Certain Identities Involving the General Kampé de Fériet Function and Srivastava’s General Triple Hypergeometric Series
Abstract
1. Introduction and Definitions
2. Preliminary Results
3. Formulas for the Kampé de Fériet’s Functions
4. Formulas for the Srivastava’s General Triple Hypergeometric Series
5. Concluding Remarks and a Question
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press: Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Choi, J.; Rathie, A.K. General summation formulas for the Kampé de Fériet function. Montes Taurus J. Pure Appl. Math. 2019, 1, 107–128. [Google Scholar]
- Choi, J.; Srivastava, H.M. A reducible case of double hypergeometric series involving the Riemann ζ-function. Bull. Korean Math. Soc. 1996, 33, 107–110. [Google Scholar]
- Cvijović, C.; Miller, R. A reduction formula for the Kampé de Fériet function. Appl. Math. Lett. 2010, 23, 769–771. [Google Scholar] [CrossRef]
- Liu, H.; Wang, W. Transformation and summation formulae for Kampé de Fériet series. J. Math. Anal. Appl. 2014, 409, 100–110. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Daoust, M.C. On Eulerian integrals associated with Kampé de Fériet’s function. Publ. Inst. Math. (Beograd) (N.S.) 1969, 9, 199–202. [Google Scholar]
- Srivastava, H.M.; Daoust, M.C. Certain generalized Neumann expansions associated with the Kampé de Fériet function. Nederl. Akad. Wetensch. Indag. Math. 1969, 31, 449–457. [Google Scholar]
- Srivastava, H.M.; Miller, E.A. A simple reducible case of double hypergeometric series involving Catalan’s constant and Riemann’s ζ-function. Int. J. Math. Educ. Sci. Technol. 1990, 21, 375–377. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series. In More Special Functions; Nauka: Moscow, Russia, 1986; Volume 3. (In Russian). It was translated in English from the Russian by Gould, G.G., and the translated version was published in Gordon and Breach Science Publishers: New York, NY, USA; Philadelphia, PA, USA; London, UK; Paris, France; Montreux, Switzerland; Tokyo, Japan; Melbourne, Australia, 1990 [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Bradley, D.M. Representations of Catalan’s Constant, Researchgate, February 2001. Available online: https://www.researchgate.net/publication/2325473_Representations_of_Catalan’s_Constant/citations (accessed on 17 September 2022).
- Rainville, E.D. Special Functions; Macmillan Company: New York, NY, USA, 1960. [Google Scholar]
- Appell, P.; de Fériet, J.K. Fonctions Hypergéométriques et Hypersphérique Polyno^mes d’Hermité; Gauthiers Villars: Paris, France, 1926. [Google Scholar]
- Humbert, P. The confluent hypergeometric functions of two variables. Proc. Roy. Soc. Edinb. 1920–1921, 4-1, 73–96. [Google Scholar] [CrossRef]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
- de Fériet, J.K. Les fonctions hypergéometriques of ordre supérieur aˇ deux variables. C. R. Acad. Sci. Paris 1921, 173, 401–404. [Google Scholar]
- Burchnall, J.L.; Chaundy, T.W. Expansions of Appell’s double hypergeometric functions. Quart. J. Math. 1940, 11, 249–270. [Google Scholar] [CrossRef]
- Burchnall, J.L.; Chaundy, T.W. Expansions of Appell’s double hypergeometric functions (II). Quart. J. Math. 1941, 12, 112–128. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Panda, R. An integral representation for the product of two Jacobi polynomials. J. London Math. Soc. 1976, 12, 419–425. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press: Chichester, UK; John Wiley and Sons: New York, NY, USA; Brisbane, Australia; Toronto, ON, Canada, 1984. [Google Scholar]
- Hái, N.; Marichev, O.I.; Srivastava, H.M. A note on the convergence of certain families of multiple hypergeometric series. J. Math. Anal. Appl. 1992, 164, 104–115. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Daoust, M.C. A note on the convergence of Kampé de Fériet’s double hypergeometric series. Math. Nachr. 1972, 53, 151–159. [Google Scholar] [CrossRef]
- Srivastava, H.M. Generalized Neumann expansions involving hypergeometric functions. Proc. Camb. Philos. Soc. 1967, 63, 425–429. [Google Scholar] [CrossRef]
- Srivastava, H.M. Hypergeometric functions of three variables. Ganita 1964, 15, 97–108. [Google Scholar]
- Srivastava, H.M. On transformations of certain hypergeometric functions of three variables. Publ. Math. Debrecen 1965, 12, 47–57. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some integrals representing triple hypergeometric functions. Rent. Circ. Mat. Palermo. 1967, 16, 99–115. [Google Scholar] [CrossRef]
- Saigo, M. On properties of hypergeometric functions of three variables, FM and FG. Rend. Circ. Mat. Palermo Ser. II 1988, 37, 449–468. [Google Scholar] [CrossRef]
- Baboo, M.S. Exact Solutions of Outstanding Problems and Novel Proofs through Hypergeometric Approach. Ph.D. Thesis, Jamia Millia Islamia, New Delhi, India, August 2017. [Google Scholar]
- Qureshi, M.I.; Baboo, M.S. Power series and hypergeometric representations with positive integral powers of arctangent function. South Asian J. Math. 2018, 8, 11–17. [Google Scholar]
- Li, C.; Chu, W. Improper integrals involving powers of inverse trigonometric and hyperbolic functions. Mathematics 2022, 10, 2980. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series, and Products, 7th ed.; Academic Press: Amsterdam, The Netherlands; Boston, MA, USA; Heidelberg, Germany; London, UK; New York, NY, USA; Oxford, UK; Paris, France; San Diego, CA, USA; San Francisco, CA, USA; Singapore; Sydney, Australia; Tokyo, Japan, 2007. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qureshi, M.I.; Choi, J.; Baboo, M.S. Certain Identities Involving the General Kampé de Fériet Function and Srivastava’s General Triple Hypergeometric Series. Symmetry 2022, 14, 2502. https://doi.org/10.3390/sym14122502
Qureshi MI, Choi J, Baboo MS. Certain Identities Involving the General Kampé de Fériet Function and Srivastava’s General Triple Hypergeometric Series. Symmetry. 2022; 14(12):2502. https://doi.org/10.3390/sym14122502
Chicago/Turabian StyleQureshi, Mohd Idris, Junesang Choi, and Mohd Shaid Baboo. 2022. "Certain Identities Involving the General Kampé de Fériet Function and Srivastava’s General Triple Hypergeometric Series" Symmetry 14, no. 12: 2502. https://doi.org/10.3390/sym14122502
APA StyleQureshi, M. I., Choi, J., & Baboo, M. S. (2022). Certain Identities Involving the General Kampé de Fériet Function and Srivastava’s General Triple Hypergeometric Series. Symmetry, 14(12), 2502. https://doi.org/10.3390/sym14122502