hilfer derivatives:
( H D 0 + α 1 , β 1 x ) ( t ) + λ 1 ( H D 0 + α 1 1 , β 1 x ) ( t ) = f ( t , x ( t ) , R ( δ q , , δ 1 ) x ( t ) , y ( t ) ) , t [ 0 , T ] , ( H D 0 + α 2 , β 2 y ) ( t ) + λ 2 ( H D 0 + α 2 1 , β 2 y ) ( t ) = f ( t , x ( t ) , y ( t ) , R ( ζ q , , ζ 1 ) y ( t ) ) , t [ 0 , T ] ,
x ( 0 ) = 0 , y ( 0 ) = 0 , x ( T ) = i = 1 m ϵ i R ( μ ρ , , μ 1 ) y ( η i ) η i ( 0 , T ) , y ( T ) = j = 1 n θ j R ( ν ρ , , ν 1 ) x ( ξ j ) ξ i ( 0 , T ) ,
where H D α l , β l is the Hilfer derivative of fractional order α l with parameters β l , l 1 , 2 , 1 < α l < 2 , 0 β l 1 , λ 1 , λ 2 , ϵ i , θ j R { 0 } , i = 1 , 2 , , m , j = 1 , 2 , , n , f , g : [ 0 , T ] × R × R × R × R are nonlinear continuous functions and R ( ϕ τ , , ϕ 1 ) , ϕ r { δ , ζ , μ , ν } , r { q , p , ρ | q , p , ρ N } , involves the iterated Riemann–Liouville and Hadamard fractional integral operators. The main results were proven using fixed point index theory. We demonstrate the existence, uniqueness of solutions and Ulam–Hyers stability for the following generalized Langevin fractional differential system, which was inspired by the previous research, by utilizing the fixed point theorems:
C ρ D 0 + ξ 1 ( C ρ D 0 + ζ 1 + ϕ 1 ) x ( ι ) = f ( ι , x ( ι ) , y ( ι ) ) , ι E : = [ 0 , S ] , C ρ D 0 + ξ 2 ( C ρ D 0 + ζ 2 + ϕ 2 ) y ( ι ) = g ( ι , x ( ι ) , y ( ι ) ) , ι E : = [ 0 , S ] ,
x ( 0 ) = 0 , y ( 0 ) = 0 , x ( S ) = ϵ ρ I 0 + ς y ( ϖ ) , y ( S ) = π ρ I 0 + ϱ x ( σ ) , 0 < σ < ϖ < S ,
where C ρ D 0 + ξ 1 , C ρ D 0 + ξ 2 , C ρ D 0 + ζ 1 , C ρ D 0 + ζ 2 are the GLCFD of order 1 < ξ 1 , ξ 2 2 , 0 < ζ 1 , ζ 2 < 1 , ρ I 0 + ς , ρ I 0 + ϱ are the Katugampola integral of fractional order ϱ , ς > 0 , ρ > 0 , f , g : E × R × R R are continuous functions, ϵ , π R . The requirement states that the unknown function’s value at the right endpoint of the specified interval, ι = S , must be proportional to its values on strips of different lengths. The GLCFD is converted into the differentially effective Caputo sense when ρ = 1 . Similar to this, non-symmetric examples appear when ρ = 1 and the Riemann–Liouville integrals are used instead of the Katugampola integrals. To the best of our knowledge, boundary value problems (BVPs) stability analysis is still in its development. The fundamental contribution of this research is to investigate the existence, uniqueness and stability analysis. In addition, we show the problem (5) and (6) used by the fixed-point theorems of Leray–Schauder and Banach to demonstrate the existence and uniqueness of solutions. The rest of the article is as follows: Section 2 presents the basic definitions, lemmas, and theorems that underpin our main conclusions. In Section 3, we show the existence and uniqueness of solutions to the given systems (5) and (6) using a variety of conditions and a few widely used fixed-point theorems. Section 4 looks at the Ulam–Hyers stability of the provided system (5) and (6) under particular circumstances. Examples are provided in Section 6 to further clarify the study’s findings.

2. Preliminaries

We define space P = { x ( ι ) : x ( ι ) C ( E , R ) } equipped with the norm | | x | | = sup { | x ( ι ) | , ι E } is a Banach space. Also Q = { y ( ι ) : y ( ι ) C ( E , R ) } equipped with the norm is | | y | | = sup { | y ( ι ) | , ι E } is a Banach space. Then the product space ( P × Q , | | ( x , y ) | | ) is also a Banach space with norm | | ( x , y ) | | = | | x | | + | | y | | .
Definition 1
([36]). The left- and right-sided GLCFD of f A C γ n [ c , d ] of order ζ 0
C ρ D c + ζ f ( z ) = ρ D c + ζ f ( ι ) k = 0 n 1 γ k f ( c ) k ! ι ρ c ρ ρ k ( z ) , γ = z 1 ρ d d z ,
C ρ D d ζ f ( z ) = ρ D d ζ f ( ι ) k = 0 n 1 ( 1 ) k γ k f ( d ) k ! d ρ ι ρ ρ k ( z ) , γ = z 1 ρ d d z ,
when n = [ ζ ] + 1 .
Lemma 1
([36]).
  • if ζ N
    C ρ D c + ζ f ( ι ) = 1 Γ ( n ζ ) c ι ι ρ θ ρ ρ n ζ 1 ( γ n f ) ( θ ) d θ θ 1 ρ = ρ I c + n ζ ( γ n f ) ( ι ) ,
    C ρ D d ζ f ( ι ) = 1 Γ ( n ζ ) ι d θ ρ ι ρ ρ n ζ 1 ( 1 ) n ( γ n f ) ( θ ) d θ θ 1 ρ = ρ I d n ζ ( γ n f ) ( ι ) .
  • if ζ N
    C ρ D c + ζ f = γ n f , C ρ D d ζ f = ( 1 ) n γ n f .
Lemma 2
([36]). Let f A C γ n [ c , d ] or C γ n [ c , d ] and ζ R . Then,
ρ I c + ζ C ρ D c + ζ f ( z ) = f ( z ) k = 0 n 1 γ k f ( c ) k ! z ρ c ρ ρ k ,
ρ I d ζ C ρ D d ζ f ( z ) = f ( z ) k = 0 n 1 ( 1 ) k γ k f ( d ) k ! d ρ z ρ ρ k .
In particular, for 0 < ζ 1 , we have
ρ I c + ζ C ρ D c + ζ f ( z ) = f ( z ) f ( c ) , ρ I d ζ C ρ D d ζ f ( z ) = f ( z ) f ( d ) .
In order to facilitate computation, we present the following notations:
E 1 ^ = S ρ ζ 1 ρ ζ 1 Γ ( ζ 1 + 1 ) , E 2 ^ = π σ ρ ( ζ 1 + ϱ ) ρ ζ 1 + ϱ Γ ( ζ 1 + ϱ + 1 ) ,
E 1 = S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) , E 2 = ϵ ω ρ ( ζ 2 + ς ) ρ ζ 2 + ς Γ ( ζ 2 + ς + 1 ) ,
G = E 1 ^ E 2 E 1 E 2 ^ 0 ,
δ 1 ( ι ) = ι ρ ζ 1 ρ ζ 1 Γ ( ζ 1 + 1 ) G , δ 2 ( ι ) = ι ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) G .
Lemma 3.
Let f ^ , g ^ C ( 0 , S ) L ( 0 , S ) , x , y A C γ 2 ( E ) and Λ 0 . The solution of the system of coupled Langevin fractional BVP:
C ρ D 0 + ξ 1 ( C ρ D 0 + ζ 1 + ϕ 1 ) x ( ι ) = f ^ ( ι ) , ι E : = [ 0 , S ] , C ρ D 0 + ξ 2 ( C ρ D 0 + ζ 2 + ϕ 2 ) y ( ι ) = g ^ ( ι ) , ι E : = [ 0 , S ] , x ( 0 ) = 0 , y ( 0 ) = 0 , x ( S ) = ϵ ρ I 0 + ς y ( ϖ ) , y ( S ) = π ρ I 0 + ϱ x ( σ ) 0 < σ < ϖ < S ,
is given by
x ( ι ) = ρ I 0 + ξ 1 + ζ 1 f ^ ( ι ) ϕ 1 ρ I 0 + ζ 1 x ( ι ) + δ 1 ( ι ) [ E 2 ϵ ρ I 0 + ξ 2 + ζ 2 + ς g ^ ( ϖ ) ϵ ϕ 2 ρ I 0 + ζ 2 + ς y ( ϖ ) ρ I 0 + ξ 1 + ζ 1 f ^ ( S ) + ϕ 1 ρ I 0 + ζ 1 x ( S ) + E 1 π ρ I 0 + ξ 1 + ζ 1 + ϱ f ^ ( σ ) π ϕ 1 ρ I 0 + ζ 1 + ϱ x ( σ ) ρ I 0 + ξ 2 + ζ 2 g ^ ( S ) + ϕ 2 ρ I 0 + ζ 2 y ( S ) ]
and
y ( ι ) = ρ I 0 + ξ 2 + ζ 2 g ^ ( ι ) ϕ 2 ρ I 0 + ζ 2 y ( ι ) + δ 2 ( ι ) [ E 2 ^ ϵ ρ I 0 + ξ 2 + ζ 2 + ς g ^ ( ϖ ) ϵ ϕ 2 ρ I 0 + ζ 2 + ς y ( ϖ ) ρ I 0 + ξ 1 + ζ 1 f ^ ( S ) + ϕ 1 ρ I 0 + ζ 1 x ( S ) + E 1 ^ π ρ I 0 + ξ 1 + ζ 1 + ϱ f ^ ( σ ) π ϕ 1 ρ I 0 + ζ 1 + ϱ x ( σ ) ρ I 0 + ξ 2 + ζ 2 g ^ ( S ) + ϕ 2 ρ I 0 + ζ 2 y ( S ) ] .
Proof. 
Applying operators ρ I 0 + ξ 1 , ρ I 0 + ξ 2 to (16) and using Lemma 2, we get
( C ρ D 0 + ζ 1 + ϕ 1 ) x ( ι ) = ρ I 0 + ξ 1 f ^ ( ι ) + a 1 ,
( C ρ D 0 + ζ 2 + ϕ 2 ) y ( ι ) = ρ I 0 + ξ 2 g ^ ( ι ) + b 1 ,
respectively, for some a 1 , b 1 R . When ρ I 0 + ζ 1 , ρ I 0 + ζ 2 are applied to the FDEs in (19) and (20), the solution of the Langevin FDEs in (16) for ι E is
x ( ι ) = ρ I 0 + ξ 1 + ζ 1 f ^ ( ι ) ϕ 1 ρ I 0 + ζ 1 x ( ι ) + a 1 ι ρ ζ 1 ρ ζ 1 Γ ( ζ 1 + 1 ) + a 2 ,
y ( ι ) = ρ I 0 + ξ 2 + ζ 2 g ^ ( ι ) ϕ 2 ρ I 0 + ζ 2 y ( ι ) + b 1 ι ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + b 2 ,
respectively, for some a 2 , b 2 R . By the conditions, x ( 0 ) = y ( 0 ) = 0 in (21) and (22) respectively, results a 2 = b 2 = 0 . Then, using the generalized fractional integral operators, we obtain: ρ I 0 + ϱ , ρ I 0 + ς (21) and (22) respectively,
ρ I 0 + ϱ x ( ι ) = ρ I 0 + ξ 1 + ζ 1 + ϱ f ^ ( ι ) ϕ 1 ρ I 0 + ζ 1 + ϱ x ( ι ) + a 1 ι ρ ( ζ 1 + ϱ ) ρ ζ 1 + ϱ Γ ( ζ 1 + ϱ + 1 ) ,
ρ I 0 + ς y ( ι ) = ρ I 0 + ξ 2 + ζ 2 + ς g ^ ( ι ) ϕ 2 ρ I 0 + ζ 2 + ς y ( ι ) + b 1 ι ρ ( ζ 2 + ς ) ρ ζ 2 + ς Γ ( ζ 2 + ς + 1 ) ,
which, when combined with the boundary conditions x ( S ) = ϵ ρ I 0 + ς y ( ϖ ) , y ( S ) = π ρ I 0 + ϱ x ( σ ) , gives the following results:
ρ I 0 + ξ 1 + ζ 1 f ^ ( S ) ϕ 1 ρ I 0 + ζ 1 x ( S ) + a 1 S ρ ζ 1 ρ ζ 1 Γ ( ζ 1 + 1 ) = ϵ ρ I 0 + ξ 2 + ζ 2 + ς g ^ ( ϖ ) ϵ ϕ 2 ρ I 0 + ζ 2 + ς y ( ϖ ) + b 1 ϵ ϖ ρ ( ζ 2 + ς ) ρ ζ 2 + ς Γ ( ζ 2 + ς + 1 ) ,
ρ I 0 + ξ 2 + ζ 2 g ^ ( S ) ϕ 2 ρ I 0 + ζ 2 y ( S ) + b 1 S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) = π ρ I 0 + ξ 1 + ζ 1 + ϱ f ^ ( σ ) π ϕ 1 ρ I 0 + ζ 1 + ϱ x ( σ ) + a 1 π σ ρ ( ζ 1 + ϱ ) ρ ζ 1 + ϱ Γ ( ζ 1 + ϱ + 1 ) .
Next, we obtain
a 1 E 1 ^ b 1 E 1 = ϵ ρ I 0 + ξ 2 + ζ 2 + ς g ^ ( ϖ ) ϵ ϕ 2 ρ I 0 + ζ 2 + ς y ( ϖ ) ρ I 0 + ξ 1 + ζ 1 f ^ ( S ) + ϕ 1 ρ I 0 + ζ 1 x ( S ) ,
b 1 E 2 a 2 E 2 ^ = π ρ I 0 + ξ 1 + ζ 1 + ϱ f ^ ( σ ) π ϕ 1 ρ I 0 + ζ 1 + ϱ x ( σ ) ρ I 0 + ξ 2 + ζ 2 g ^ ( S ) + ϕ 2 ρ I 0 + ζ 2 y ( S ) ,
using the notations (13) in (25) and (26) respectively. When the system of equations is solved, we find that (27) and (28) for a 1 and b 1 ,
a 1 = 1 G [ E 2 ϵ ρ I 0 + ξ 2 + ζ 2 + ς g ^ ( ϖ ) ϵ ϕ 2 ρ I 0 + ζ 2 + ς y ( ϖ ) ρ I 0 + ξ 1 + ζ 1 f ^ ( S ) + ϕ 1 ρ I 0 + ζ 1 x ( S ) + E 1 π ρ I 0 + ξ 1 + ζ 1 + ϱ f ^ ( σ ) π ϕ 1 ρ I 0 + ζ 1 + ϱ x ( σ ) ρ I 0 + ξ 2 + ζ 2 g ^ ( S ) + ϕ 2 ρ I 0 + ζ 2 y ( S ) ] ,
b 1 = 1 G [ E 2 ^ ϵ ρ I 0 + ξ 2 + ζ 2 + ς g ^ ( ϖ ) ϵ ϕ 2 ρ I 0 + ζ 2 + ς y ( ϖ ) ρ I 0 + ξ 1 + ζ 1 f ^ ( S ) + ϕ 1 ρ I 0 + ζ 1 x ( S ) + E 1 ^ π ρ I 0 + ξ 1 + ζ 1 + ϱ f ^ ( σ ) π ϕ 1 ρ I 0 + ζ 1 + ϱ x ( σ ) ρ I 0 + ξ 2 + ζ 2 g ^ ( S ) + ϕ 2 ρ I 0 + ζ 2 y ( S ) ] .
Substituting the values of a 1 , b 1 in (21) and (22) respectively, we obtain the BVP solution (16). □

3. Main Results

We propose a fixed point problem relevant to the problem by Lemma 3 as follows:
Ψ : P × Q P × Q by
Ψ ( x , y ) ( ι ) = ( Ψ 1 ( x , y ) ( ι ) , Ψ 2 ( x , y ) ( ι ) ) ,
where
Ψ 1 ( x , y ) ( ι ) = ρ I 0 + ξ 1 + ζ 1 f ( ι , x ( ι ) , y ( ι ) ) ϕ 1 ρ I 0 + ζ 1 x ( ι ) + δ 1 ( ι ) [ E 2 ( ϵ ρ I 0 + ξ 2 + ζ 2 + ς g ( ϖ , x ( ϖ ) , y ( ϖ ) ) ϵ ϕ 2 ρ I 0 + ζ 2 + ς y ( ϖ ) ρ I 0 + ξ 1 + ζ 1 f ( S , x ( S ) , y ( S ) ) + ϕ 1 ρ I 0 + ζ 1 x ( S ) ) + E 1 ( π ρ I 0 + ξ 1 + ζ 1 + ϱ f ( σ , x ( σ ) , y ( σ ) ) π ϕ 1 ρ I 0 + ζ 1 + ϱ x ( σ ) ρ I 0 + ξ 2 + ζ 2 g ( S , x ( S ) , y ( S ) ) + ϕ 2 ρ I 0 + ζ 2 y ( S ) ) ] ,
Ψ 2 ( x , y ) ( ι ) = ρ I 0 + ξ 2 + ζ 2 g ( ι , x ( ι ) , y ( ι ) ) ϕ 2 ρ I 0 + ζ 2 y ( ι ) + δ 2 ( ι ) [ E 2 ^ ( ϵ ρ I 0 + ξ 2 + ζ 2 + ς g ( ϖ , x ( ϖ ) , y ( ϖ ) ) ϵ ϕ 2 ρ I 0 + ζ 2 + ς y ( ϖ ) ρ I 0 + ξ 1 + ζ 1 f ( S , x ( S ) , y ( S ) ) + ϕ 1 ρ I 0 + ζ 1 x ( S ) ) + E 1 ^ ( π ρ I 0 + ξ 1 + ζ 1 + ϱ f ( σ , x ( σ ) , y ( σ ) ) π ϕ 1 ρ I 0 + ζ 1 + ϱ x ( σ ) ρ I 0 + ξ 2 + ζ 2 g ( S , x ( S ) , y ( S ) ) + ϕ 2 ρ I 0 + ζ 2 y ( S ) ) ] .
For brevity, use these notations:
U 1 = S ρ ( ξ 1 + ζ 1 ) ( 1 + | δ 1 | | E 2 | ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | δ 1 | | π | | E 1 | σ ρ ( ξ 1 + ζ 1 + ϱ ) ρ ξ 1 + ζ 1 + ϱ Γ ( ξ 1 + ζ 1 + ϱ + 1 ) ,
V 1 = | δ 1 | | E 1 | S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | E 2 | | ϵ | ϖ ρ ( ξ 2 + ζ 2 + ς ) ρ ξ 2 + ζ 2 + ς Γ ( ξ 2 + ζ 2 + ς + 1 ) ,
U 1 ^ = | ϕ 1 | S ρ ζ 1 ( 1 + | δ 1 | | E 2 | ) ρ ζ 1 Γ ( ζ 1 + 1 ) + | δ 1 | | π | | E 1 | σ ρ ( ζ 1 + ϱ ) ρ ζ 1 + ϱ Γ ( ζ 1 + ϱ + 1 ) ,
V 1 ^ = | δ 1 | | ϕ 2 | | E 1 | S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | E 2 | | ϵ | ϖ ρ ( ζ 2 + ς ) ρ ζ 2 + ς Γ ( ζ 2 + ς + 1 ) ,
U 2 = | δ 2 | S ρ ( ξ 1 + ζ 1 ) | E 2 ^ | ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | π | | E 1 ^ | σ ρ ( ξ 1 + ζ 1 + ϱ ) ρ ξ 1 + ζ 1 + ϱ Γ ( ξ 1 + ζ 1 + ϱ + 1 ) ,
V 2 = ( 1 + | δ 2 | | E 1 ^ | ) S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | ϖ ρ ( ξ 2 + ζ 2 + ς ) ρ ξ 2 + ζ 2 + ς Γ ( ξ 2 + ζ 2 + ς + 1 ) ,
U 2 ^ = | δ 2 | | ϕ 1 | S ρ ζ 1 | E 2 ^ | ρ ζ 1 Γ ( ζ 1 + 1 ) + | π | | E 1 ^ | σ ρ ( ζ 1 + ϱ ) ρ ζ 1 + ϱ Γ ( ζ 1 + ϱ + 1 ) ,
V 2 ^ = | ϕ 2 | ( 1 + | δ 2 | | E 1 ^ | ) S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | ϖ ρ ( ζ 2 + ς ) ρ ζ 2 + ς Γ ( ζ 2 + ς + 1 ) ,
Φ = min { 1 [ ψ 1 ( U 1 + U 2 ) + ψ 1 ^ ( V 1 + V 2 ) + U 1 ^ + U 2 ^ ] , 1 [ ψ 2 ( U 1 + U 2 ) + ψ 2 ^ ( V 1 + V 2 ) + V 1 ^ + V 2 ^ ] } .
Let f , g : E × R × R R be continuous functions.
  • ( A 1 ) ∃ constants ψ m , ψ m ^ 0 ( m = 1 , 2 ) and ψ 0 , ψ 0 ^ > 0
    | f ( ι , o 1 , o 2 ) | ψ 0 + ψ 1 | o 1 | + ψ 2 | o 2 | , | g ( ι , o 1 , o 2 ) | ψ 0 ^ + ψ 1 ^ | o 1 | + ψ 2 ^ | o 2 | , o m R , m = 1 , 2 .
  • ( A 2 ) ∃ constants ψ m , ψ m ^ 0 ( m = 1 , 2 )
    | f ( ι , o 1 , o 2 ) f ( ι , o ^ 1 , o ^ 2 ) | ψ 1 | o 1 o ^ 1 | + ψ 2 | o 2 o ^ 2 | , | g ( ι , o 1 , o 2 ) g ( ι , o ^ 1 , o ^ 2 ) | ψ 1 ^ | o 1 o ^ 1 | + ψ 2 ^ | o 2 o ^ 2 | , o m , o ^ m R , m = 1 , 2 .
Theorem 1.
If the assumption ( A 1 ) is satisfied, then the problem (5) and (6) has a at leat one solution on E if ψ 1 ( U 1 + U 2 ) + ψ 1 ^ ( V 1 + V 2 ) + U 1 ^ + U 2 ^ < 1 , ψ 2 ( U 1 + U 2 ) + ψ 2 ^ ( V 1 + V 2 ) + V 1 ^ + V 2 ^ < 1 . Where U 1 , V 1 , U 1 ^ , V 1 ^ , U 2 , V 2 , U 2 ^ , V 2 ^ are given by (34)–(41) respectively.
Proof. 
In the first phase, we define operator Ψ : P × Q P × Q as being completely continuous. The operators Ψ 1 and Ψ 2 are continuous because the functions f and g are continuous. The operator Ψ is continuous as a result. For the purpose of illustrating how the uniformly bounded operator Ψ works, consider the bounded set Ψ P × Q . Then, N 1 ^ and N 2 ^ are positive constants such that | f ( ι , x ( ι ) , y ( ι ) ) | N 1 ^ , | g ( ι , x ( ι ) , y ( ι ) ) | N 2 ^ , ( x , y ) Ψ . Then we have
| Ψ 1 ( x , y ) ( ι ) | ρ I 0 + ξ 1 + ζ 1 | f ( ι , x ( ι ) , y ( ι ) ) | + | ϕ 1 | ρ I 0 + ζ 1 | x ( ι ) | + | δ 1 ( ι ) | [ | E 2 | ( | ϵ | ρ I 0 + ξ 2 + ζ 2 + ς | g ( ϖ , x ( ϖ ) , y ( ϖ ) ) | + | ϵ | | ϕ 2 | ρ I 0 + ζ 2 + ς | y ( ϖ ) | + ρ I 0 + ξ 1 + ζ 1 | f ( S , x ( S ) , y ( S ) ) | + | ϕ 1 | ρ I 0 + ζ 1 | x ( S ) | ) + | E 1 | ( | π | ρ I 0 + ξ 1 + ζ 1 + ϱ | f ( σ , x ( σ ) , y ( σ ) ) | + | π | | ϕ 1 | ρ I 0 + ζ 1 + ϱ | x ( σ ) | + ρ I 0 + ξ 2 + ζ 2 | g ( S , x ( S ) , y ( S ) ) | + | ϕ 2 | ρ I 0 + ζ 2 | y ( S ) | ) ] N ^ 1 S ρ ( ξ 1 + ζ 1 ) ( 1 + | δ 1 | | E 2 | ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | δ 1 | | π | | E 1 | σ ρ ( ξ 1 + ζ 1 + ϱ ) ρ ξ 1 + ζ 1 + ϱ Γ ( ξ 1 + ζ 1 + ϱ + 1 ) + N 2 ^ | δ 1 | | E 1 | S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | E 2 | | ϵ | ϖ ρ ( ξ 2 + ζ 2 + ς ) ρ ξ 2 + ζ 2 + ς Γ ( ξ 2 + ζ 2 + ς + 1 ) + | ϕ 1 | S ρ ζ 1 ( 1 + | δ 1 | | E 2 | ) ρ ζ 1 Γ ( ζ 1 + 1 ) + | δ 1 | | π | | E 1 | σ ρ ( ζ 1 + ϱ ) ρ ζ 1 + ϱ Γ ( ζ 1 + ϱ + 1 ) x + | δ 1 | | ϕ 2 | | E 1 | S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | E 2 | | ϵ | ϖ ρ ( ζ 2 + ς ) ρ ζ 2 + ς Γ ( ζ 2 + ς + 1 ) y ,
when taking the norm and using (34)–(37), that yields for ( x , y ) Ψ ,
| | Ψ 1 ( x , y ) | | U 1 N ^ 1 + U 1 ^ x + V 1 N ^ 2 + V 1 ^ y .
Likewise, we obtain
| | Ψ 2 ( x , y ) | | N 2 ^ ( 1 + | δ 2 | | E 1 ^ | ) S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | ϖ ρ ( ξ 2 + ζ 2 + ς ) ρ ξ 2 + ζ 2 + ς Γ ( ξ 2 + ζ 2 + ς + 1 ) + N 1 ^ | δ 2 | S ρ ( ξ 1 + ζ 1 ) | E 2 ^ | ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | π | | E 1 ^ | σ ρ ( ξ 1 + ζ 1 + ϱ ) ρ ξ 1 + ζ 1 + ϱ Γ ( ξ 1 + ζ 1 + ϱ + 1 ) + | ϕ 2 | ( 1 + | δ 2 | | E 1 ^ | ) S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | ϖ ρ ( ζ 2 + ς ) ρ ζ 2 + ς Γ ( ζ 2 + ς + 1 ) y + | δ 2 | | ϕ 1 | S ρ ζ 1 | E 2 ^ | ρ ζ 1 Γ ( ζ 1 + 1 ) + | π | | E 1 ^ | σ ρ ( ζ 1 + ϱ ) ρ ζ 1 + ϱ Γ ( ζ 1 + ϱ + 1 ) x U 2 N ^ 1 + U 2 ^ x + V 2 N ^ 2 + V 2 ^ y ,
using (38)–(41). We may infer that Ψ 1 and Ψ 2 are uniformly bounded based on the inequalities (43) and (44), which means that the operator Ψ is also uniformly bounded. Following that, we demonstrate that Ψ is equicontinuous. Let ι 1 , ι 2 E with ι 1 < ι 2 . Then we have
| Ψ 1 ( x , y ) ( ι 2 ) Ψ 1 ( x , y ) ( ι 1 ) | | ρ I 0 + ξ 1 + ζ 1 f ( ι 2 , x ( ι 2 ) , y ( ι 2 ) ) ρ I 0 + ξ 1 + ζ 1 f ( ι 1 , x ( ι 1 ) , y ( ι 1 ) ) | + | ϕ 1 | | ρ I 0 + ζ 1 x ( ι 2 ) ρ I 0 + ζ 1 x ( ι 1 ) | + | δ 1 ( ι 2 ) δ 1 ( ι 1 ) | [ | E 2 | ( | ϵ | ρ I 0 + ξ 2 + ζ 2 + ς | g ( ϖ , x ( ϖ ) , y ( ϖ ) ) | + | ϵ | | ϕ 2 | ρ I 0 + ζ 2 + ς | y ( ϖ ) | + ρ I 0 + ξ 1 + ζ 1 | f ( S , x ( S ) , y ( S ) ) | + | ϕ 1 | ρ I 0 + ζ 1 | x ( S ) | ) + | E 1 | ( | π | ρ I 0 + ξ 1 + ζ 1 + ϱ | f ( σ , x ( σ ) , y ( σ ) ) | + | π | | ϕ 1 | ρ I 0 + ζ 1 + ϱ | x ( σ ) | + ρ I 0 + ξ 2 + ζ 2 | g ( S , x ( S ) , y ( S ) ) | + | ϕ 2 | ρ I 0 + ζ 2 | y ( S ) | ) ] ρ 1 ( ξ 1 + ζ 1 ) N 1 ^ Γ ( ξ 1 + ζ 1 ) | 0 ι 1 θ ρ 1 ( ι 2 ρ θ ρ ) 1 ( ξ 1 + ζ 1 ) θ ρ 1 ( ι 1 ρ θ ρ ) 1 ( ξ 1 + ζ 1 ) d θ + ι 1 ι 2 θ ρ 1 ( ι 2 ρ θ ρ ) 1 ( ζ 1 ) d θ | ρ 1 ( ζ 1 ) x Γ ( ζ 1 ) | 0 ι 1 θ ρ 1 ( ι 2 ρ θ ρ ) 1 ( ζ 1 ) θ ρ 1 ( ι 1 ρ θ ρ ) 1 ( ζ 1 ) d θ + ι 1 ι 2 θ ρ 1 ( ι 2 ρ θ ρ ) 1 ( ζ 1 ) d θ | + | δ 1 ( ι 2 ) δ 1 ( ι 1 ) | [ N ^ 1 S ρ ( ξ 1 + ζ 1 ) ( | δ 1 | | E 2 | ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | δ 1 | | π | | E 1 | σ ρ ( ξ 1 + ζ 1 + ϱ ) ρ ξ 1 + ζ 1 + ϱ Γ ( ξ 1 + ζ 1 + ϱ + 1 ) + N 2 ^ | δ 1 | | E 1 | S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | E 2 | | ϵ | ϖ ρ ( ξ 2 + ζ 2 + ς ) ρ ξ 2 + ζ 2 + ς Γ ( ξ 2 + ζ 2 + ς + 1 ) + | ϕ 1 | S ρ ζ 1 ( 1 + | δ 1 | | E 2 | ) ρ ζ 1 Γ ( ζ 1 + 1 ) + | δ 1 | | π | | E 1 | σ ρ ( ζ 1 + ϱ ) ρ ζ 1 + ϱ Γ ( ζ 1 + ϱ + 1 ) x + | δ 1 | | ϕ 2 | | E 1 | S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | E 2 | | ϵ | ϖ ρ ( ζ 2 + ς ) ρ ζ 2 + ς Γ ( ζ 2 + ς + 1 ) y ] 0 a s ι 2 ι 1 .
independent of ( x , y ) with respect to | f ( ι , x ( ι 1 ) , y ( ι 1 ) ) | N 1 ^ and | g ( ι , x ( ι 1 ) , y ( ι 1 ) ) | N 2 ^ . Similarly, we can express | Ψ 2 ( x , y ) ( ι 2 ) Ψ 2 ( x , y ) ( ι 1 ) | 0 as ι 2 ι 1 independent of ( x , y ) in terms of the boundedness of f and g. The operator Ψ is equicontinuous due to the equicontinuity of Ψ 1 and Ψ 2 . The operator is compact as a result of the Arzela–Ascoli theorem. Finally, we show that the set Π ( Ψ ) = { ( x , y ) P × Q : λ Ψ ( x , y ) ; 0 < λ < 1 } is bounded. Let ( x , y ) Π ( Ψ ) .Then ( x , y ) = λ Ψ ( x , y ) . For any ι E , we have x ( ι ) = λ Ψ 1 ( x , y ) ( ι ) , y ( ι ) = λ Ψ 2 ( x , y ) ( ι ) . By utilizing ( A 1 ) in (32), we obtain
| x ( ι ) | ρ I 0 + ξ 1 + ζ 1 ( ψ 0 , ψ 1 | x ( ι ) | , ψ 2 | y ( ι ) | ) + | ϕ 1 | ρ I 0 + ζ 1 | x ( ι ) | + | δ 1 ( ι ) | [ | E 2 | ( | ϵ | ρ I 0 + ξ 2 + ζ 2 + ς ( ψ 0 ^ + ψ 1 ^ | x ( ϖ ) | + ψ 2 ^ | y ( ϖ ) | ) + | ϵ | | ϕ 2 | ρ I 0 + ζ 2 + ς | y ( ϖ ) | + ρ I 0 + ξ 1 + ζ 1 ( ψ 0 , ψ 1 | x ( S ) | , ψ 2 | y ( S ) | ) + | ϕ 1 | ρ I 0 + ζ 1 | x ( S ) | ) + | E 1 | ( | π | ρ I 0 + ξ 1 + ζ 1 + ϱ ( ψ 0 , ψ 1 | x ( σ ) | , ψ 2 | y ( σ ) | ) + | π | | ϕ 1 | ρ I 0 + ζ 1 + ϱ | x ( σ ) | + ρ I 0 + ξ 2 + ζ 2 ( ψ 0 ^ + ψ 1 ^ | x ( S ) | + ψ 2 ^ | y ( S ) | ) + | ϕ 2 | ρ I 0 + ζ 2 | y ( S ) | ) ] ,
which is obtained when the norm for ι E is taken,
| | x | | ( ψ 0 + ψ 1 | | x | | + ψ 2 | | y | | ) U 1 + ( ψ 0 ^ + ψ 1 ^ | | x | | + ψ 2 ^ | | y | | ) V 1 + x U 1 ^ + y V 1 ^ .
Likewise, we have the ability to get that
| | y | | ( ψ 0 ^ + ψ 1 ^ | | x | | + ψ 2 ^ | | y | | ) V 2 + ( ψ 0 + ψ 1 | | x | | + ψ 2 | | y | | ) U 2 + x U 2 ^ + y V 2 ^ .
From (46) and (47), we get
| | x | | + | | y | | = ψ 0 ( U 1 + U 2 ) + ψ 0 ^ ( V 1 + V 2 ) + | | x | | ψ 1 ( U 1 + U 2 ) + ψ 1 ^ ( V 1 + V 2 ) + U 1 ^ + U 2 ^ + | | y | | ψ 1 ( U 1 + U 2 ) + ψ 1 ^ ( V 1 + V 2 ) + V 1 ^ + V 2 ^ ,
which results, with | | ( x , y ) | | = | | x | | + | | y | | ,
| | ( x , y ) | | ψ 0 ( U 1 + U 2 ) + ψ 0 ^ ( V 1 + V 2 ) Φ .
Thus, Π ( Ψ ) is bounded. Hence the operator Ψ has a fixed point by Leray–Schauder nonlinear alternative [37], which corresponds to at least one solution of the problem (5) and (6) on E . □
Theorem 2.
If the assumption ( A 2 ) is satisfied, then the problem (5) and (6) has a unique solution on E . And there exist S 1 , S 2 > 0 such that | f ( ι , 0 , 0 ) | S 1 , | g ( ι , 0 , 0 ) | S 2 , Then, given that
( U 1 + U 2 ) ( ψ 1 + ψ 2 ) + ( V 1 + V 2 ) ( ψ 1 ^ + ψ 2 ^ ) + ( U 1 ^ + U 2 ^ ) + ( V 1 ^ + V 2 ^ ) < 1 ,
where U 1 , V 1 , U 1 ^ , V 1 ^ , U 2 , V 2 , U 2 ^ , V 2 ^ are given by (34)–(41) respectively.
Proof. 
Let us fix φ ( U 1 + U 2 ) S 1 + ( V 1 + V 2 ) S 2 1 ( ( U 1 + U 2 ) ( ψ 1 + ψ 2 ) + ( V 1 + V 2 ) ( ψ 1 ^ + ψ 2 ^ ) + U 2 ^ ) + ( V 1 ^ + V 2 ^ ) ) and demonstrate that Ψ B φ B φ when operator Ψ is given by (31) and B φ = { ( x , y ) P × Q : | | ( x , y ) | | φ } . For ( x , y ) B φ , ι E
| f ( ι , x ( ι ) , y ( ι ) ) | ψ 1 | x ( ι ) | + ψ 2 | y ( ι ) | + S 1 ψ 1 | | x | | + ψ 2 | | y | | + S 1 ,
and
| g ( ι , x ( ι ) , y ( ι ) ) | ψ 1 ^ | x ( ι ) | + ψ 2 ^ | y ( ι ) | + S 2 ψ 1 ^ | | x | | + ψ 2 ^ | | y | | + S 2 .
This guides to
| Ψ 1 ( x , y ) ( ι ) | ρ I 0 + ξ 1 + ζ 1 | f ( ι , x ( ι ) , y ( ι ) ) f ( ι , 0 , 0 ) | + | f ( ι , 0 , 0 ) | + | ϕ 1 | ρ I 0 + ζ 1 | x ( ι ) | + | δ 1 ( ι ) | [ | E 2 | ( | ϵ | ρ I 0 + ξ 2 + ζ 2 + ς | g ( ( ϖ , x ( ϖ ) , y ( ϖ ) ) g ( ϖ , 0 , 0 ) | + | g ( ϖ , 0 , 0 ) | ) + | ϵ | | ϕ 2 | ρ I 0 + ζ 2 + ς | y ( ϖ ) | + ρ I 0 + ξ 1 + ζ 1 | f ( S , x ( S ) , y ( S ) ) f ( S , 0 , 0 ) | + | f ( S , 0 , 0 ) | + | ϕ 1 | ρ I 0 + ζ 1 | x ( S ) | ) + | E 1 | ( | π | ρ I 0 + ξ 1 + ζ 1 + ϱ | f ( σ , x ( σ ) , y ( σ ) ) f ( σ , 0 , 0 ) | + | f ( σ , 0 , 0 ) | + | π | | ϕ 1 | ρ I 0 + ζ 1 + ϱ | x ( σ ) | + ρ I 0 + ξ 2 + ζ 2 | g ( ( S , x ( S ) , y ( S ) ) g ( S , 0 , 0 ) | + | g ( S , 0 , 0 ) | ) + | ϕ 2 | ρ I 0 + ζ 2 | y ( S ) | ) ]
( ψ 1 | | x | | + ψ 2 | | y | | + S 1 ) S ρ ( ξ 1 + ζ 1 ) ( 1 + | δ 1 | | E 2 | ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | δ 1 | | π | | E 1 | σ ρ ( ξ 1 + ζ 1 + ϱ ) ρ ξ 1 + ζ 1 + ϱ Γ ( ξ 1 + ζ 1 + ϱ + 1 ) + ( ψ 1 ^ | | x | | + ψ 2 ^ | | y | | + S 2 ) | δ 1 | | E 1 | S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | E 2 | | ϵ | ϖ ρ ( ξ 2 + ζ 2 + ς ) ρ ξ 2 + ζ 2 + ς Γ ( ξ 2 + ζ 2 + ς + 1 ) + | ϕ 1 | S ρ ζ 1 ( 1 + | δ 1 | | E 2 | ) ρ ζ 1 Γ ( ζ 1 + 1 ) + | δ 1 | | π | | E 1 | σ ρ ( ζ 1 + ϱ ) ρ ζ 1 + ϱ Γ ( ζ 1 + ϱ + 1 ) x + | δ 1 | | ϕ 2 | | E 1 | S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | E 2 | | ϵ | ϖ ρ ( ζ 2 + ς ) ρ ζ 2 + ς Γ ( ζ 2 + ς + 1 ) y
| | Ψ 1 ( x , y ) | | ( ψ 1 | | x | | + ψ 2 | | y | | + S 1 ) U 1 + ( ψ 1 ^ | | x | | + ψ 2 ^ | | y | | + S 2 ) V 1 + x U 1 ^ + y V 1 ^ .
Similarly, we obtain
| Ψ 2 ( x , y ) ( ι ) | ( ψ 1 ^ | | x | | + ψ 2 ^ | | y | | + S 2 ) ( 1 + | δ 2 | | E 1 ^ | ) S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | ϖ ρ ( ξ 2 + ζ 2 + ς ) ρ ξ 2 + ζ 2 + ς Γ ( ξ 2 + ζ 2 + ς + 1 ) + ( ψ 1 | | x | | + ψ 2 | | y | | + S 1 ) | δ 2 | S ρ ( ξ 1 + ζ 1 ) | E 2 ^ | ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | π | | E 1 ^ | σ ρ ( ξ 1 + ζ 1 + ϱ ) ρ ξ 1 + ζ 1 + ϱ Γ ( ξ 1 + ζ 1 + ϱ + 1 ) + | ϕ 2 | ( 1 + | δ 2 | | E 1 ^ | ) S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | ϖ ρ ( ζ 2 + ς ) ρ ζ 2 + ς Γ ( ζ 2 + ς + 1 ) y + | δ 2 | | ϕ 1 | S ρ ζ 1 | E 2 ^ | ρ ζ 1 Γ ( ζ 1 + 1 ) + | π | | E 1 ^ | σ ρ ( ζ 1 + ϱ ) ρ ζ 1 + ϱ Γ ( ζ 1 + ϱ + 1 ) x | | Ψ 2 ( x , y ) | | ( ψ 1 ^ | | x | | + ψ 2 ^ | | y | | + S 2 ) K 2 + ( ψ 1 | | x | | + ψ 2 | | y | | + S 1 ) J 2 + x U 2 ^ + y V 2 ^ .
As a result, (50) and (51) follow | | Ψ ( x , y ) | | φ , and thus Ψ B φ B φ . Now, for ( x 1 , y 1 ) , ( x 2 , y 2 ) P × Q and any ι E , we get
| Ψ 1 ( x 1 , y 1 ) ( ι ) Ψ 1 ( x 2 , y 2 ) ( ι ) | ρ I 0 + ξ 1 + ζ 1 | f ( ι , x 1 ( ι ) , y 1 ( ι ) ) f ( ι , x 2 ( ι ) , y 2 ( ι ) ) | + | ϕ 1 | ρ I 0 + ζ 1 | x 1 ( ι ) x 2 ( ι ) | + | δ 1 ( ι ) | [ | E 2 | ( | ϵ | ρ I 0 + ξ 2 + ζ 2 + ς | g ( ϖ , x 1 ( ϖ ) , y 1 ( ϖ ) ) g ( ϖ , x 2 ( ϖ ) , y 2 ( ϖ ) ) | + | ϵ | | ϕ 2 | ρ I 0 + ζ 2 + ς | y 1 ( ϖ ) y 2 ( ϖ ) | + ρ I 0 + ξ 1 + ζ 1 | f ( S , x 1 ( S ) , y 1 ( S ) ) f ( S , x 2 ( S ) , y 2 ( S ) ) | + | ϕ 1 | ρ I 0 + ζ 1 | x 1 ( S ) x 2 ( S ) | ) + | E 1 | ( | π | ρ I 0 + ξ 1 + ζ 1 + ϱ | f ( σ , x 1 ( σ ) , y 1 ( σ ) ) f ( σ , x 2 ( σ ) , y 2 ( σ ) ) | + | π | | ϕ 1 | ρ I 0 + ζ 1 + ϱ | x 1 ( σ ) x 2 ( σ ) | + ρ I 0 + ξ 2 + ζ 2 | g ( S , x 1 ( S ) , y 1 ( S ) ) g ( S , x 2 ( S ) , y 2 ( S ) ) | + | ϕ 2 | ρ I 0 + ζ 2 | y 1 ( S ) y 2 ( S ) | ) ] ( ψ 1 | | x 1 x 2 | | + ψ 2 | | y 1 y 2 | | ) S ρ ( ξ 1 + ζ 1 ) ( 1 + | δ 1 | | E 2 | ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | δ 1 | | π | | E 1 | σ ρ ( ξ 1 + ζ 1 + ϱ ) ρ ξ 1 + ζ 1 + ϱ Γ ( ξ 1 + ζ 1 + ϱ + 1 ) + ( ψ 1 ^ | | x 1 x 2 | | + ψ 2 ^ | | y 1 y 2 | | ) | δ 1 | | E 1 | S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | E 2 | | ϵ | ϖ ρ ( ξ 2 + ζ 2 + ς ) ρ ξ 2 + ζ 2 + ς Γ ( ξ 2 + ζ 2 + ς + 1 ) + | ϕ 1 | S ρ ζ 1 ( 1 + | δ 1 | | E 2 | ) ρ ζ 1 Γ ( ζ 1 + 1 ) + | δ 1 | | π | | E 1 | σ ρ ( ζ 1 + ϱ ) ρ ζ 1 + ϱ Γ ( ζ 1 + ϱ + 1 ) | | x 1 x 2 | | + | δ 1 | | ϕ 2 | | E 1 | S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | E 2 | | ϵ | ϖ ρ ( ζ 2 + ς ) ρ ζ 2 + ς Γ ( ζ 2 + ς + 1 ) | | y 1 y 2 | | ( U 1 ( ψ 1 + ψ 2 ) + V 1 ( ψ 1 ^ + ψ 2 ^ ) + U 1 ^ + V 1 ^ ) ( | | x 1 x 2 | | + | | y 1 y 2 | | ) .
Similarly, we obtain
| Ψ 2 ( x 1 , y 1 ) ( ι ) Ψ 2 ( x 2 , y 2 ) ( ι ) | ( ψ 1 ^ | | x 1 x 2 | | + ψ 2 ^ | | y 1 y 2 | | ) ( 1 + | δ 2 | | E 1 ^ | ) S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | ϖ ρ ( ξ 2 + ζ 2 + ς ) ρ ξ 2 + ζ 2 + ς Γ ( ξ 2 + ζ 2 + ς + 1 ) + ( ψ 1 | | x 1 x 2 | | + ψ 2 | | y 1 y 2 | | ) | δ 2 | S ρ ( ξ 1 + ζ 1 ) | E 2 ^ | ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | π | | E 1 ^ | σ ρ ( ξ 1 + ζ 1 + ϱ ) ρ ξ 1 + ζ 1 + ϱ Γ ( ξ 1 + ζ 1 + ϱ + 1 ) + | ϕ 2 | ( 1 + | δ 2 | | E 1 ^ | ) S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | ϖ ρ ( ζ 2 + ς ) ρ ζ 2 + ς Γ ( ζ 2 + ς + 1 ) | | y 1 y 2 | | + | δ 2 | | ϕ 1 | S ρ ζ 1 | E 2 ^ | ρ ζ 1 Γ ( ζ 1 + 1 ) + | π | | E 1 ^ | σ ρ ( ζ 1 + ϱ ) ρ ζ 1 + ϱ Γ ( ζ 1 + ϱ + 1 ) | | x 1 x 2 | | ( U 2 ( ψ 1 + ψ 2 ) + V 2 ( ψ 1 ^ + ψ 2 ^ ) + U 2 ^ + V 2 ^ ) ( | | x 1 x 2 | | + | | y 1 y 2 | | ) .
Thus we obtain
| | Ψ 1 ( x 1 , y 1 ) ( ι ) Ψ 1 ( x 2 , y 2 ) ( ι ) | | ( U 1 ( ψ 1 + ψ 2 ) + V 1 ( ψ 1 ^ + ψ 2 ^ ) + U 1 ^ + V 1 ^ ) ( | | x 1 x 2 | | + | | y 1 y 2 | | ) .
In a similar manner,
| | Ψ 2 ( x 1 , y 1 ) ( ι ) Ψ 2 ( x 2 , y 2 ) ( ι ) | | ( U 2 ( ψ 1 + ψ 2 ) + V 2 ( ψ 1 ^ + ψ 2 ^ ) + U 2 ^ + V 2 ^ ) ( | | x 1 x 2 | | + | | y 1 y 2 | | ) .
Hence, using (52) and (53) we can get
| | Ψ ( x 1 , y 1 ) ( ι ) Ψ ( x 2 , y 2 ) ( ι ) | | ( ( U 1 + U 2 ) ( ψ 1 + ψ 2 ) + ( V 1 + V 2 ) ( ψ 1 ^ + ψ 2 ^ ) + ( U 1 ^ + U 2 ^ ) + ( V 1 ^ + V 2 ^ ) ) ( | | x 1 x 2 | | + | | y 1 y 2 | | ) .
As a consequence of condition ( ( U 1 + U 2 ) ( ψ 1 + ψ 2 ) + ( V 1 + V 2 ) ( ψ 1 ^ + ψ 2 ^ ) + ( U 1 ^ + U 2 ^ ) + ( V 1 ^ + V 2 ^ ) ) < 1 , Ψ is an operator for contraction. Hence the operator has a unique fixed point by Banach’s contraction principle [37], which corresponds to a unique solution of the problem (5), and (6). □

4. Example

Consider the following problem:
C 19 25 D 0 + 5 4 ( C 19 25 D 0 + 1 2 + 1 100 ) x ( ι ) = f ( ι , x ( ι ) , y ( ι ) ) , ι E : = [ 0 , 1 ] , C 19 25 D 0 + 7 4 ( C 19 25 D 0 + 4 5 + 1 150 ) y ( ι ) = g ( ι , x ( ι ) , y ( ι ) ) , ι E : = [ 0 , 1 ] ,
x ( 0 ) = 0 , y ( 0 ) = 0 , x ( 1 ) = 9 50 19 25 I 33 50 y ( 18 25 ) , y ( 1 ) = 4 25 19 25 I 43 50 x ( 11 20 ) ,
where ξ 1 = 5 4 , ξ 2 = 7 4 , ζ 1 = 1 2 , ζ 2 = 4 5 , ρ = 19 25 , S = 1 , ϵ = 9 50 , ϖ = 18 25 , π = 4 25 , σ = 11 20 , ς = 33 50 , ϱ = 43 50 and
f ( ι , x ( ι ) , y ( ι ) ) = ( ι + 1 ) 200 | y ( ι ) | 1 + | y ( ι ) | + 1 4 cos ( x ( ι ) ) + 5 ι ,
g ( ι , x ( ι ) , y ( ι ) ) = e ι 100 1 + ι 4 + 1 7 cos ( y ( ι ) ) + | x ( ι ) | 3 ( 1 + | x ( ι ) | ) .
With ψ 0 = 1 40 , ψ 1 = 1 800 , ψ 2 = 1 200 , ψ 0 ^ = 1 400 , ψ 1 ^ = 1 300 , and ψ 2 ^ = 1 700 , using ( A 1 ) condition. Next, we find that U 1 = 3.8212184102805633 , V 1 = 13.84209017173257 , U 2 = 2.2659612415346384 , V 2 = 14.222771283122185 , U 1 ^ = 0.07786603271240089 , V 1 ^ = 0.27980001669983334 , U 2 ^ = 0.053808908037849844 , V 2 ^ = 0.2869951632752146 , U i , V i , U i ^ , V i ^ ( i = 1 , 2 ) are respectively given by (34)–(41). Thus ψ 1 ( U 1 + U 2 ) + ψ 1 ^ ( V 1 + V 2 ) + U 1 ^ + U 2 ^ 0.23283345349786894 < 1 , ψ 2 ( U 1 + U 2 ) + ψ 2 ^ ( V 1 + V 2 ) + V 1 ^ + V 2 ^ 0.637323737455345 < 1 , hence, Theorem 1 can be applied to the problem (54) and (55).
Moreover, we will employ
f ( ι , x ( ι ) , y ( ι ) ) = ι 20 + 1 500 | y ( ι ) | 1 + | y ( ι ) | + 3 800 cos ( x ( ι ) ) ,
g ( ι , x ( ι ) , y ( ι ) ) = ( e ι + 1 ) 50 + 1 400 cos ( y ( ι ) ) + 1 700 | x ( ι ) | 1 + | x ( ι ) | ,
to illustrate Theorem 2. Using the assumption ( A 2 ) with ψ 1 = 3 800 , ψ 2 = 1 500 , ψ 1 ^ = 1 700 and ψ 2 ^ = 1 400 . The assumptions of Theorem 2 are also satisfied with ( U 1 + U 2 ) ( ψ 1 + ψ 2 ) + ( V 1 + V 2 ) ( ψ 1 ^ + ψ 2 ^ ) + ( U 1 ^ + U 2 ^ ) + ( V 1 ^ + V 2 ^ ) 0.8437262165815941 < 1 . Hence, Theorem 2 can be applied to the problem (54) and (55).
For brevity, use these notations:
U 1 = S ρ ( ξ 1 + ζ 1 ) ( 1 + | δ 1 | | E 2 | ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | δ 1 | | π | | E 1 | σ ρ ( ξ 1 + ζ 1 + ϱ ) ρ ξ 1 + ζ 1 + ϱ Γ ( ξ 1 + ζ 1 + ϱ + 1 ) + | ϕ 1 | S ρ ζ 1 ( 1 + | δ 1 | | E 2 | ) ρ ζ 1 Γ ( ζ 1 + 1 ) + | δ 1 | | π | | E 1 | σ ρ ( ζ 1 + ϱ ) ρ ζ 1 + ϱ Γ ( ζ 1 + ϱ + 1 ) ,
V 1 = | δ 1 | | E 1 | S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | E 2 | | ϵ | ϖ ρ ( ξ 2 + ζ 2 + ς ) ρ ξ 2 + ζ 2 + ς Γ ( ξ 2 + ζ 2 + ς + 1 ) + | δ 1 | | ϕ 2 | | E 1 | S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | E 2 | | ϵ | ϖ ρ ( ζ 2 + ς ) ρ ζ 2 + ς Γ ( ζ 2 + ς + 1 ) ,
U 2 = | δ 2 | S ρ ( ξ 1 + ζ 1 ) | E 2 ^ | ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | π | | E 1 ^ | σ ρ ( ξ 1 + ζ 1 + ϱ ) ρ ξ 1 + ζ 1 + ϱ Γ ( ξ 1 + ζ 1 + ϱ + 1 ) + | δ 2 | | ϕ 1 | S ρ ζ 1 | E 2 ^ | ρ ζ 1 Γ ( ζ 1 + 1 ) + | π | | E 1 ^ | σ ρ ( ζ 1 + ϱ ) ρ ζ 1 + ϱ Γ ( ζ 1 + ϱ + 1 ) ,
V 2 = ( 1 + | δ 2 | | E 1 ^ | ) S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | ϖ ρ ( ξ 2 + ζ 2 + ς ) ρ ξ 2 + ζ 2 + ς Γ ( ξ 2 + ζ 2 + ς + 1 ) + | ϕ 2 | ( 1 + | δ 2 | | E 1 ^ | ) S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | ϖ ρ ( ζ 2 + ς ) ρ ζ 2 + ς Γ ( ζ 2 + ς + 1 ) ,

5. Ulam–Hyers Stability Results

With the help of an integral formulation of the solution provided by
x ( ι ) = Ψ 1 ( x , y ) ( ι ) , y ( ι ) = Ψ 2 ( x , y ) ( ι ) ,
where Ψ 1 and Ψ 2 are given by (32) and (33). We analyse the Ulam–Hyers stability for problem (5) and (6) in this section. Consider the following definitions of nonlinear operators
H 1 , H 2 C ( E , R ) × C ( E , R ) C ( E , R ) ,
C ρ D 0 + ξ 1 ( C ρ D 0 + ζ 1 + ϕ 1 ) x ( ι ) f ( ι , x ( ι ) , y ( ι ) ) = H 1 ( x , y ) ( ι ) , ι E , C ρ D 0 + ξ 2 ( C ρ D 0 + ζ 2 + ϕ 2 ) y ( ι ) g ( ι , x ( ι ) , y ( ι ) ) = H 1 ( x , y ) ( ι ) , ι E .
For some λ 1 ^ , λ ^ 2 > 0 , taking into consideration the following inequality::
| | H 1 ( x , y ) | | λ 1 ^ , | | H 2 ( x , y ) | | λ 2 ^ .
Definition 2.
The system (5) and (6) is U–H stable if ∃ V 1 , V 2 > 0 , for every solution ( x , y ) C ( E , R ) × C ( E , R ) of inequality (65),a unique solution on ( x , y ) C ( E , R ) × C ( E , R ) , of problem (5) and (6) with
| | ( x , y ) ( x , y ) | | V 1 λ 1 ^ + V 2 λ 2 ^ .
Theorem 3.
If the assumption ( A 2 ) is satisfied, then the BVP (5) and (6) is U–H stable.
Proof. 
Let ( x , y ) C ( E , R ) × C ( E , R ) be the solution of the BVP (5) and (6) satisfying (32) and (33). Let ( x , y ) be any solution satisfying (65):
C ρ D 0 + ξ 1 ( C ρ D 0 + ζ 1 + ϕ 1 ) x ( ι ) = f ( ι , x ( ι ) , y ( ι ) ) + H 1 ( x , y ) ( ι ) , ι E , C ρ D 0 + ξ 2 ( C ρ D 0 + ζ 2 + ϕ 2 ) y ( ι ) = g ( ι , x ( ι ) , y ( ι ) ) + H 1 ( x , y ) ( ι ) , ι E ,
so,
x ( ι ) = Ψ 1 ( x , y ) ( ι ) + ρ I 0 + ξ 1 + ζ 1 H 1 ( x , y ) ( ι ) ϕ 1 ρ I 0 + ζ 1 x ( ι ) + δ 1 ( ι ) [ E 2 ( ϵ ρ I 0 + ξ 2 + ζ 2 + ς H 2 ( x , y ) ( ϖ ) ϵ ϕ 2 ρ I 0 + ζ 2 + ς y ( ϖ ) ρ I 0 + ξ 1 + ζ 1 H 1 ( x , y ) ( S ) + ϕ 1 ρ I 0 + ζ 1 x ( S ) ) + E 1 ( π ρ I 0 + ξ 1 + ζ 1 + ϱ H 1 ( x , y ) ( σ ) π ϕ 1 ρ I 0 + ζ 1 + ϱ x ( σ ) ρ I 0 + ξ 2 + ζ 2 H 2 ( x , y ) ( S ) + ϕ 2 ρ I 0 + ζ 2 y ( S ) ) ] .
It follows that
| Ψ 1 ( x , y ) ( ι ) x ( ι ) | ρ I 0 + ξ 1 + ζ 1 | H 1 ( x , y ) ( ι ) | + | ϕ 1 | ρ I 0 + ζ 1 | x ( ι ) | + | δ 1 ( ι ) | [ | E 2 | ( | ϵ | ρ I 0 + ξ 2 + ζ 2 + ς | H 2 ( x , y ) ( ϖ ) | + | ϵ | | ϕ 2 | ρ I 0 + ζ 2 + ς | y ( ϖ ) | + ρ I 0 + ξ 1 + ζ 1 | H 1 ( x , y ) ( S ) | + | ϕ 1 | ρ I 0 + ζ 1 | x ( S ) | ) + | E 1 | ( | π | ρ I 0 + ξ 1 + ζ 1 + ϱ H 1 ( x , y ) ( σ ) + | π | | ϕ 1 | ρ I 0 + ζ 1 + ϱ | x ( σ ) | + ρ I 0 + ξ 2 + ζ 2 | H 2 ( x , y ) ( S ) | + | ϕ 2 | ρ I 0 + ζ 2 | y ( S ) | ) ] λ ^ 1 { S ρ ( ξ 1 + ζ 1 ) ( 1 + | δ 1 | | E 2 | ) ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | δ 1 | | π | | E 1 | σ ρ ( ξ 1 + ζ 1 + ϱ ) ρ ξ 1 + ζ 1 + ϱ Γ ( ξ 1 + ζ 1 + ϱ + 1 ) + | ϕ 1 | S ρ ζ 1 ( 1 + | δ 1 | | E 2 | ) ρ ζ 1 Γ ( ζ 1 + 1 ) + | δ 1 | | π | | E 1 | σ ρ ( ζ 1 + ϱ ) ρ ζ 1 + ϱ Γ ( ζ 1 + ϱ + 1 ) } + λ ^ 2 { | δ 1 | | E 1 | S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | E 2 | | ϵ | ϖ ρ ( ξ 2 + ζ 2 + ς ) ρ ξ 2 + ζ 2 + ς Γ ( ξ 2 + ζ 2 + ς + 1 ) + | δ 1 | | ϕ 2 | | E 1 | S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | E 2 | | ϵ | ϖ ρ ( ζ 2 + ς ) ρ ζ 2 + ς Γ ( ζ 2 + ς + 1 ) } U 1 λ 1 ^ + V 1 λ 2 ^ .
Similarly, we obtain
| Ψ 2 ( x , y ) ( ι ) y ( ι ) | λ 2 ^ { ( 1 + | δ 2 | | E 1 ^ | ) S ρ ( ξ 2 + ζ 2 ) ρ ξ 2 + ζ 2 Γ ( ξ 2 + ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | ϖ ρ ( ξ 2 + ζ 2 + ς ) ρ ξ 2 + ζ 2 + ς Γ ( ξ 2 + ζ 2 + ς + 1 ) + | ϕ 2 | ( 1 + | δ 2 | | E 1 ^ | ) S ρ ζ 2 ρ ζ 2 Γ ( ζ 2 + 1 ) + | δ 2 | | E 2 ^ | | ϵ | ϖ ρ ( ζ 2 + ς ) ρ ζ 2 + ς Γ ( ζ 2 + ς + 1 ) } + λ 1 ^ { | δ 2 | S ρ ( ξ 1 + ζ 1 ) | E 2 ^ | ρ ξ 1 + ζ 1 Γ ( ξ 1 + ζ 1 + 1 ) + | π | | E 1 ^ | σ ρ ( ξ 1 + ζ 1 + ϱ ) ρ ξ 1 + ζ 1 + ϱ Γ ( ξ 1 + ζ 1 + ϱ + 1 ) + | δ 2 | | ϕ 1 | S ρ ζ 1 | E 2 ^ | ρ ζ 1 Γ ( ζ 1 + 1 ) + | π | | E 1 ^ | σ ρ ( ζ 1 + ϱ ) ρ ζ 1 + ϱ Γ ( ζ 1 + ϱ + 1 ) } U 2 λ ^ 1 + V 2 λ ^ 2 ,
where U 1 , V 1 , U 2 , and V 2 are defined in (60)–(63), respectively. Consequently, based on the fixed point property of the operator Ψ , provided in (32) and (33), we derive that
| x ( ι ) x ( ι ) | = | x ( ι ) Ψ 1 ( x , y ) ( ι ) + Ψ 1 ( x , y ) ( ι ) x ( ι ) | | Ψ 1 ( x , y ) ( ι ) Ψ 1 ( x , y ) ( ι ) | + | Ψ 1 ( x , y ) ( ι ) x ( ι ) | ( ( U 1 ψ 1 + V 1 ψ 1 ^ ) + ( U 1 ψ 2 + V 1 ψ 2 ^ ) ) | | ( x , y ) ( x , y ) | | + U 1 λ 1 ^ + V 1 λ 2 ^ .
| y ( ι ) y ( ι ) | = | y ( ι ) Ψ 2 ( x , y ) ( ι ) + Ψ 2 ( x , y ) ( ι ) y ( ι ) | | Ψ 2 ( x , y ) ( ι ) Ψ 2 ( x , y ) ( ι ) | + | Ψ 2 ( x , y ) ( ι ) y ( ι ) | ( ( U 2 ψ 1 + V 2 ψ 1 ^ ) + ( U 2 ψ 2 + V 2 ψ 2 ^ ) ) | | ( x , y ) ( x , y ) | | + U 2 λ 1 ^ + V 2 λ 2 ^ .
From the above equations (66) and (67) it follows that
| | ( x , y ) ( x , y ) | | ( U 1 + U 2 ) λ 1 ^ + ( V 1 + V 2 ) λ 2 ^ + ( ( U 1 + U 2 ) ( ψ 1 + ψ 2 ) + ( V 1 + V 2 ) ( ψ 1 ^ + ψ 2 ^ ) ) | | ( x , y ) ( x , y ) | | .
| | ( x , y ) ( x , y ) | | ( U 1 + U 2 ) λ 1 ^ + ( V 1 + V 2 ) λ 2 ^ 1 ( ( U 1 + U 2 ) ( ψ 1 + ψ 2 ) + ( V 1 + V 2 ) ( ψ 1 ^ + ψ 2 ^ ) ) V 1 λ 1 ^ + V 2 λ 2 ^ ,
with
V 1 = U 1 + U 2 1 ( ( U 1 + U 2 ) ( ψ 1 + ψ 2 ) + ( V 1 + V 2 ) ( ψ 1 ^ + ψ 2 ^ ) ) ,
V 2 = V 1 + V 2 1 ( ( U 1 + U 2 ) ( ψ 1 + ψ 2 ) + ( V 1 + V 2 ) ( ψ 1 ^ + ψ 2 ^ ) ) .
Thus, the BVP (5) and (6) is U–H stable. □

6. Example

Consider the following problem:
C 19 25 D 0 + 5 4 ( C 19 25 D 0 + 1 2 + 1 100 ) x ( ι ) = ι 30 + 1 40 ( 16 + ι ) | y ( ι ) | 1 + | y ( ι ) | + 4 900 cos ( x ( ι ) ) , ι [ 0 , 1 ] , C 19 25 D 0 + 7 4 ( C 19 25 D 0 + 4 5 + 1 150 ) y ( ι ) = ι 70 + 1 400 cos ( y ( ι ) ) + 1 800 | x ( ι ) | 1 + | x ( ι ) | , ι [ 0 , 1 ] ,
x ( 0 ) = 0 , y ( 0 ) = 0 , x ( 1 ) = 9 50 19 25 I 33 50 y ( 18 25 ) , y ( 1 ) = 4 25 19 25 I 43 50 x ( 11 20 ) ,
where ξ 1 = 5 4 , ξ 2 = 7 4 , ζ 1 = 1 2 , ζ 2 = 4 5 , ρ = 19 25 , S = 1 , ϵ = 9 50 , ϖ = 18 25 , π = 4 25 , σ = 11 20 , ς = 33 50 , ϱ = 43 50 and
| f ( ι , x 1 ( ι ) , y 1 ( ι ) ) f ( ι , x 2 ( ι ) , y 2 ( ι ) ) | = 4 900 | x 1 ( ι ) x 2 ( ι ) | + 1 640 | y 1 ( ι ) y 2 ( ι ) | ,
| g ( ι , x 1 ( ι ) , y 1 ( ι ) ) g ( ι , x 2 ( ι ) , y 2 ( ι ) ) | = 1 800 | x 1 ( ι ) x 2 ( ι ) | + 1 400 | y 1 ( ι ) y 2 ( ι ) | .
With ψ 1 = 4 900 , ψ 2 = 1 640 , ψ 1 ^ = 1 800 , and ψ 2 ^ = 1 400 , the ( A 2 ) condition. Next, we find that U 1 = 3.8990844429929643 , V 1 = 14.121890188432403 , U 2 = 2.3197701495724883 , V 2 = 14.5097664463974 , U i , V i are respectively given by (60)–(63). Thus ( ( U 1 + U 2 ) ( ψ 1 + ψ 2 ) + ( V 1 + V 2 ) ( ψ 1 ^ + ψ 2 ^ ) ) 0.8402787011728106 < 1 , hence, Theorem 3 can be applied to the problem (68) and (69).

7. Asymmetric Results

Remark 1.
The generalized Langevin FDEs in the problem (5) simplify to the Caputo Langevin FDEs if ρ = 1 .
C D 0 + ξ 1 ( C D 0 + ζ 1 + ϕ 1 ) x ( ι ) = f ( ι , x ( ι ) , y ( ι ) ) , ι E : = [ 0 , S ] , C D 0 + ξ 2 ( C D 0 + ζ 2 + ϕ 2 ) y ( ι ) = g ( ι , x ( ι ) , y ( ι ) ) , ι E : = [ 0 , S ] .
Remark 2.
If the value of ρ = 1 in the boundary condition (6) Katugampola integral reduces to the fractional integral of Riemann–Liouville.
x ( 0 ) = 0 , y ( 0 ) = 0 , x ( S ) = ϵ I 0 + ς y ( ϖ ) = ϵ Γ ( ς ) 0 ϖ ( ϖ θ ) ς 1 y ( θ ) d θ , y ( S ) = π I 0 + ϱ x ( σ ) = π Γ ( ϱ ) 0 σ ( σ θ ) ϱ 1 x ( θ ) d θ , 0 < σ < ϖ < S .
Remark 3.
If the value of ρ = 1 and ς = ϱ = 1 in the boundary condition (6) Katugampola integral reduces to the integral of classical.
x ( 0 ) = 0 , y ( 0 ) = 0 , x ( S ) = ϵ 0 ϖ y ( θ ) d θ , y ( S ) = π 0 σ x ( θ ) d θ 0 < σ < ϖ < S .

8. Conclusions

In our contribution, we presented the existence of solutions for a generalized Liouville–Caputo type fractional Langevin coupled system with certain boundary conditions utilizing the generalized fractional integrals. To get at our result, we used the Leray–Schauder and Banach fixed-point theorems, and we included examples to help explain our study results. By use of conventional functional analysis, we demonstrated Ulam–Hyers stability. Our findings in this context are original and contribute to the body of knowledge on generalized fractional integral operators that are used to resolve coupled generalized Langevin fractional differential equations with nonlocal boundary conditions. We have highlighted the topic’s asymmetries in the remarks. The form of the solution in these kinds of statements can be used to conduct additional research on the positive solution and its asymmetry.

Author Contributions

Conceptualization, H.J.A.S., M.S.; formal analysis, M.A. and M.S.; methodology, H.J.A.S., M.A., M.S. and K.A. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [Grant No. 1878], through its KFU Research Summer Initiative.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. West, B.J.; Picozzi, S. Fractional Langevin model of memory in financial time series. Phys. Rev. E 2002, 65, 037106. [Google Scholar] [CrossRef] [PubMed]
  2. Vinales, A.D.; Desposito, M.A. Anomalous diffusion: Exact solution of the generalized Langevin equation for harmonically bounded particle. Phys. Rev. E 2006, 73, 016111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  3. Hohenberg, P.C.; Halperin, B.I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 1977, 49, 435–479. [Google Scholar] [CrossRef]
  4. Metiu, H.; Schon, G. Description of Quantum noise by a Langevin equation. Phys. Rev. Lett. 1984, 53, 13. [Google Scholar] [CrossRef]
  5. Datsko, B.; Gafiychuk, V. Complex nonlinear dynamics in subdiffusive activator–inhibitor systems. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 1673–1680. [Google Scholar] [CrossRef]
  6. Datsko, B.; Gafiychuk, V. Complex spatio-temporal solutions in fractional reaction-diffusion systems near a bifurcation point. Fract. Calc. Appl. Anal. 2018, 21, 237–253. [Google Scholar] [CrossRef] [Green Version]
  7. Fa, K.S. Fractional Langevin equation and Riemann-Liouville fractional derivative. Eur. Phys. J. E 2007, 24, 139–143. [Google Scholar]
  8. Ahmad, B.; Nieto, J.J.; Alsaedi, A.; El-Shahed, M. A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal. Real World Appl. 2012, 13, 599–606. [Google Scholar] [CrossRef]
  9. Wang, G.; Zhang, L.; Song, G. Boundary value problem of a nonlinear Langevin equation with two different fractional orders and impulses. Fixed Point Theory Appl. 2012, 2012, 200. [Google Scholar] [CrossRef] [Green Version]
  10. Ahmad, B.; Ntouyas, S.K. New existence results for differential inclusions involving Langevin equation with two indices. J. Nonlinear Convex Anal. 2013, 14, 437–450. [Google Scholar]
  11. Muensawat, T.; Ntouyas, S.K.; Tariboon, J. Systems of generalized Sturm-Liouville and Langevin fractional differential equations. Adv. Differ. Equ. 2017, 2017, 63. [Google Scholar] [CrossRef] [Green Version]
  12. Fazli, H.; Nieto, J.J. Fractional Langevin equation with anti-periodic boundary conditions. Chaos Solitons Fractals 2018, 114, 332–337. [Google Scholar] [CrossRef]
  13. Ahmad, B.; Alsaedi, A.; Salem, S. On a nonlocal integral boundary value problem of nonlinear Langevin equation with different fractional orders. Adv. Differ. Equ. 2019, 2019, 57. [Google Scholar] [CrossRef] [Green Version]
  14. Klafter, J.; Lim, S.; Metzler, R. Fractional Dynamics: Recent Advances; World Scientific: Singapore, 2012. [Google Scholar]
  15. Podlubny, I. Fractional differential equations: An introduction to fractional derivatives. In Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
  16. Valerio, D.; Machado, J.T.; Kiryakova, V. Some pioneers of the applications of fractional’ calculus. Fract. Calc. Appl. Anal. 2014, 17, 552–578. [Google Scholar] [CrossRef] [Green Version]
  17. Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
  18. Kilbas, A.A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science Limited: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
  19. Bitsadze, A.; Samarskii, A. On some simple generalizations of linear elliptic boundary problems. Soviet Math. Dokl. 1969, 10, 398–400. [Google Scholar]
  20. Ciegis, R.; Bugajev, A. Numerical approximation of one model of bacterial self-organization. Nonlinear Anal. Model. Control 2012, 17, 253–270. [Google Scholar] [CrossRef] [Green Version]
  21. Dokuyucu, M.A. Caputo and Atangana-Baleanu-Caputo fractional derivative applied to garden equation. Turk. J. Sci. 2020, 5, 1–7. [Google Scholar]
  22. Butt, S.I.; Nadeem, M.; Farid, G. On Caputo fractional derivatives via exponential s-convex functions. Turk. J. Sci. 2020, 5, 140–146. [Google Scholar]
  23. Dokuyucu, M.A. Analysis of the Nutrient Phytoplankton Zooplankton system with Non Local and Non Singular Kernel. Turk. J. Inequal. 2020, 4, 58–69. [Google Scholar]
  24. Subramanian, M.; Manigandan, M.; Tunç, C.; Gopal, T.N.; Alzabut, J. On system of nonlinear coupled differential equations and inclusions involving Caputo-type sequential derivatives of fractional order. J. Taibah Univ. Sci. 2022, 16, 1–23. [Google Scholar] [CrossRef]
  25. Duraisamy, P.; Gopal, T.N.; Subramanian, M. Analysis of fractional integro-differential equations with nonlocal Erdélyi-Kober type integral boundary conditions. Fract. Calc. Appl. Anal. 2020, 23, 1401–1415. [Google Scholar] [CrossRef]
  26. Rahmani, A.; Du, W.S.; Khalladi, M.T.; Kostić, M.; Velinov, D. Proportional Caputo Fractional Differential Inclusions in Banach Spaces. Symmetry 2022, 14, 1941. [Google Scholar] [CrossRef]
  27. Tudorache, A.; Luca, R. Positive Solutions for a Fractional Differential Equation with Sequential Derivatives and Nonlocal Boundary Conditions. Symmetry 2022, 14, 1779. [Google Scholar] [CrossRef]
  28. Alsaedi, A.; Alghanmi, M.; Ahmad, B.; Ntouyas, S.K. Generalized liouville–caputo fractional differential equations and inclusions with nonlocal generalized fractional integral and multipoint boundary conditions. Symmetry 2018, 10, 667. [Google Scholar] [CrossRef] [Green Version]
  29. Muthaiah, S.; Baleanu, D.; Thangaraj, N.G. Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Math. 2020, 6, 168–194. [Google Scholar] [CrossRef]
  30. Baleanu, D.; Hemalatha, S.; Duraisamy, P.; Pandian, P.; Muthaiah, S. Existence results for coupled differential equations of non-integer order with Riemann-Liouville, Erdélyi-Kober integral conditions. AIMS Math. 2021, 6, 13004–13023. [Google Scholar] [CrossRef]
  31. Manigandan, M.; Muthaiah, S.; Nandhagopal, T.; Vadivel, R.; Unyong, B.; Gunasekaran, N. Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. AIMS Math. 2022, 7, 723–755. [Google Scholar] [CrossRef]
  32. Awadalla, M.; Subramanian, M.; Abuasbeh, K.; Manigandan, M. On the Generalized Liouville–Caputo Type Fractional Differential Equations Supplemented with Katugampola Integral Boundary Conditions. Symmetry 2022, 14, 2273. [Google Scholar] [CrossRef]
  33. Subramanian, M.; Aljoudi, S. Existence and Ulam–Hyers Stability Analysis for Coupled Differential Equations of Fractional-Order with Nonlocal Generalized Conditions via Generalized Liouville–Caputo Derivative. Fractal Fract. 2022, 6, 629. [Google Scholar] [CrossRef]
  34. Ahmad, B.; Alghanmi, M.; Alsaedi, A.; Srivastava, H.M.; Ntouyas, S.K. The Langevin equation in terms of generalized Liouville–Caputo derivatives with nonlocal boundary conditions involving a generalized fractional integral. Mathematics 2019, 7, 533. [Google Scholar] [CrossRef] [Green Version]
  35. Theswan, S.; Ntouyas, S.K.; Ahmad, B.; Tariboon, J. Existence Results for Nonlinear Coupled Hilfer Fractional Differential Equations with Nonlocal Riemann–Liouville and Hadamard-Type Iterated Integral Boundary Conditions. Symmetry 2022, 14, 1948. [Google Scholar] [CrossRef]
  36. Jarad, F.; Abdeljawad, T.; Baleanu, D. On the generalized fractional derivatives and their caputo modification. J. Nonlinear Sci. Appl. 2017, 10, 2607–2619. [Google Scholar] [CrossRef]
  37. Granas, A.; Dugundji, J. Fixed Point Theory; Springer Science & Business Media: New York, NY, USA, 2003. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Salman, H.J.A.; Awadalla, M.; Subramanian, M.; Abuasbeh, K. On a System of Coupled Langevin Equations in the Frame of Generalized Liouville–Caputo Fractional Derivatives. Symmetry 2023, 15, 204. https://doi.org/10.3390/sym15010204

AMA Style

Salman HJA, Awadalla M, Subramanian M, Abuasbeh K. On a System of Coupled Langevin Equations in the Frame of Generalized Liouville–Caputo Fractional Derivatives. Symmetry. 2023; 15(1):204. https://doi.org/10.3390/sym15010204

Chicago/Turabian Style

Salman, Hassan J. Al, Muath Awadalla, Muthaiah Subramanian, and Kinda Abuasbeh. 2023. "On a System of Coupled Langevin Equations in the Frame of Generalized Liouville–Caputo Fractional Derivatives" Symmetry 15, no. 1: 204. https://doi.org/10.3390/sym15010204

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop