Several Dynamic Properties for the gkCH Equation
Abstract
:1. Introduction
2. Several Lemmas
3. Wave Breaking Phenomenon
4. Weak Solution
5. Hölder Continuity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, N.; Lai, S.; Li, S.; Wu, M. The Local and Global Existence of Solutions for a Generalized Camassa–Holm Equation. Abstr. Appl. Anal. 2012, 2012, 532369. [Google Scholar] [CrossRef]
- Lai, S. The Global Weak Solution for a Generalized Camassa–Holm Equation. Abstr. Appl. Anal. 2013, 2013, 838302. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Y. The Cauchy problem to a gkCH equation with peakon solutions. AIMS Math. 2022, 7, 12781–12801. [Google Scholar] [CrossRef]
- Himonas, A.; Holliman, C. The Cauchy problem for a generalized Camassa–Holm equation. Adv. Differ. Equ. 2014, 19, 161–200. [Google Scholar]
- Camassa, R.; Holm, D. An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 1993, 71, 1661–1664. [Google Scholar] [CrossRef]
- Fokas, A.; Fuchssteiner, B. Symplectic structures, their Baklund transformations and hereditary symmetries. Physica D 1981, 4, 47–66. [Google Scholar]
- Constantin, A.; Strauss, W.A. Stability of peakons. Commun. Pure Appl. Math. 2000, 53, 603–610. [Google Scholar] [CrossRef]
- Constantin, A.; Escher, J. Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 1998, 181, 229–243. [Google Scholar] [CrossRef]
- Coclite, G.M.; Holden, H.; Karlsen, K.H. Well-posedness of a parabolic-elliptic system. Discrete Contin. Dyn. syst. 2005, 13, 659–682. [Google Scholar] [CrossRef]
- Constantin, A.; Molinet, L. Global weak solution for a shallow water equation. Commun. Math. Phys. 2000, 211, 45–61. [Google Scholar] [CrossRef]
- Danchin, R. A note on well-posedness for Camassa–Holm equation. J. Differ. Equ. 2003, 192, 429–444. [Google Scholar] [CrossRef]
- Fu, Y.P.; Guo, B.L. Time periodic solution of the viscous Camassa–Holm equation. J. Math. Anal. Appl. 2006, 313, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Jiang, M.; Wang, Z.; Zheng, G. Global weak solutions to the Camassa–Holm equation. Discrete Contin. Dyn. Syst. 2008, 21, 883–906. [Google Scholar] [CrossRef]
- Hakkaev, S.; Kirchev, K. Local well-posedness and orbital stability of solitary wave solutions for the generalized Camassa–Holm equation. Commun. Partial Differ. Equ. 2005, 30, 761–781. [Google Scholar] [CrossRef]
- Lai, S.; Wu, Y. The local well-posedness and existence of weak solutions for a generalized Camassa–Holm equation. J. Differ. Equ. 2010, 248, 2038–2063. [Google Scholar] [CrossRef]
- Lenells, J. Stability of periodic peakons. Int. Math. Res. Not. 2004, 2004, 485–499. [Google Scholar] [CrossRef]
- Li, Y.A.; Olver, P.J. Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. 2000, 162, 27–63. [Google Scholar] [CrossRef]
- Lim, W.K. Global well-posedness for the viscous Camassa–Holm equation. J. Math. Anal. Appl. 2007, 326, 432–442. [Google Scholar] [CrossRef]
- Liu, X.X.; Yin, Z.Y. Local well-posedness and stability of peakons for a generalized Dullin-Gottwald-Holm equation. Nonlinear Anal. 2011, 74, 2497–2507. [Google Scholar] [CrossRef]
- Xin, Z.; Zhang, P. On the weak solutions to a shallow water equation. Comm. Pure Appl. Math. 2000, 53, 1411–1433. [Google Scholar] [CrossRef]
- Yan, W.; Li, Y.; Zhang, Y. The Cauchy problem for the generalized Camassa–Holm equation in Besov space. J. Differ. Equ. 2014, 256, 2876–2901. [Google Scholar] [CrossRef]
- Zhou, S. Persistence properties for a generalized Camassa–Holm equation in weighted Lp spaces. J. Math. Anal. Appl. 2014, 410, 932–938. [Google Scholar] [CrossRef]
- Zhou, Y.; Fan, J. Regularity criteria for the viscous Camassa–Holm equation. Int. Math. Res. Not. 2009, 13, 2508–2518. [Google Scholar] [CrossRef]
- Sayevand, K.; Jafari, H. A promising coupling of Daftardar-Jafari method and He’s fractional derivation to approximate solitary wave solution of nonlinear fractional KDV equation. Adv. Math. Model. Appl. 2022, 7, 121–129. [Google Scholar]
- Srivastava, H.M.; Iqbal, J.; Arif, M.; Khan, A.; Gasimov, Y.S.; Chinram, R. A new application of Gauss quadrature method for solving systems of nonlinear equations. Symmetry 2021, 13, 432. [Google Scholar] [CrossRef]
- Novikov, V.S. Generalizations of the Camassa–Holm equation. J. Phys. A 2009, 42, 342002. [Google Scholar] [CrossRef]
- Tiglay, F. The periodic Cauchy problem for Novikov’s equation. Int. Math. Res. Not. 2011, 2011, 4633–4648. [Google Scholar] [CrossRef]
- Ni, L.; Zhou, Y. Well-posedness and persistence properties for the Novikov equation. J. Differ. Equ. 2011, 250, 3002–3021. [Google Scholar] [CrossRef]
- Wu, X.; Yin, Z. Well-posedness and global existence for the Novikov equation. Ann. Sc. Norm. Super. Pisa-Cl. Sci. 2012, 3, 707–727. [Google Scholar] [CrossRef]
- Wu, X.; Yin, Z. Global weak solution for the Novikov equation. J. Phys. A 2011, 44, 055202. [Google Scholar] [CrossRef]
- Yan, W.; Li, Y.; Zhang, Y. The Cauchy problem for the integrable Novikov equation. J. Differ. Equ. 2012, 253, 298–318. [Google Scholar] [CrossRef]
- Mi, Y.S.; Mu, C.L. Well-posedness and analyticity for the Cauchy problem for the generalized Camassa–Holm equation. J. Math. Anal. Appl. 2013, 405, 173–182. [Google Scholar] [CrossRef]
- Escher, J.; Liu, Y.; Yin, Z.Y. Global weak solutions and blow-up structure for the Degasperis-Procesi equation. J. Funct. Anal. 2006, 241, 457–485. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M. Pseudodifferential Operators and Nonlinear PDE; Birkhauser: Boston, MA, USA, 1991. [Google Scholar]
- Taylor, M. Commutator estimates. Proc. Am. Math. Soc. 2003, 131, 1501–1507. [Google Scholar] [CrossRef]
- Himonas, A.; Holmes, J. Hölder continuity of the solution map for the Novikov equation. J. Math. Phys. 2013, 54, 061501. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Guo, Y. Several Dynamic Properties for the gkCH Equation. Symmetry 2022, 14, 1772. https://doi.org/10.3390/sym14091772
Wang Y, Guo Y. Several Dynamic Properties for the gkCH Equation. Symmetry. 2022; 14(9):1772. https://doi.org/10.3390/sym14091772
Chicago/Turabian StyleWang, Ying, and Yunxi Guo. 2022. "Several Dynamic Properties for the gkCH Equation" Symmetry 14, no. 9: 1772. https://doi.org/10.3390/sym14091772
APA StyleWang, Y., & Guo, Y. (2022). Several Dynamic Properties for the gkCH Equation. Symmetry, 14(9), 1772. https://doi.org/10.3390/sym14091772