Origin of Homochirality: The Formation and Stability of Homochiral Peptides in Aqueous Prebiological Environment in the Earth’s Crust
Abstract
1. Introduction
2. The Right Conditions
2.1. The Right Location
2.2. The Thermodynamic Condition
2.3. The Conditions of the Chemistry at the Abiogenesis
2.3.1. The Conditions of the Chemical Reactions: The Frank Model
2.3.2. The Chemical Composition
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Bada, J.L. Kinetics of razimization of amino acids as a function of pH. J. Am. Chem. Soc. 1972, 94, 1371–1373. [Google Scholar] [CrossRef]
- Aki, K.; Fujii, N.; Fujii, N. Kineticsof Isomerization and Inversion of Aspartate 58 of α A-Crystallin Peptide Mimics ubder Physilogical Conditions. PLoS ONE 2013, 8, e58515. [Google Scholar] [CrossRef]
- Fujii, N.; Takata, T.; Fujii, N.; Aki, K.; Sakaue, H. D-Amino acids in protein: The mirror of life as a molecular index of aging. Biochim. Biophys. Acta Proteins Proteom. 2018, 1866, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Lau, M.C.Y.; Baars, O.; Robb, F.T.; Onstott, C. Aspartic acid racemization constrains long-term viability and longevity of endospores. FEMS Microbiol. Ecol. 2019, 95, fiz132. [Google Scholar] [CrossRef]
- Onstott, T.C.; Magnabosco, C.; Aubrey, A.D.; Burton, A.S.; Dworkin, J.P.; Elsila, J.E.; Grunsfeld, S.; Cao, B.H.; Hein, J.E.; Glavin, D.P.; et al. Does aspartic acid racemization constrain the depth limit of the subsurface biosphere? Geobiology 2014, 12, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Robb, F.T. Aspartic acid racemization and repair in the survival and recovery of hyperthermophiles after prolonged starvation at high temperatures. FEMS Microbiol. Ecol. 2019, 97, fiab112. [Google Scholar] [CrossRef]
- Bada, J.L. Racemization of Amino Acids. In Chemistry and Biochemistry of Amino Acids; Barrett, G.C., Ed.; Chapman and Hall: London, UK, 1985. [Google Scholar]
- Toxvaerd, S. The role of the peptides at the origin of life. J. Theor. Biol. 2017, 429, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, A.; Andersen, A.C.; Höfner, S.; Nilsson, M. Homochiral growth through enantiomeric cross-inhibition. Orig. Life Evol. Biosph. 2005, 35, 225–241. [Google Scholar] [CrossRef] [PubMed]
- Ribó, J.M.; Crusats, J.; El-Hachemi, Z.; Moyano, A.; Hochberg, D. Spontaneous mirror symmetry breaking in heterocatalytically coupled enantioselectivve replicators. Chem. Sci. 2017, 8, 763. [Google Scholar] [CrossRef] [PubMed]
- Blanco, C.; Stich, M.; Hochberg, D. Mechanically Induced Homochirality in Nucleated Enantioselective Polymerization. J. Phys. Chem. B 2017, 121, 942–955. [Google Scholar] [CrossRef]
- Buhse, T.; Micheau, J.-C. Spontaneous Emergence of Transient Chirality in Closed, Reversible Frank-like Deterministic Models. Orig. Life Evol. Biosph. 2022, 52, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Piñeros, W.D.; Tlusty, T. Spontaneous Chiral symmetry breaking in a random driven chemical system. Nat. Commun. 2022, 13, 2244. [Google Scholar] [CrossRef] [PubMed]
- Toxvaerd, S. Origin of Homochirality in Biosystems. Int. J. Mol. Sci. 2009, 10, 1290–1299. [Google Scholar] [CrossRef] [PubMed]
- Toxvaerd, S. A Prerequisity for life. Theor. Biol. 2019, 474, 48–51. [Google Scholar] [CrossRef]
- Ohtani, E. Hydration and Dehydration in Earth’s Interior. Ann. Rev. Earth Planet. Sci. 2021, 49, 253–278. [Google Scholar] [CrossRef]
- Jeanloz, R.; Morris, S. Temperature Distribution in the Crust and Mantle. Rev. Earth Planet. Sci. 1986, 14, 377–415. [Google Scholar] [CrossRef]
- Vogt, G.; Woell, S.; Argos, P. Protein Thermal Stability, Hydrogen Bonds, and Ion Pairs. J. Mol. Biol. 1997, 269, 631–643. [Google Scholar] [CrossRef]
- Shao, Q.; Gao, Y.Q. Temperature Dependence of Hydrogen-Bond Stability in β-Hairpin Structures. J. Chem. Theory Comput. 2010, 6, 3750–3760. [Google Scholar] [CrossRef]
- Miyazaki, Y. A wet heterogeneous mantle creates a habitable wold in the Hadean. Nature 2022, 625, 86. [Google Scholar] [CrossRef]
- Barboni, M.; Boehnke, P.; Keller, B.; Kohl, I.; Schoene, B.; Young, E.D.; McKeegan, K.D. Early formation of the Moon 4.51 billion years ago. Sci. Adv. 2017, 3, e1602365. [Google Scholar] [CrossRef]
- Thiemens, M.M.; Sprung, P.; Fonseca, R.O.C.; Leitzke, F.P.; Münker, C. Early Moon formation inferred from hafnium-tungsten systematics. Nat. Geosci. 2019, 12, 696. [Google Scholar] [CrossRef]
- Green, J.A.M.; Huber, M.; Waltham, D.; Buzan, J.; Wells, M. Explicitly modelled deep-time tidal dissipation and its implication for Lunar history. Earth Planet. Sci. Lett. 2017, 461, 46. [Google Scholar] [CrossRef]
- Harrison, T.M. Hadean Earth; Springer: Cham, Switzerland, 2020; ISBN 978–3-030-46687-9. [Google Scholar]
- Djokic, T.; Van Kranendonk, M.J.; Campbell, K.A.; Walter, M.R.; Ward, C.R. Eaiest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat. Commun. 2017, 8, 15263. [Google Scholar] [CrossRef] [PubMed]
- Schopf, J.W.; Kitajima, K.; Spicuzza, M.J.; Kudryavtsev, A.B.; Valley, J.W. SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions. Proc. Natl. Acad. Sci. USA 2018, 115, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Cavalazzi, B.; Lemelle, L.; Simionovici, A.; Cady, S.L.; Russell, M.J.; Bailo, E.; Canteri, R.; Enrico, E.; Manceau, A.; Maris, A.; et al. Cellular remains in a ≈ 3.42-billion-year-old subseafloor hydrothermal environment. Sci. Adv. 2021, 7, eabf3963. [Google Scholar] [CrossRef]
- Dodd, M.S.; Papineau, D.; Grenne, T.; Slack, J.F.; Rittner, M.; Pirajno, F.; O’Neil, J.; Little, C.T. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 2017, 543, 60–74. [Google Scholar] [CrossRef]
- Li, J.; Mara, P.; Schubotz, F.; Sylvan, J.B.; Burgaud, G.; Klein, F.; Beaudoin, D.; Wee, S.Y.; Dick, H.J.; Lott, S.; et al. Recycling and metabolic flexibility dictate life in the lower oceanic crust. Nature 2020, 579, 250–260. [Google Scholar] [CrossRef]
- Takamiya, H.; Kouduka, M.; Suzuki, Y. The Deep Rocky Biosphere: New Geomicrobiological Insight and Prospects. Front. Microbiol. 2021, 12, 785743. [Google Scholar] [CrossRef]
- Harrison, T.M. The Hadean Crust: Evidence from >4 Ga Zircons. Annu. Rev. Earth Planet. Sci. 2009, 37, 479–505. [Google Scholar] [CrossRef]
- Hansma, G.H. Potassium at the Origin of Life: Did Biology Emerge from Biotite in Micaceous Clay? Life 2022, 12, 301. [Google Scholar] [CrossRef]
- Paytan, A.; McLaughlin, K. The Oceanic Phosphorus Cycle. Chem. Rev. 2007, 107, 563–576. [Google Scholar] [CrossRef]
- Walton, C.R.; Shorttle, O.; Jenner, F.E.; Williams, H.M.; Golden, J.; Morrison, S.M.; Downs, R.T.; Zerkle, R.M.; Hazen, R.M.; Pasek, M. Phosphorus mineral evolution and prebiotic chemistry: From minerals to microbes. Earth Sci. Rev. 2021, 221, 103806. [Google Scholar] [CrossRef]
- Flores, E.; Martinez, E.; Rodriguez, L.E.; Weber, J.M.; Khodayari, A.; VanderVelde, D.G.; Barge, L.M. Effects of Amino Acids on Phosphata Adsorption Onto Iron (Oxy)hydroxide Minerals under Early Earth Conditions. ACS Earth Space Chem. 2021, 5, 1048–1057. [Google Scholar] [CrossRef]
- Cleaves, H.J.; Aubrey, A.D.; Bada, J.L. An Evaluation of the Critical Parameters for Abiotic Peptide Synthesis in Submarine Hydrothermal Systems. Orig. Life Evol. Biosph. 2009, 39, 109–126. [Google Scholar] [CrossRef] [PubMed]
- Branscomb, E.; Russell, M.J. Frankenstein or a Submarine Alkaline Vent: Who is Responsible for Abiogenesis? BioEssays 2018, 40, 1700182. [Google Scholar] [CrossRef]
- Moore, W.S.; Frankle, J.D.; Benitez-Nelson, C.R.; Früh-Green, G.L.; Lang, S.Q. Activities of 223Ra and 226Ra in Fluids From the Lost city Hydrothermal Field Require Short Fluid Residence Times. JGR Oceans 2021, 126, e2021JC017886. [Google Scholar] [CrossRef]
- Shock, E.L. Stability of peptides in high-temperature aqueous solutions. Geochim. Cosmochim. Acta 1992, 56, 3481–3491. [Google Scholar] [CrossRef]
- Takahagi, W.; Seo, K.; Shibuya, T.; Takano, Y.; Fujiishima, K.; Saitoh, M.; Shimamura, S.; Matsui, Y.; Tomita, M.; Takai, K. Peptide Synthesis under the Alkaline Hydrothermal Conditions on Enceladus. ACS Earth Space Chem. 2019, 3, 2559–2568. [Google Scholar] [CrossRef]
- Pedreira-Segade, U.; Hao, J.; Montagnac, G.; Cardon, H.; Daniel, I. Spontaneous Polymerization of Glycine under Hydrothermal Conditions. ACS Earth Space Chem. 2019, 3, 1669–1677. [Google Scholar] [CrossRef]
- Pauling, L.; Corey, R.B.; Branson, H.R. The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. USA 1951, 37, 205–211. [Google Scholar] [CrossRef]
- Fujii, N.; Fijii, N.; Kida, M.; Kinouchi, T. Influence of Lβ-, Dα-Asp isomers of the Asp-76 residue of the properties of αA-crystallin 70–88 peptide. Amino Acids 2010, 39, 1393–1399. [Google Scholar] [CrossRef] [PubMed]
- Wendler, K.; Thar, J.; Zahn, S.; Kirchner, B. Estimating the Hydrogen Bond Energy. J. Phys. Chem. A 2010, 114, 9529–9536. [Google Scholar] [CrossRef] [PubMed]
- Frank, F.C. On spontaneous asymmetric Synthesis. Biochin. Biophys. Acta 1953, 11, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wang, Y.; Hamley, I.W.; Qi, W.; Su, R.; He, Z. Chiral self-assembly of peptides: Toward the design of supramolecular polymers with enhanced chemical and biological functions. Prog. Polym. Sci. 2021, 123, 101469. [Google Scholar] [CrossRef]
- Dunitz, J.D. Pauling’s left-handed α-helix. Angew. Chem. Int. Ed. 2001, 40, 4167–4173. [Google Scholar] [CrossRef]
- Toxvaerd, S. Molecular Dynamics simulations of isomerization kinetics in condensed fluids. Phys. Rev. Lett. 2000, 85, 4747. [Google Scholar] [CrossRef]
- Turing, A.M. The Chemical Basis of Morphogenesis. Phil. Trans. R. Soc. 1952, B237, 37–72. [Google Scholar] [CrossRef]
- Hunding, A.; Kauffman, S.A.; Goodwin, B.C. Drosophila Segmentation: Supercomputer Simulation of Prepattern Hierarchy. J. Theor. Biol. 1990, 145, 369–384. [Google Scholar] [CrossRef]
- Anderson, D.L. Chemical Composition of the Mantle. J. Geophys. Res. 1983, 88, B41–B52. [Google Scholar] [CrossRef]
- Lyubetskaya, T.; Korenaga, J. Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. J. Geophys. Res. 2007, 112, B03211. [Google Scholar] [CrossRef]
- Ménez, B.; Pisapia, C.; Jamme, F.; Vanbellingen, Q.; Brunell, A.; Richard, L.; Dumas, P.; Réfreégies, M. Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature 2018, 564, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Sforna, M.C.; Brunelli, D.; Pisapia, C.; Pasini, V.; Malferrari, D.; Ménez, B. Abiotic formation of condensed carbonaceous matter in the hydrating oceanic crust. Nat. Commun. 2018, 9, 5049. [Google Scholar] [CrossRef] [PubMed]
- Lollar, B.; Heuer, V.B.; McDermott, J.; Tille, S.; Warr, O.; Moran, J.J.; Telling, J.; Hinrichs, K.-U. A window into the abiotic carbon cycle- Acetate and formate in fracture waters in 2.7 billion year-old rocks of the Canadian Shield. Geochim. Cosmochim. Acta 2021, 294, 295–314. [Google Scholar] [CrossRef]
- Oba, Y.; Takano, Y.; Furukawa, Y.; Koga, T.; Glavin, D.P.; Dwokin, J.P.; Naraoka, H. Identifying the wide diversity of extraterrestrial purine and pyrimidine nucleobases in carbonaceous meteorites. Nat. Commun. 2022, 13, 2008. [Google Scholar] [CrossRef] [PubMed]
- Aponte, J.C.; Elsila, J.E.; Hein, J.E.; Dworkin, J.P.; Glavin, D.P.; McLain, H.L.; Parker, E.T.; Cao, T.; Berger, E.L.; Burton, A.S. Analysis of amino acids, hydroxy acids, and amine in CR condrites. Meteor. Planet. Sci. 2020, 55, 2422–2439. [Google Scholar] [CrossRef]
- Glavin, D.P.; Burton, A.S.; Elsila, J.E.; Aponte, J.C.; Dwokin, J.P. The Search for Chiral Asymmetry as a Potential Biosignature in our Solar Systsem. Chem. Rev. 2020, 120, 4660–4689. [Google Scholar] [CrossRef]
- Robinson, K.J.; Bockisch, C.; Gould, I.R.; Liao, Y.; Yang, Z.; Glein, C.R.; Shaver, G.D.; Hartnett, H.E.; Williams, L.B.; Scock, E.L. Quantifying the extent of amide and peptide bond synthesis across conditions relevant to gologic and planetary environment. Geochim. Cosmochim. Acta 2021, 300, 318–332. [Google Scholar] [CrossRef]
- Fu, X.; Liao, Y.; Glein, C.R.; Jamison, M.; Hayes, K.; Zaporski, J.; Yang, Z. Direct Synthesis of Adides from Amines and Carboxylic Acids under Hydrothermal Conditions. ACS Earth Space Chem. 2020, 4, 722–729. [Google Scholar] [CrossRef]
- Yang, B.; Niu, K.; Haag, F.; Cao, N.; Zhang, J.; Zhang, H.; Li, Q.; Allegretti, F.; Björk, J.; Barth, J.V.; et al. Abiotic Formation of an Amide Bond via Surface-Supported Direct Carboxyl-Amine Coupling. Angew. Chem. Int. Ed. 2022, 61, e202113590. [Google Scholar]
- Furukawa, Y.; Chikaraishi, Y.; Ohkouchi, N.; Ogawa, N.O.; Glavin, D.P.; Dworkin, J.P.; Abe, C.; Nakamura, T. Extraterrestrial ribose and other sugars in primitive meteorites. Proc. Natl. Acad. Sci. USA 2019, 116, 24440–24445. [Google Scholar] [CrossRef]
- Guzmań-Marmolejo, A.; Segura, A. Methane in the Solar System. Bol. Soc. Geol. Mex. 2015, 67, 377–385. [Google Scholar] [CrossRef]
- Schlesinger, G.; Miller, S.L. Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. J. Mol. Evol. 1983, 19, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Butlerow, A. Formation synthetique d’une substance sucree. Compt. Rend. Acad. Sci. 1861, 53, 145–147. [Google Scholar]
- Gabel, N.W.; Ponnamperuma, C. Model for Origin of Monosaccharides. Nature 1967, 216, 453–455. [Google Scholar] [CrossRef]
- Washington, J. The possible Role of Volcanic Aquifers in Prebiologic Genesis of Organic Compounds and RNA. Orig. Life Evol. Biosph. 2000, 30, 53–79. [Google Scholar] [CrossRef]
- Kim, H.-J.; Ricardo, A.; Illangkoon, H.I.; Kim, M.J.; Carrigan, M.A.; Frye, F.; Benner, S.A. Synthesis of Carbohydrates in Mineral-Guided Prebiotic Cycles. J. Am. Chem. Soc. 2011, 133, 9457–9468. [Google Scholar] [CrossRef]
- Jalbout, A.F.; Abrell, L.; Adamowicz, L.; Polt, R.; Apponi, A.J.; Ziurys, L.M. Sugar synthesis from a gas-phase formose reaction. Astrobiology 2007, 7, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.B.; Gurusamy-Thangavelu, S.A.; Ma, K. The silica-mediated formose reaction: Bottom-up synthesis of sugar silicates. Science 2010, 327, 984–986. [Google Scholar] [CrossRef]
- Weber, A.L. The Sugar Model: Catalysis by Amines and Amino Acid Products. Orig. Life Evol. Biosph. 2001, 31, 71–86. [Google Scholar] [CrossRef]
- Magnabosco, C.; Lin, L.-H.; Dong, H.; Bomberg, M.; Ghiorse, W.; Stan-Lotter, H.; Pedersen, K.; Kieft, T.L.; van Heeden, E.; Onstott, T.C. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 2018, 11, 707–717. [Google Scholar] [CrossRef]
- Plesa, A.-C.; Padovan, S.; Tosi, N.; Breuer, D.; Grott, M.; Wieczorek, M.A.; Spohn, T.; Smrekar, S.E.; Banerdt, W.B. The Thermal State and Interior Structure of Mars. Geophys. Res. Lett. 2018, 45, 12198–12209. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toxvaerd, S. Origin of Homochirality: The Formation and Stability of Homochiral Peptides in Aqueous Prebiological Environment in the Earth’s Crust. Symmetry 2023, 15, 155. https://doi.org/10.3390/sym15010155
Toxvaerd S. Origin of Homochirality: The Formation and Stability of Homochiral Peptides in Aqueous Prebiological Environment in the Earth’s Crust. Symmetry. 2023; 15(1):155. https://doi.org/10.3390/sym15010155
Chicago/Turabian StyleToxvaerd, Søren. 2023. "Origin of Homochirality: The Formation and Stability of Homochiral Peptides in Aqueous Prebiological Environment in the Earth’s Crust" Symmetry 15, no. 1: 155. https://doi.org/10.3390/sym15010155
APA StyleToxvaerd, S. (2023). Origin of Homochirality: The Formation and Stability of Homochiral Peptides in Aqueous Prebiological Environment in the Earth’s Crust. Symmetry, 15(1), 155. https://doi.org/10.3390/sym15010155