# Research on Real-Time Communication Algorithm of Substation Based on Time-Sensitive Network

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Related Work

- (1)
- This study designed an offline and online TSN hybrid data flow routing and scheduling algorithm. Compared with previous studies [19], the offline and online scheduling algorithms designed in this study consider changes in the network topology and data flow. Previous studies [19] considered the change in network topology in the online scheduling mode and combined it with the offline mode to reconstruct a new network topology. The algorithm can prevent the failure of scheduling calculations caused by new equipment access;
- (2)
- This study presents an integration method of TSN and IEC61850. Simultaneously, three types of messages in the substation: express flow, moderato flow, and slow flow, are mapped to HR flow, MR flow, and LR flow in the TSN network. The introduction of time-sensitive technology can effectively reduce the response time during flow transmission, from milliseconds to microseconds. In the context of energy interconnection, the introduction of a reliable TSN communication technology can improve the certainty of communication between substations;
- (3)
- Finally, this study discusses the forwarding and dispatching problems of three different data flows, which is more in line with the real-time scenario of hybrid data flow transmission and is of great significance to research. Compared with previous studies [16,17,19], this study not only considers HR flow and MR flow but also considers the schedulability of LR flow. This is necessary for flow transmission between the substations.

## 3. Configuration of TSN Substation Communication

#### 3.1. TSN Protocol

#### 3.1.1. IEEE802.1 AS

#### 3.1.2. IEEE802.1 Qat

#### 3.1.3. IEEE802.1 Qbv

#### 3.1.4. IEEE802.1 Qbu

#### 3.1.5. IEEE802.1 Qcc

#### 3.2. Configuration of TSN Substation Communication

## 4. System Model

#### 4.1. System Model

#### 4.2. Related Constraints

## 5. Routing and Scheduling Framework

#### 5.1. Mapping

#### 5.2. Stream Processing

#### 5.3. Timeslot Occupancy

#### 5.4. Task Scheduling

#### 5.5. Communication Scheduling

#### 5.6. Dynamic Monitoring

## 6. Experimental Result

## 7. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G.P. Smart grid technologies: Communication technologies and standards. IEEE Trans. Ind. Inform.
**2011**, 7, 529–539. [Google Scholar] [CrossRef] [Green Version] - Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M. Industrial internet of things: Challenges, opportunities, and directions. IEEE Trans. Ind. Inform.
**2018**, 14, 4724–4734. [Google Scholar] [CrossRef] - Pop, P.; Raagaard, M.L.; Craciunas, S.S.; Steiner, W. Design optimisation of cyber-physical distributed systems using IEEE time-sensitive networks. IET Cyber-Phys. Syst. Theory Appl.
**2016**, 1, 86–94. [Google Scholar] [CrossRef] [Green Version] - Ma, L.; Cheng, S.; Shi, Y. Enhancing learning efficiency of brain storm optimization via orthogonal learning design. IEEE Trans. Syst. Man Cybern. Syst.
**2020**, 51, 6723–6742. [Google Scholar] [CrossRef] - Ma, L.; Huang, M.; Yang, S.; Wang, R.; Wang, X. An adaptive localized decision variable analysis approach to large-scale multiobjective and many-objective optimization. IEEE Trans. Cybern.
**2021**, 421, 1–13. [Google Scholar] [CrossRef] - Ma, L.; Wang, X.; Wang, X.; Wang, L.; Shi, L.; Huang, M. TCDA: Truthful Combinatorial Double Auctions for Mobile Edge Computing in Industrial Internet of Things. IEEE Trans. Mob. Comput.
**2021**, 426, 1. [Google Scholar] [CrossRef] - Ma, L.; Li, N.; Guo, Y.; Huang, M.; Yang, S.; Wang, X.; Zhang, H. Learning to Optimize: Reference Vector Reinforcement Learning Adaption to Constrained Many-objective Optimization of Industrial Copper Burdening System. IEEE Trans. Cybernetics. [CrossRef]
- Song, Y.; Guo, C.; Xu, P.; Li, L.; Zhang, R. Research on routing and scheduling algorithms for the simultaneous transmission of diverse data flowing services on the industrial internet. Sci. Rep.
**2021**, 11, 18351. [Google Scholar] [CrossRef] - Zheng, Q.; Yang, M.; Yang, J.; Zhang, Q.; Zhang, X. Improvement of generalization ability of deep CNN via implicit regularization in two-stage training process. IEEE Access
**2018**, 6, 15844–15869. [Google Scholar] [CrossRef] - Zheng, Q.; Yang, M.; Tian, X.; Jiang, N.; Wang, D. A full stage data augmentation method in deep convolutional neural network for natural image classification. Discret. Dyn. Nat. Soc.
**2020**, 2020, 4706576. [Google Scholar] [CrossRef] - Liu, S.; Xiao, Z.; You, X.; Su, R. Multistrategy boosted multicolony whale virtual parallel optimization approaches. Knowl.-Based Syst.
**2022**, 242, 108341. [Google Scholar] [CrossRef] - Su, R.; Gu, Q.; Wen, T. Optimization of high-speed train control strategy for traction energy saving using an improved genetic algorithm. J. Appl. Math.
**2014**, 2014, 507308. [Google Scholar] [CrossRef] - Cauteruccio, F.; Fortino, G.; Guerrieri, A.; Liotta, A.; Mocanu, D.C.; Perra, C.; Terracina, G.; Vega, M.T. Short-long term anomaly detection in wireless sensor networks based on machine learning and multi-parameterized edit distance. Inf. Fusion
**2019**, 52, 13–30. [Google Scholar] [CrossRef] [Green Version] - Sidhu, T.S.; Yin, Y. Modelling and simulation for performance evaluation of IEC61850-based substation communication systems. IEEE Trans. Power Deliv.
**2007**, 22, 1482–1489. [Google Scholar] [CrossRef] - Gavriluţ, V.; Zhao, L.; Raagaard, M.L.; Pop, P. AVB-aware routing and scheduling of time-triggered traffic for TSN. IEEE Access
**2018**, 6, 75229–75243. [Google Scholar] [CrossRef] - He, F.; Zhao, L.; Li, E. Impact analysis of flow shaping in Ethernet-AVB/TSN and AFDX from network calculus and simulation perspective. Sensors
**2017**, 17, 1181. [Google Scholar] [CrossRef] [Green Version] - Wang, Y.; Chen, J.; Ning, W.; Yu, H.; Lin, S.; Wang, Z.; Chen, C. A time-sensitive network scheduling algorithm based on improved ant colony optimization. Alex. Eng. J.
**2021**, 60, 107–114. [Google Scholar] [CrossRef] - Zhao, L.; Pop, P.; Gong, Z.; Fang, B. Improving Latency Analysis for Flexible Window-Based GCL Scheduling in TSN Networks by Integration of Consecutive Nodes Offsets. IEEE Internet Things J.
**2020**, 8, 5574–5584. [Google Scholar] [CrossRef] - Yu, Q.; Wan, H.; Zhao, X.; Gao, Y.; Gu, M. Online scheduling for dynamic VM migration in multicast time-sensitive networks. IEEE Trans. Ind. Inform.
**2019**, 16, 3778–3788. [Google Scholar] [CrossRef] - Houtan, B.; Ashjaei, M.; Daneshtalab, M.; Sjödin, M.; Mubeen, S. Synthesising schedules to improve QoS of best-effort traffic in TSN networks. In Proceedings of the 29th International Conference on Real-Time Networks and Systems, New York, NY, USA, 7–9 April 2021; pp. 68–77. [Google Scholar]
- Falk, J.; Dürr, F.; Rothermel, K. Exploring practical limitations of joint routing and scheduling for TSN with ILP. In Proceedings of the 2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), Hakodate, Japan, 28–31 August 2018; pp. 136–146. [Google Scholar]
- Pahlevan, M.; Obermaisser, R. Genetic algorithm for scheduling time-triggered traffic in time-sensitive networks. In Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Turin, Italy, 4–7 September 2018; Volume 1, pp. 337–344. [Google Scholar]
- Laursen, S.M.; Pop, P.; Steiner, W. Routing optimization of AVB flow in TSN networks. ACM Sigbed Rev.
**2016**, 13, 43–48. [Google Scholar] [CrossRef] [Green Version] - Bingqian, L.; Yong, W. Hybrid-GA based static schedule generation for time-triggered ethernet. In Proceedings of the 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN), Beijing, China, 4–6 June 2016; pp. 423–427. [Google Scholar]
- Li, Z.; Wan, H.; Deng, Y.; Zhao, X.; Gao, Y.; Song, X.; Gu, M. Time-triggered switch-memory-switch architecture for time-sensitive networking switches. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
**2018**, 39, 185–198. [Google Scholar] [CrossRef] - Barzegaran, M.; Pop, P. Communication Scheduling for Control Performance in TSN-Based Fog Computing Platforms. IEEE Access
**2021**, 9, 50782–50797. [Google Scholar] [CrossRef] - Song, Y.; Guo, C.; Xu, P.; Wang, J. Design of Deterministic Transmission Framework for Distributed Power System Based on Digital Twin. In Proceedings of the 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2), Taiyuan, China, 22–24 October 2021; pp. 3391–3395. [Google Scholar]
- Zhou, Z.; Lee, J.; Berger, M.S.; Park, S.; Yan, Y. Simulating TSN traffic scheduling and shaping for future automotive Ethernet. J. Commun. Netw.
**2021**, 23, 53–62. [Google Scholar] [CrossRef] - Nasrallah, A.; Thyagaturu, A.S.; Alharbi, Z.; Wang, C.; Shao, X.; Reisslein, M.; Elbakoury, H. Performance comparison of IEEE 802.1 TSN time aware shaper (TAS) and asynchronous traffic shaper (ATS). IEEE Access
**2019**, 7, 44165–44181. [Google Scholar] [CrossRef] - Kim, H.J.; Choi, M.H.; Kim, M.H.; Lee, S. Development of an Ethernet-Based Heuristic Time-Sensitive Networking Scheduling Algorithm for Real-Time In-Vehicle Data Transmission. Electronics
**2021**, 10, 157. [Google Scholar] [CrossRef] - Bello, L.L.; Ashjaei, M.; Patti, G.; Behnam, M. Schedulability analysis of Time-Sensitive Networks with scheduled traffic and preemption support. J. Parallel Distrib. Comput.
**2020**, 144, 153–171. [Google Scholar] [CrossRef] - Vlk, M.; Hanzálek, Z.; Brejchová, K.; Tang, S.; Bhattacharjee, S.; Fu, S. Enhancing schedulability and throughput of time-triggered traffic in IEEE 802.1 Qbv time-sensitive networks. IEEE Trans. Commun.
**2020**, 68, 7023–7038. [Google Scholar] [CrossRef] - Yu, Q.; Gu, M. Adaptive group routing and scheduling in multicast time-sensitive networks. IEEE Access
**2020**, 8, 37855–37865. [Google Scholar] [CrossRef] - Bayrakdar, M.E. Exploiting cognitive wireless nodes for priority-based data communication in terrestrial sensor networks. ETRI J.
**2020**, 42, 36–45. [Google Scholar] [CrossRef] - De Moura, L.; Bjørner, N. Z3: An efficient SMT solver. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems; Springer: Berlin/Heidelberg, Germany, 2008; pp. 337–340. [Google Scholar]

**Figure 12.**Network topology models of scales 10 and 100 (

**a**) single connection; (

**b**) multi connection.

Flow | Type | R | T | D | P |
---|---|---|---|---|---|

S1 | HR | r1 | 200 µs | 200 µs | 750 B |

S2 | HR | r1 | 200 µs | 200 µs | 750 B |

S3 | HR | r1 | 200 µs | 200 µs | 750 B |

S4 | HR | r1 | 200 µs | 200 µs | 750 B |

S5 | MR | r2 | 200 µs | 200 µs | 750 B |

S6 | MR | r2 | 200 µs | 200 µs | 750 B |

S7 | MR | r2 | 200 µs | 200 µs | 750 B |

S8 | LR | r3 | 200 µs | 200 µs | 750 B |

Network Topology Scale | Number of Flow | Scheduling Performance |
---|---|---|

10 | 8 | Y |

20 | 8 | Y |

40 | 8 | Y |

100 | 8 | Y |

Number of Flow | Network Topology Scale | Scheduling Performance |
---|---|---|

8 | 10 | Y |

10 | 10 | Y |

20 | 10 | Y |

40 | 10 | Y |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wang, B.; Liu, Y.; Guo, C.; Song, Y.; Wang, J.; Xiao, J.; Chen, X.
Research on Real-Time Communication Algorithm of Substation Based on Time-Sensitive Network. *Symmetry* **2022**, *14*, 1170.
https://doi.org/10.3390/sym14061170

**AMA Style**

Wang B, Liu Y, Guo C, Song Y, Wang J, Xiao J, Chen X.
Research on Real-Time Communication Algorithm of Substation Based on Time-Sensitive Network. *Symmetry*. 2022; 14(6):1170.
https://doi.org/10.3390/sym14061170

**Chicago/Turabian Style**

Wang, Beilei, Yang Liu, Chenyang Guo, Yan Song, Jidong Wang, Jinchao Xiao, and Xiaoguang Chen.
2022. "Research on Real-Time Communication Algorithm of Substation Based on Time-Sensitive Network" *Symmetry* 14, no. 6: 1170.
https://doi.org/10.3390/sym14061170