Advances in Quasi-Symmetry for Square Contingency Tables
Abstract
:1. Introduction
2. Modeling Based on the f-Divergence
3. Necessary and Sufficient Condition of Symmetry
4. Partition of Test Statistics for Symmetry
5. Measure of the Departure from Symmetry
6. Discussions
7. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bishop, Y.M.; Fienberg, S.E.; Holland, P.W. Discrete Multivariate Analysis: Theory and Practice; The MIT Press: Cambridge, MA, USA, 1975. [Google Scholar]
- Agresti, A. Analysis of Ordinal Categorical Data; John Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Kateri, M. Contingency Table Analysis. Methods and Implementation Using R; Birkhäuser: Basel, Switzerland, 2014. [Google Scholar]
- Kateri, M. ϕ-divergence in contingency table analysis. Entropy 2018, 20, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujisawa, K.; Tahata, K. Quasi Association Models for Square Contingency Tables with Ordinal Categories. Symmetry 2022, 14, 805. [Google Scholar] [CrossRef]
- Bowker, A.H. A test for symmetry in contingency tables. J. Am. Stat. Assoc. 1948, 43, 572–574. [Google Scholar] [CrossRef] [PubMed]
- Stuart, A. A test for homogeneity of the marginal distributions in a two-way classification. Biometrika 1955, 42, 412–416. [Google Scholar] [CrossRef]
- Caussinus, H. Contribution à l’analyse statistique des tableaux de corrélation. Ann. Fac. Sci. Toulouse Math. 1965, 29, 77–183. [Google Scholar] [CrossRef]
- Agresti, A. Links between binary and multi-category logit item response models and quasi-symmetric loglinear models. Ann. Fac. Sci. Toulouse Math. 2002, 11, 443–454. [Google Scholar] [CrossRef] [Green Version]
- Goodman, L.A. Contributions to the statistical analysis of contingency tables: Notes on quasi-symmetry, quasi-independence, log-linear models, log-bilinear models, and correspondence analysis models. Ann. Fac. Sci. Toulouse Math. 2002, 11, 525–540. [Google Scholar] [CrossRef] [Green Version]
- McCullagh, P. Quasi-symmetry and representation theory. Ann. Fac. Sci. Toulouse Math. 2002, 11, 541–561. [Google Scholar] [CrossRef] [Green Version]
- Fienberg, S.E.; van der Heijden, P.G.M. Introduction to special issue on quasi-symmetry and categorical data analysis. Ann. Fac. Sci. Toulouse Math. 2002, 11, 439–441. [Google Scholar] [CrossRef] [Green Version]
- Bergsma, W.P.; Rudas, T. Modeling conditional and marginal association in contingency tables. Ann. Fac. Sci. Toulouse Math. 2002, 11, 455–468. [Google Scholar] [CrossRef]
- Dossou-Gbété, S.; Grorud, A. Biplots for matched two-way tables. Ann. Fac. Sci. Toulouse Math. 2002, 11, 469–483. [Google Scholar] [CrossRef]
- Erosheva, E.A.; Fienberg, S.E.; Junker, B.W. Alternative statistical models and representations for large sparse multi-dimensional contingency tables. Ann. Fac. Sci. Toulouse Math. 2002, 11, 485–505. [Google Scholar] [CrossRef]
- De Falguerolles, A.; van der Heijden, P.G.M. Reduced rank quasi-symmetry and quasi-skew symmetry: A generalized bi-linear model approach. Ann. Fac. Sci. Toulouse Math. 2002, 11, 507–524. [Google Scholar] [CrossRef]
- Stigler, S. The missing early history of contingency tables. Ann. Fac. Sci. Toulouse Math. 2002, 11, 563–573. [Google Scholar] [CrossRef]
- Thélot, C. L’analyse statistique des tables de mobilité à l’aide du modèle quasisymétrique et de ses dérivés. Ann. Fac. Sci. Toulouse Math. 2002, 11, 575–585. [Google Scholar] [CrossRef]
- Caussinus, H. Some concluding observations. Ann. Fac. Sci. Toulouse Math. 2002, 11, 587–591. [Google Scholar] [CrossRef]
- Tomizawa, S. Diagonals-parameter symmetry model for cumulative probabilities in square contingency tables with ordered categories. Biometrics 1993, 49, 883–887. [Google Scholar] [CrossRef]
- Miyamoto, N.; Ohtsuka, W.; Tomizawa, S. Linear diagonals-parameter symmetry and quasi-symmetry models for cumulative probabilities in square contingency tables with ordered categories. Biom. J. 2004, 46, 664–674. [Google Scholar] [CrossRef]
- Kateri, M.; Gottard, A.; Tarantola, C. Generalised quasi-symmetry models for ordinal contingency tables. Aust. N. Z. J. Stat. 2017, 59, 239–253. [Google Scholar] [CrossRef]
- Booth, J.G.; Capanu, M.; Heigenhauser, L. Exact conditional P value calculation for the quasi-symmetry model. J. Comput. Graph. Stat. 2005, 14, 716–725. [Google Scholar] [CrossRef]
- Krampe, A.; Kateri, M.; Kuhnt, S. Asymmetry models for square contingency tables: Exact tests via algebraic statistics. Stat. Comput. 2011, 21, 55–67. [Google Scholar] [CrossRef]
- Rapallo, F. Algebraic markov bases and MCMC for two-way contingency tables. Scand. J. Stat. 2003, 30, 385–397. [Google Scholar] [CrossRef]
- Pardo, L.; Martin, N. Minimum phi-divergence estimators and phi-divergence test statistics in contingency tables with symmetry structure: An overview. Symmetry 2010, 2, 1108–1120. [Google Scholar] [CrossRef]
- Gottard, A.; Marchetti, G.M.; Agresti, A. Quasi-symmetric graphical log-linear models. Scand. J. Stat. 2011, 38, 447–465. [Google Scholar] [CrossRef] [Green Version]
- Tomizawa, S.; Tahata, K. The analysis of symmetry and asymmetry: Orthogonality of decomposition of symmetry into quasi-symmetry and marginal symmetry for multi-way tables. J. Soc. Fr. Stat. 2007, 148, 3–36. [Google Scholar]
- Tahata, K.; Tomizawa, S. Symmetry and asymmetry models and decompositions of models for contingency tables. SUT J. Math. 2014, 50, 131–165. [Google Scholar]
- Bocci, C.; Rapallo, F. Exact tests to compare contingency tables under quasi independence and quasi-symmetry. J. Algebr. Stat. 2019, 10, 13–29. [Google Scholar] [CrossRef]
- Khan, Z.A.; Tewari, R.C. Markov reversibility, quasi-symmetry, and marginal homogeneity in cyclothymiacs geological successions. Int. J. Geoinform. Geol. Sci. 2021, 8, 9–25. [Google Scholar]
- Altun, G. Quasi local odds symmetry model for square contingency table with ordinal categories. J. Stat. Comput. Simul. 2019, 89, 2899–2913. [Google Scholar] [CrossRef]
- Tahata, K.; Ochiai, T.; Matsushima, U. Asymmetry models and model selection in square contingency tables with ordinal categories. In Proceedings of the 2020 International Symposium on Information Theory and Its Applications (ISITA), Kapolei, HI, USA, 24–27 October 2020; pp. 573–577. [Google Scholar]
- Karadağ, O.; Altun, G.; Aktaş, S. Assessment of SNP-SNP interactions by using square contingency table analysis. Ann. Braz. Acad. Sci. 2020, 92, e20190465. [Google Scholar] [CrossRef]
- Altunay, S.A.; Yilmaz, A.E. Median Distance Model for Likert-Type Items in Contingency Table Analysis. Accepted-November 2021. Available online: https://revstat.ine.pt/index.php/REVSTAT/article/view/401 (accessed on 1 February 2022).
- Ando, S. Asymmetry models based on ordered score and separations of symmetry model for square contingency tables. Biom. Lett. 2021, 58, 27–39. [Google Scholar] [CrossRef]
- Ando, S. Orthogonal decomposition of the sum-symmetry model for square contingency tables with ordinal categories: Use of the exponential sum-symmetry model. Biom. Lett. 2021, 58, 95–104. [Google Scholar] [CrossRef]
- Ando, S. Odds-symmetry model for cumulative probabilities and decomposition of a conditional symmetry model in square contingency tables. Aust. N. Z. J. Stat. 2021, 63, 674–684. [Google Scholar] [CrossRef]
- Ando, S. Asymmetry models based on non-integer scores for square contingency tables. J. Stat. Theory Appl. 2022, 21, 21–30. [Google Scholar] [CrossRef]
- Tahata, K. Separation of symmetry for square tables with ordinal categorical data. Jpn. J. Stat. Data Sci. 2020, 3, 469–484. [Google Scholar] [CrossRef]
- Tahata, K.; Miyamoto, N.; Tomizawa, S. Measure of departure from quasi-symmetry and bradley-terry models for square contingency tables with nominal categories. J. Korean Stat. Soc. 2004, 33, 129–147. [Google Scholar]
- Aitchison, J. Large-sample restricted parametric tests. J. R. Stat. Soc. Ser.-Stat. Methodol. 1962, 24, 234–250. [Google Scholar] [CrossRef]
- Darroch, J.N.; Silvey, S.D. On testing more than one hypothesis. Ann. Math. Stat. 1963, 34, 555–567. [Google Scholar] [CrossRef]
- Read, C.B. Partitioning chi-squape in contingency tables: A teaching approach. Commun. Stat.-Theory Methods 1977, 6, 553–562. [Google Scholar] [CrossRef]
- Lang, J.B.; Agresti, A. Simultaneously modeling joint and marginal distributions of multivariate categorical responses. J. Am. Stat. Assoc. 1994, 89, 625–632. [Google Scholar] [CrossRef]
- Lang, J.B. On the partitioning of goodness-of-fit statistics for multivariate categorical response models. J. Am. Stat. Assoc. 1996, 91, 1017–1023. [Google Scholar] [CrossRef]
- McCullagh, P. A class of parametric models for the analysis of square contingency tables with ordered categories. Biometrika 1978, 65, 413–418. [Google Scholar] [CrossRef]
- Agresti, A. A simple diagonals-parameter symmetry and quasi-symmetry model. Stat. Probab. Lett. 1983, 1, 313–316. [Google Scholar] [CrossRef]
- Tomizawa, S. An extended linear diagonals-parameter symmetry model for square contingency tables with ordered categories. Metron 1991, 49, 401–409. [Google Scholar]
- Ireland, C.T.; Ku, H.H.; Kullback, S. Symmetry and Marginal Homogeneity of an r × r Contingency Table. J. Am. Stat. Assoc. 1969, 64, 1323–1341. [Google Scholar] [CrossRef]
- Gilula, Z.; Krieger, A.M.; Ritov, Y. Ordinal Association in Contingency Tables: Some Interpretive Aspects. J. Am. Stat. Assoc. 1988, 83, 540–545. [Google Scholar] [CrossRef]
- Kateri, M.; Papaioannou, T. Asymmetry models for contingency tables. J. Am. Stat. Assoc. 1997, 92, 1124–1131. [Google Scholar] [CrossRef]
- Csiszár, I.; Shields, P.C. Information Theory and Statistics: A Tutorial; Now Publishers Inc.: Hanover, Germany, 2004. [Google Scholar]
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Kateri, M.; Agresti, A. A class of ordinal quasi-symmetry models for square contingency tables. Stat. Probab. Lett. 2007, 77, 598–603. [Google Scholar] [CrossRef]
- Kateri, M. Families of generalized quasisymmetry models: A ϕ-divergence approach. Symmetry 2021, 13, 2297. [Google Scholar] [CrossRef]
- Tahata, K.; Tomizawa, S. Generalized linear asymmetry model and decomposition of symmetry for multiway contingency tables. J. Biom. Biostat. 2011, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Fujisawa, K.; Tahata, K. Asymmetry model based on f-divergence and orthogonal decomposition of symmetry for square contingency tables with ordinal categories. SUT J. Math. 2020, 56, 39–53. [Google Scholar]
- Yoshimoto, T.; Tahata, K.; Saigusa, Y.; Tomizawa, S. Quasi point-symmetry models based on f-divergence and decomposition of point-symmetry for multi-way contingency tables. SUT J. Math. 2019, 55, 103–131. [Google Scholar]
- Tahata, K.; Tomizawa, S. Generalized marginal homogeneity model and its relation to marginal equimoments for square contingency tables with ordered categories. Adv. Data Anal. Classif. 2008, 2, 295–311. [Google Scholar] [CrossRef]
- Tahata, K.; Naganawa, M.; Tomizawa, S. Extended linear asymmetry model and separation of symmetry for square contingency tables. J. Jpn. Stat. Soc. 2016, 46, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Tomizawa, S. Three kinds of decompositions for the conditional symmetry model in a square contingency table. J. Jpn. Stat. Soc. 1984, 14, 35–42. [Google Scholar]
- Bhapkar, V.P. A note on the equivalence of two test criteria for hypotheses in categorical data. J. Am. Stat. Assoc. 1966, 61, 228–235. [Google Scholar] [CrossRef]
- Rao, C.R. Linear Statistical Inference and Its Applications, 2nd ed.; Wiley: New York, NY, USA, 1973. [Google Scholar]
- Saigusa, Y.; Tahata, K.; Tomizawa, S. Orthogonal decomposition of symmetry model using the ordinal quasi-symmetry model based on f-divergence for square contingency tables. Stat. Probab. Lett. 2015, 101, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Tomizawa, S. Two kinds of measures of departure from symmetry in square contingency tables having nominal categories. Stat. Sin. 1994, 4, 325–334. [Google Scholar]
- Tomizawa, S.; Seo, T.; Yamamoto, H. Power-divergence-type measure of departure from symmetry for square contingency tables that have nominal categories. J. Appl. Stat. 1998, 25, 387–398. [Google Scholar] [CrossRef]
- Cressie, N.; Read, T.R.C. Multinomial goodness-of-fit tests. J. R. Stat. Soc. Ser. B-Methodol. 1984, 46, 440–464. [Google Scholar] [CrossRef]
- Tomizawa, S.; Miyamoto, N.; Hatanaka, Y. Measure of asymmetry for square contingency tables having ordered categories. Aust. N. Z. J. Stat. 2001, 43, 335–349. [Google Scholar] [CrossRef]
- Tahata, K.; Iwashita, T.; Tomizawa, S. Measure of departure from conditional marginal homogeneity for square contingency tables with ordered categories. Statistics 2008, 42, 453–466. [Google Scholar] [CrossRef]
- Iki, K.; Tahata, K.; Tomizawa, S. Measure of departure from marginal homogeneity using marginal odds for multi-way tables with ordered categories. J. Appl. Stat. 2012, 39, 279–295. [Google Scholar] [CrossRef]
- Patil, G.P.; Taillie, C. Diversity as a concept and its measurement. J. Am. Stat. Assoc. 1982, 77, 548–561. [Google Scholar] [CrossRef]
- Tahata, K.; Kozai, K. Measuring degree of departure from extended quasi-symmetry for square contingency tables. Rev. Colomb. Estad. 2012, 35, 55–65. [Google Scholar]
- Tahata, K.; Kozai, K.; Tomizawa, S. Partitioning measure of quasi-symmetry for square contingency tables. Braz. J. Probab. Stat. 2014, 28, 353–366. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, G.M.; Gigliarano, C. The Gini concentration index: A review of the inference literature. J. Econ. Surv. 2017, 31, 1130–1148. [Google Scholar] [CrossRef]
- Ando, S. A bivariate index vector to measure departure from quasi-symmetry for ordinal square contingency tables. Austrian J. Stat. 2021, 50, 115–126. [Google Scholar] [CrossRef]
- Tahata, K. Quasi-asymmetry model for square tables with nominal categories. J. Appl. Stat. 2012, 39, 723–729. [Google Scholar] [CrossRef]
- Tahata, K.; Tomizawa, S. Double linear diagonals-parameter symmetry and decomposition of double symmetry for square tables. Stat. Methods Appl. 2010, 19, 307–318. [Google Scholar] [CrossRef]
- Lawal, H.B. Using a GLM to decompose the symmetry model in square contingency tables with ordered categories. J. Appl. Stat. 2004, 31, 279–303. [Google Scholar] [CrossRef]
- Tan, T. Doubly Classified Model with R; Springer: Singapore, 2017. [Google Scholar]
- Lang, J.B. Multinomial-Poisson homogeneous models for contingency tables. Ann. Stat. 2004, 32, 340–383. [Google Scholar] [CrossRef]
- Lang, J.B. Homogeneous Linear Predictor Models for Contingency Tables. J. Am. Stat. Assoc. 2005, 100, 121–134. [Google Scholar] [CrossRef]
- Bhapkar, V.P.; Darroch, J.N. Marginal symmetry and quasi symmetry of general order. J. Multivar. Anal. 1990, 34, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Tahata, K.; Yamamoto, H.; Tomizawa, S. Orthogonality of decompositions of symmetry into extended symmetry and marginal equimoment for multi-way tables with ordered categories. Austrian J. Stat. 2008, 37, 185–194. [Google Scholar] [CrossRef]
- Tahata, K.; Yamamoto, H.; Tomizawa, S. Linear ordinal quasi-symmetry model and decomposition of symmetry for multi-way tables. Math. Methods Stat. 2011, 20, 158–164. [Google Scholar] [CrossRef]
- Shinoda, S.; Tahata, K.; Yamamoto, K.; Tomizawa, S. Marginal continuation odds ratio model and decomposition of marginal homogeneity model for multi-way contingency tables. Sankhya B 2021, 83, 304–324. [Google Scholar] [CrossRef]
- Tahata, K.; Tomizawa, S. Orthogonal decomposition of point-symmetry for multiway tables. AStA Adv. Stat. Anal. 2008, 92, 255–269. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahata, K. Advances in Quasi-Symmetry for Square Contingency Tables. Symmetry 2022, 14, 1051. https://doi.org/10.3390/sym14051051
Tahata K. Advances in Quasi-Symmetry for Square Contingency Tables. Symmetry. 2022; 14(5):1051. https://doi.org/10.3390/sym14051051
Chicago/Turabian StyleTahata, Kouji. 2022. "Advances in Quasi-Symmetry for Square Contingency Tables" Symmetry 14, no. 5: 1051. https://doi.org/10.3390/sym14051051
APA StyleTahata, K. (2022). Advances in Quasi-Symmetry for Square Contingency Tables. Symmetry, 14(5), 1051. https://doi.org/10.3390/sym14051051