Some New Bennett–Leindler Type Inequalities via Conformable Fractional Nabla Calculus
Abstract
:1. Introduction
2. Fundamental Concepts
- (i)
- is a nabla conformable -fractional differentiable, and
- (ii)
- is a nabla conformable -fractional differentiable, and
- (iii)
- is a nabla conformable -fractional differentiable, and
3. Main Results and Some Corollaries
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardy, G.H. Notes on a Theorem of Hilbert. Math. Z. 1920, 6, 314–317. [Google Scholar] [CrossRef]
- Hardy, G.H. Notes on Some Points in the Integral Calculus, LX. An Inequality Between Integrals. Mess. Math. 1925, 54, 150–156. [Google Scholar]
- Copson, E.T. Note on Series of Positive Terms. J. Lond.Math. Soc. 1928, 3, 49–51. [Google Scholar] [CrossRef]
- Copson, E.T. Some Integral Inequalities. Prof. Roy. Soc. Edinburg. Sect. A 1976, 75, 157–164. [Google Scholar] [CrossRef]
- Leindler, L. Generalization of Inequalities of Hardy and Littlewood. Acta Sci. Math. (Szeged) 1970, 31, 297. [Google Scholar]
- Bennett, G. Some Elementary Inequalities. Quart. J. Math. Oxf. 1987, 38, 401–425. [Google Scholar] [CrossRef]
- Bennett, G. Some Elementary Inequalities II. Quart. J. Math. 1988, 2, 385–400. [Google Scholar] [CrossRef]
- Leindler, L. Some Inequalities Pertaining to Bennetts Results. Acta Sci. Math. (Szeged) 1993, 58, 261–279. [Google Scholar]
- Hilger, S. Ein Maßkettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. Dissertation, Universitat of Würzburg, Germany, Würzburg, 1988. [Google Scholar]
- Řehàk, P. Hardy inequality on time scales and its application to half-linear dynamic equations. J. Inequal. Appl. 2005, 5, 495–507. [Google Scholar] [CrossRef] [Green Version]
- Saker, S.H.; O’Regan, D.; Agarwa, R.P. Generalized Hardy, Copson, Leindler and Bennett inequalities on time scales. Math. Nachr. 2014, 287, 686–698. [Google Scholar] [CrossRef]
- Kayar, Z.; KaymakÇalan, B.; Pelen, N.N. Bennett-Leindler Type Inequalities for Nabla Time Scale Calculus. Mediterr. J. Math. 2021, 4, 1–18. [Google Scholar] [CrossRef]
- Zakarya, M.; Altanji, M.; AlNemer, G.; Abd El-Hamid, H.A.; Cesarano, C.; Rezk, H.M. Fractional Reverse Coposn’s Inequalities via Conformable Calculus on Time Scales. Symmetry 2021, 13, 542. [Google Scholar] [CrossRef]
- Ali, I.; Seadawy, A.R.; Rizvi, S.T.R.; Younis, M.; Ali, K. Conserved quantities along with Painlevé analysis and optical solitons for the nonlinear dynamics of Heisenberg ferromagnetic spin chains model. Int. J. Mod. Phys. B 2020, 34, 2050283. [Google Scholar] [CrossRef]
- AlNemer, G.; Kenawy, M.R.; Zakarya, M.; Cesarano, C.; Rezk, H.M. Generalizations of Hardy’s Type Inequalities via Conformable Calculus. Symmetry 2021, 13, 242. [Google Scholar] [CrossRef]
- Bilal, M.; Seadawy, A.R.; Younis, M.; Rizvi, S.T.R.; Zahed, H. Dispersive of propagation wave solutions to unidirectional shallow water wave Dullin–Gottwald–Holm system and modulation instability analysis. Math. Methods Appl. Sci. 2021, 44, 4094–4104. [Google Scholar] [CrossRef]
- Dubey, C.V.; Srivastava, S.; Sharma, U.K.; Pradhan, A. Tsallis holographic dark energy in Bianchi-I Universe using hybrid expansion law with k-essence. Pramana-J. Phys. 2019, 93, 10. [Google Scholar] [CrossRef]
- AlNemer, G.; Abdel-Aty, A.-H.; Nisar, K.S. Hilbert-Type Inequalities for Time Scale Nabla Calculus. Adv. Differ. Equ. 2020, 619, 1–21. [Google Scholar]
- Rezk, H.M.; Albalawi, W.; Abd El-Hamid, H.A.; Saied, A.I.; Bazighifan, O.; Mohamed, S.M.; Zakarya, M. Hardy-Leindler Type Inequalities via Conformable Delta Fractional Calculus. J. Funct. Spaces 2022, 2022, 2399182. [Google Scholar] [CrossRef]
- Rizvi, S.T.R.; Seadawy, A.R.; Ashraf, F.; Younis, M.; Iqbal, H.; Baleanu, D. Lump and Interaction solutions of a geophysical Korteweg–de Vries equation. Results Phys. 2020, 19, 103661. [Google Scholar] [CrossRef]
- Saker, S.H.; O’Regan, D.; Agarwa, R.P. Converses of Copson’s Inequalities on Time Scales. J. Math. Equal. Appl. 2015, 18, 241–254. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Asghar, A.; Albarakati, W.A. Analytical wave solutions of the (2+1)-dimensional first integro-di erential Kadomtsev-Petviashivili hierarchy equation by using modified mathematical methods. Results Phys. 2019, 15, 102775. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Lu, D.; Iqbal, M. Application of mathematical methods on the system of dynamical equations for the ion sound and Langmuir waves. Pramana-J. Phys. 2019, 93, 10. [Google Scholar] [CrossRef]
- Benkhettou, N.; Salima, H.; Torres, D.F.M. A Conformable Fractional Calculus on Arbitrary Time Scales. J. King Saud Univ.-Sci. 2016, 28, 93–98. [Google Scholar] [CrossRef]
- Nwaeze, E.R.; Torres, D.F.M. Chain Rules and Inequalities for the BHT Fractional Calculus on Arbitrary Times Sales. Arab J. Math. 2017, 6, 13–20. [Google Scholar] [CrossRef]
- Bendouma, B.; Hamoudi, A. A nabla conformable fractional calculus on time scales. Math. Analy. Appl. 2019, 7, 202–216. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlNemer, G.; Zakarya, M.; Butush, R.; Rezk, H.M. Some New Bennett–Leindler Type Inequalities via Conformable Fractional Nabla Calculus. Symmetry 2022, 14, 2183. https://doi.org/10.3390/sym14102183
AlNemer G, Zakarya M, Butush R, Rezk HM. Some New Bennett–Leindler Type Inequalities via Conformable Fractional Nabla Calculus. Symmetry. 2022; 14(10):2183. https://doi.org/10.3390/sym14102183
Chicago/Turabian StyleAlNemer, Ghada, Mohammed Zakarya, Roqia Butush, and Haytham M. Rezk. 2022. "Some New Bennett–Leindler Type Inequalities via Conformable Fractional Nabla Calculus" Symmetry 14, no. 10: 2183. https://doi.org/10.3390/sym14102183
APA StyleAlNemer, G., Zakarya, M., Butush, R., & Rezk, H. M. (2022). Some New Bennett–Leindler Type Inequalities via Conformable Fractional Nabla Calculus. Symmetry, 14(10), 2183. https://doi.org/10.3390/sym14102183