You are currently viewing a new version of our website. To view the old version click .
Symmetry
  • Article
  • Open Access

14 October 2022

On Fluxbrane Polynomials for Generalized Melvin-like Solutions Associated with Rank 5 Lie Algebras

and
1
Institute of Gravitation and Cosmology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
2
Center for Gravitation and Fundamental Metrology, All-Russian Research Institute of Metrological Service (VNIIMS), 46 Ozyornaya St., 119361 Moscow, Russia
*
Author to whom correspondence should be addressed.
This article belongs to the Section Mathematics

Abstract

We consider generalized Melvin-like solutions corresponding to Lie algebras of rank 5 ( A 5 , B 5 , C 5 , D 5 ). The solutions take place in a D-dimensional gravitational model with five Abelian two-forms and five scalar fields. They are governed by five moduli functions H s ( z ) ( s = 1 , . . . , 5 ) of squared radial coordinates z = ρ 2 , which obey five differential master equations. The moduli functions are polynomials of powers ( n 1 , n 2 , n 3 , n 4 , n 5 ) = ( 5 , 8 , 9 , 8 , 5 ) , ( 10 , 18 , 24 , 28 , 15 ) , ( 9 , 16 , 21 , 24 , 25 ) , ( 8 , 14 , 18 , 10 , 10 ) for Lie algebras A 5 , B 5 , C 5 , D 5 , respectively. The asymptotic behavior for the polynomials at large distances is governed by some integer-valued 5 × 5 matrix ν connected in a certain way with the inverse Cartan matrix of the Lie algebra and (in A 5 and D 5 cases) with the matrix representing a generator of the Z 2 -group of symmetry of the Dynkin diagram. The symmetry and duality identities for polynomials are obtained, as well as asymptotic relations for solutions at large distances.
MSC:
11C08; 17B80; 17B81; 34A05; 35Q75; 70S99

1. Introduction

In this article, we deal with a higher dimensional generalization of Melvin’s solution [1], which was studied earlier in reference [2].
The model from reference [2] is described by metric, n Abelian 2-forms, and l n scalar fields. Here, we study special solutions with n = l = 5 , which are governed by a 5 × 5 Cartan matrices ( A i j ) corresponding to Lie algebras of rank 5: A 5 , B 5 , C 5 , and D 5 . We note that reference [2] contains a special subclass of fluxbrane solutions from reference [3].
We note that Melvin’s solution in the 4-dimensional space-time describes the gravitational field of a magnetic flux tube. The multidimensional analog of such a flux tube, supported by a certain configuration of the fields of forms, is referred to as a fluxbrane. The appearance of fluxbrane solutions was motivated in past decades by superstring/M-theory models. A physical relevance of such solutions is that they supply an appropriate background geometry for studying various processes, which involve branes, instantons, Kaluza–Klein monopoles, pair production of magnetically charged black holes, and other configurations that can be studied with a special kind of Kaluza–Klein reduction of a certain higher dimensional model in the presence of the U ( 1 ) isometry subgroup. (The readers who are interested in generalizations of the Melvin solution and fluxbrane solutions may be addressed to references [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19], and references therein.)
The fluxbrane solutions from reference [3] were described by moduli functions H s ( z ) > 0 defined on ( 0 , + ) , where z = ρ 2 and ρ is a proper radial coordinate. The moduli functions H s ( z ) were obeying n master equations (equivalent to Toda-like equations) governed by a matrix ( A s s ) , and the following boundary conditions were imposed: H s ( + 0 ) = 1 , s = 1 , . . . , n .
In reference [2] the matrix ( A s s ) was assumed to coincide with a Cartan matrix for some simple finite-dimensional Lie algebra G of rank n. In this case according to the conjecture from reference [3] the solutions to master equations with the boundary conditions H s ( + 0 ) = 1 imposed are polynomials
H s ( z ) = 1 + k = 1 n s P s ( k ) z k .
Here P s ( k ) are constants, P s ( n s ) 0 and
n s = 2 s = 1 n A s s .
with the notation assumed: ( A s s ) = ( A s s ) 1 . Here, n s are integer numbers, which are components of the twice-dual Weyl vector on the basis of simple co-roots [20].
The functions H s (so-called “fluxbrane polynomials”) describe a special solution to open Toda chain equations [21,22], which correspond to simple finite-dimensional Lie algebra G [23].
Here we study the solutions corresponding to Lie algebras of rank 5. We prove some symmetry properties, as well as the so-called duality relations of fluxbrane polynomials. The duality relations describe the behavior of the solutions under the inversion ρ 1 / ρ . They can be mathematically understood in terms of the groups of symmetry of Dynkin diagrams for the corresponding Lie algebras. For this work, these groups of symmetry are either identical (for Lie algebras B 5 , C 5 ) or isomorphic to the group Z 2 (for Lie algebras A 5 , D 5 ). The duality identities may be used in deriving a 1 / ρ -expansion for solutions at large distances ρ . The corresponding asymptotic behaviors of the solutions are presented.
The analogous consideration was performed earlier for the case of Lie algebras of rank 2: A 2 , B 2 = C 2 , G 2 in reference [24], and for Lie algebras of rank 3: A 3 , B 3 , C 3 in reference [25], for rank 4 non-exceptional Lie algebras A 4 , B 4 , C 4 , D 4 in references [26,27] and for exceptional Lie algebra F 4 in [27]. Moreover, in reference [28], the conjecture from reference [3] was verified for the Lie algebra E 6 and certain duality relations for six E 6 -polynomials were found.

2. The Setup and Generalized Melvin Solutions

We deal with the (smooth) manifold
M = ( 0 , + ) × M 1 × M 2 ,
where M 1 = S 1 and M 2 is a ( D 2 ) -dimensional manifold of signature ( , + , . . . , + ) , which is supposed to be Ricci-flat.
The action of the model reads
S = d D x | g | R [ g ] δ a b g M N M φ a N φ b 1 2 s = 1 5 exp [ 2 λ s φ ] ( F s ) 2 .
Here, g = g M N ( x ) d x M d x N is a (smooth) metric defined on M, φ = ( φ a ) R 5 is a vector that consists of scalar fields, F s = d A s = 1 2 F M N s d x M d x N is a form of rank 2, λ s = ( λ s a ) R 5 is the vector of dilaton coupling constants, s = 1 , . . . , 5 ; a = 1 , . . . , 5 . In (4) we denote | g | | det ( g M N ) | , ( F s ) 2 F M 1 M 2 s F N 1 N 2 s g M 1 N 1 g M 2 N 2 .
We studied a family of exact solutions to the field equations, which correspond to the action (4) and depend on the radial coordinate ρ . These solutions read as follows [2] (for more general fluxbrane solutions, see [3])
g = s = 1 5 H s 2 h s / ( D 2 ) d ρ d ρ + s = 1 5 H s 2 h s ρ 2 d ϕ d ϕ + g 2 ,
exp ( φ a ) = s = 1 5 H s h s λ s a ,
F s = q s l = 1 5 H l A s l ρ d ρ d ϕ ,
s , a = 1 , . . . , 5 , where g 1 = d ϕ d ϕ is a metric on a one-dimensional circle M 1 = S 1 and g 2 is a metric of signature ( , + , , + ) on the manifold M 2 , which is supposed to be Ricci-flat. Here, q s 0 are constants.
In what follows, we denote z = ρ 2 . Here, the functions H s ( z ) > 0 obey the set of non-linear equations [2]
d d z z H s d d z H s = P s l = 1 5 H l A s l ,
with the boundary conditions imposed
H s ( + 0 ) = 1 ,
where
P s = 1 4 K s q s 2 ,
s = 1 , . . . , 5 . Condition (9) prevents a possible appearance of the conic singularity for the metric at ρ = + 0 .
The parameters h s obey the following relations
h s = K s 1 , K s = B s s > 0 ,
where
B s l 1 + 1 2 D + λ s λ l ,
s , l = 1 , . . . , 5 . The formulae for the solutions contain the so-called “quasi-Cartan” matrix
( A s l ) = 2 B s l / B l l .
Here, we study a multidimensional generalization of Melvin’s solution [1] for the case of five scalar fields and five 2-forms. In the case when scalar fields are absent, the original Melvin’s solution may be obtained here for D = 4 , one (electromagnetic) 2-form, M 1 = S 1 ( 0 < ϕ < 2 π ), M 2 = R 2 , and g 2 = d t d t + d x d x .

4. Conclusions

In this paper, we studied a family of generalized multidimensional Melvin-type solutions which correspond to simple Lie algebras of rank 5: G = A 5 , B 5 , C 5 , D 5 . Any solution of this family is ruled by a set of 5 polynomials H s ( z ) of powers n s , s = 1 , 2 , 3 , 4 , 5 . The powers of these polynomials read: ( n 1 , n 2 , n 3 , n 4 , n 5 ) = ( 5 , 8 , 9 , 8 , 5 ) , ( 10 , 18 , 24 , 28 , 15 ) , ( 9 , 16 , 21 , 24 , 25 ) , ( 8 , 14 , 18 , 10 , 10 ) for Lie algebras A 5 , B 5 , C 5 , D 5 , respectively. In Appendix A, we present all of these polynomials calculated by using a certain MATHEMATICA algorithm. In fact, these (so-called fluxbrane) polynomials determine special solutions to open Toda chain equations [23], which correspond to the Lie algebras under consideration and may be used in various areas of science.
The moduli parameters p s of polynomials H s ( z ) = H s ( z , ( p s ) ) are related to parameters q s by the relation p s = K s q s 2 / ( 4 n s ) , where K s depends upon the total dimension D and dilaton coupling vectors λ s by the relation (15). For D = 4 , the parameters q s determine (up to a sign ±) the values of the colored magnetic fields on the axis of symmetry.
Here, we found the symmetry relations and the duality identities for our rank 5 fluxbrane polynomials. These identities may also be used in deriving 1 / ρ -expansion for solutions under consideration at large distances ρ , e.g. for asymptotic relations (as ρ + ), which were obtained in the paper.
By using the results of reference [23], one can construct black hole solutions corresponding to rank 5 Lie algebras for the model under consideration along the lines of how it was done in [26] for the rank 4 case. In the rank 5 case, one will need a thorough analysis of horizons in black hole metrics governed by fluxbrane polynomials extended to negative values of variable z. For the dyonic black hole solutions corresponding to rank 2 Lie algebras, such an analysis was started in references [30,31] (see also [32]). The proper analyses of black hole solutions corresponding to Lie algebras of ranks 3 and 4 are also desirable. This may be the subject of our future papers.

Author Contributions

Conceptualization, V.D.I.; Data curation, S.V.B.; Formal analysis, V.D.I.; Investigation, S.V.B. and V.D.I.; Methodology, S.V.B.; Software, S.V.B.; Supervision, V.D.I.; Validation, S.V.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by RUDN University Strategic Academic Leadership Program.

Data Availability Statement

According to Appendix A.

Acknowledgments

This paper has been supported by the RUDN University Strategic Academic Leadership Program (recipients V.D.I. and S.V.B.—mathematical and simulation model developments).

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Appendix A.1. The List of Polynomials

A 5 -case. For the Lie algebra A 5 s l ( 6 ) , the polynomials read
H 1 =
1 + 5 p 1 z + 10 p 1 p 2 z 2 + 10 p 1 p 2 p 3 z 3 + 5 p 1 p 2 p 3 p 4 z 4 + p 1 p 2 p 3 p 4 p 5 z 5
H 2 =
1 + 8 p 2 z + ( 10 p 1 p 2 + 18 p 2 p 3 ) z 2 + ( 40 p 1 p 2 p 3 + 16 p 2 p 3 p 4 ) z 3 + ( 20 p 1 p 2 2 p 3 + 45 p 1 p 2 p 3 p 4 + 5 p 2 p 3 p 4 p 5 ) z 4 + ( 40 p 1 p 2 2 p 3 p 4 + 16 p 1 p 2 p 3 p 4 p 5 ) z 5 + ( 10 p 1 p 2 2 p 3 2 p 4 + 18 p 1 p 2 2 p 3 p 4 p 5 ) z 6 + 8 p 1 p 2 2 p 3 2 p 4 p 5 z 7 + p 1 p 2 2 p 3 2 p 4 2 p 5 z 8
H 3 =
1 + 9 p 3 z + ( 18 p 2 p 3 + 18 p 3 p 4 ) z 2 + ( 10 p 1 p 2 p 3 + 64 p 2 p 3 p 4 + 10 p 3 p 4 p 5 ) z 3 + ( 45 p 1 p 2 p 3 p 4 + 36 p 2 p 3 2 p 4 + 45 p 2 p 3 p 4 p 5 ) z 4 + ( 45 p 1 p 2 p 3 2 p 4 + 36 p 1 p 2 p 3 p 4 p 5 + 45 p 2 p 3 2 p 4 p 5 ) z 5 + ( 10 p 1 p 2 2 p 3 2 p 4 + 64 p 1 p 2 p 3 2 p 4 p 5 + 10 p 2 p 3 2 p 4 2 p 5 ) z 6 + ( 18 p 1 p 2 2 p 3 2 p 4 p 5 + 18 p 1 p 2 p 3 2 p 4 2 p 5 ) z 7 + 9 p 1 p 2 2 p 3 2 p 4 2 p 5 z 8 + p 1 p 2 2 p 3 3 p 4 2 p 5 z 9
H 4 =
1 + 8 p 4 z + ( 18 p 3 p 4 + 10 p 4 p 5 ) z 2 + ( 16 p 2 p 3 p 4 + 40 p 3 p 4 p 5 ) z 3 + ( 5 p 1 p 2 p 3 p 4 + 45 p 2 p 3 p 4 p 5 + 20 p 3 p 4 2 p 5 ) z 4 + ( 16 p 1 p 2 p 3 p 4 p 5 + 40 p 2 p 3 p 4 2 p 5 ) z 5 + ( 18 p 1 p 2 p 3 p 4 2 p 5 + 10 p 2 p 3 2 p 4 2 p 5 ) z 6 + 8 p 1 p 2 p 3 2 p 4 2 p 5 z 7 + p 1 p 2 2 p 3 2 p 4 2 p 5 z 8
H 5 =
1 + 5 p 5 z + 10 p 4 p 5 z 2 + 10 p 3 p 4 p 5 z 3 + 5 p 2 p 3 p 4 p 5 z 4 + p 1 p 2 p 3 p 4 p 5 z 5
B 5 -case. For the Lie algebra B 5 s o ( 11 ) , we obtain
H 1 =
1 + 10 p 1 z + 45 p 1 p 2 z 2 + 120 p 1 p 2 p 3 z 3 + 210 p 1 p 2 p 3 p 4 z 4 + 252 p 1 p 2 p 3 p 4 p 5 z 5 + 210 p 1 p 2 p 3 p 4 p 5 2 z 6 + 120 p 1 p 2 p 3 p 4 2 p 5 2 z 7 + 45 p 1 p 2 p 3 2 p 4 2 p 5 2 z 8 + 10 p 1 p 2 2 p 3 2 p 4 2 p 5 2 z 9 + p 1 2 p 2 2 p 3 2 p 4 2 p 5 2 z 10
H 2 =
1 + 18 p 2 z + ( 45 p 1 p 2 + 108 p 2 p 3 ) z 2 + ( 480 p 1 p 2 p 3 + 336 p 2 p 3 p 4 ) z 3 + ( 540 p 1 p 2 2 p 3 + 1890 p 1 p 2 p 3 p 4 + 630 p 2 p 3 p 4 p 5 ) z 4 + ( 3780 p 1 p 2 2 p 3 p 4 + 4032 p 1 p 2 p 3 p 4 p 5 + 756 p 2 p 3 p 4 p 5 2 ) z 5 + ( 2520 p 1 p 2 2 p 3 2 p 4 + 10206 p 1 p 2 2 p 3 p 4 p 5 + 5250 p 1 p 2 p 3 p 4 p 5 2 + 588 p 2 p 3 p 4 2 p 5 2 ) z 6 + ( 12096 p 1 p 2 2 p 3 2 p 4 p 5 + 15120 p 1 p 2 2 p 3 p 4 p 5 2 + 4320 p 1 p 2 p 3 p 4 2 p 5 2 + 288 p 2 p 3 2 p 4 2 p 5 2 ) z 7 + ( 5292 p 1 p 2 2 p 3 2 p 4 2 p 5 + 22680 p 1 p 2 2 p 3 2 p 4 p 5 2 + 13500 p 1 p 2 2 p 3 p 4 2 p 5 2 + 2205 p 1 p 2 p 3 2 p 4 2 p 5 2 + 81 p 2 2 p 3 2 p 4 2 p 5 2 ) z 8 + 48620 p 1 p 2 2 p 3 2 p 4 2 p 5 2 z 9 + ( 81 p 1 2 p 2 2 p 3 2 p 4 2 p 5 2 + 2205 p 1 p 2 3 p 3 2 p 4 2 p 5 2 + 13500 p 1 p 2 2 p 3 3 p 4 2 p 5 2 + 22680 p 1 p 2 2 p 3 2 p 4 3 p 5 2 + 5292 p 1 p 2 2 p 3 2 p 4 2 p 5 3 ) z 10 + ( 288 p 1 2 p 2 3 p 3 2 p 4 2 p 5 2 + 4320 p 1 p 2 3 p 3 3 p 4 2 p 5 2 + 15120 p 1 p 2 2 p 3 3 p 4 3 p 5 2 + 12096 p 1 p 2 2 p 3 2 p 4 3 p 5 3 ) z 11 + ( 588 p 1 2 p 2 3 p 3 3 p 4 2 p 5 2 + 5250 p 1 p 2 3 p 3 3 p 4 3 p 5 2 + 10206 p 1 p 2 2 p 3 3 p 4 3 p 5 3 + 2520 p 1 p 2 2 p 3 2 p 4 3 p 5 4 ) z 12 + ( 756 p 1 2 p 2 3 p 3 3 p 4 3 p 5 2 + 4032 p 1 p 2 3 p 3 3 p 4 3 p 5 3 + 3780 p 1 p 2 2 p 3 3 p 4 3 p 5 4 ) z 13 + ( 630 p 1 2 p 2 3 p 3 3 p 4 3 p 5 3 + 1890 p 1 p 2 3 p 3 3 p 4 3 p 5 4 + 540 p 1 p 2 2 p 3 3 p 4 4 p 5 4 ) z 14 + ( 336 p 1 2 p 2 3 p 3 3 p 4 3 p 5 4 + 480 p 1 p 2 3 p 3 3 p 4 4 p 5 4 ) z 15 + ( 108 p 1 2 p 2 3 p 3 3 p 4 4 p 5 4 + 45 p 1 p 2 3 p 3 4 p 4 4 p 5 4 ) z 16 + 18 p 1 2 p 2 3 p 3 4 p 4 4 p 5 4 z 17 + p 1 2 p 2 4 p 3 4 p 4 4 p 5 4 z 18
H 3 =
1 + 24 p 3 z + ( 108 p 2 p 3 + 168 p 3 p 4 ) z 2 + ( 120 p 1 p 2 p 3 + 1344 p 2 p 3 p 4 + 560 p 3 p 4 p 5 ) z 3 + ( 1890 p 1 p 2 p 3 p 4 + 2016 p 2 p 3 2 p 4 + 5670 p 2 p 3 p 4 p 5 + 1050 p 3 p 4 p 5 2 ) z 4 + ( 5040 p 1 p 2 p 3 2 p 4 + 9072 p 1 p 2 p 3 p 4 p 5 + 15120 p 2 p 3 2 p 4 p 5 + 12096 p 2 p 3 p 4 p 5 2 + 1176 p 3 p 4 2 p 5 2 ) z 5 + ( 2520 p 1 p 2 2 p 3 2 p 4 + 43008 p 1 p 2 p 3 2 p 4 p 5 + 11760 p 2 p 3 2 p 4 2 p 5 + 21000 p 1 p 2 p 3 p 4 p 5 2 + 40824 p 2 p 3 2 p 4 p 5 2 + 14700 p 2 p 3 p 4 2 p 5 2 + 784 p 3 2 p 4 2 p 5 2 ) z 6 + ( 27216 p 1 p 2 2 p 3 2 p 4 p 5 + 42336 p 1 p 2 p 3 2 p 4 2 p 5 + 126000 p 1 p 2 p 3 2 p 4 p 5 2 + 27000 p 1 p 2 p 3 p 4 2 p 5 2 + 123552 p 2 p 3 2 p 4 2 p 5 2 ) z 7 + ( 47628 p 1 p 2 2 p 3 2 p 4 2 p 5 + 90720 p 1 p 2 2 p 3 2 p 4 p 5 2 + 424710 p 1 p 2 p 3 2 p 4 2 p 5 2 + 3969 p 2 2 p 3 2 p 4 2 p 5 2 + 43200 p 2 p 3 3 p 4 2 p 5 2 + 98784 p 2 p 3 2 p 4 3 p 5 2 + 26460 p 2 p 3 2 p 4 2 p 5 3 ) z 8 + ( 14112 p 1 p 2 2 p 3 3 p 4 2 p 5 + 434720 p 1 p 2 2 p 3 2 p 4 2 p 5 2 + 147000 p 1 p 2 p 3 3 p 4 2 p 5 2 + 17496 p 2 2 p 3 3 p 4 2 p 5 2 + 408240 p 1 p 2 p 3 2 p 4 3 p 5 2 + 86016 p 2 p 3 3 p 4 3 p 5 2 + 117600 p 1 p 2 p 3 2 p 4 2 p 5 3 + 82320 p 2 p 3 2 p 4 3 p 5 3 ) z 9 + ( 1296 p 1 2 p 2 2 p 3 2 p 4 2 p 5 2 + 291720 p 1 p 2 2 p 3 3 p 4 2 p 5 2 + 567000 p 1 p 2 2 p 3 2 p 4 3 p 5 2 + 370440 p 1 p 2 p 3 3 p 4 3 p 5 2 + 37800 p 2 2 p 3 3 p 4 3 p 5 2 + 190512 p 1 p 2 2 p 3 2 p 4 2 p 5 3 + 387072 p 1 p 2 p 3 2 p 4 3 p 5 3 + 90720 p 2 p 3 3 p 4 3 p 5 3 + 24696 p 2 p 3 2 p 4 3 p 5 4 ) z 10 + ( 10584 p 1 2 p 2 2 p 3 3 p 4 2 p 5 2 + 52920 p 1 p 2 3 p 3 3 p 4 2 p 5 2 + 960960 p 1 p 2 2 p 3 3 p 4 3 p 5 2 + 127008 p 1 p 2 2 p 3 3 p 4 2 p 5 3 + 680400 p 1 p 2 2 p 3 2 p 4 3 p 5 3 + 444528 p 1 p 2 p 3 3 p 4 3 p 5 3 + 45360 p 2 2 p 3 3 p 4 3 p 5 3 + 126000 p 1 p 2 p 3 2 p 4 3 p 5 4 + 48384 p 2 p 3 3 p 4 3 p 5 4 ) z 11 + ( 9408 p 1 2 p 2 3 p 3 3 p 4 2 p 5 2 + 30618 p 1 2 p 2 2 p 3 3 p 4 3 p 5 2 + 257250 p 1 p 2 3 p 3 3 p 4 3 p 5 2 + 252000 p 1 p 2 2 p 3 4 p 4 3 p 5 2 + 1605604 p 1 p 2 2 p 3 3 p 4 3 p 5 3 + 252000 p 1 p 2 2 p 3 2 p 4 3 p 5 4 + 257250 p 1 p 2 p 3 3 p 4 3 p 5 4 + 30618 p 2 2 p 3 3 p 4 3 p 5 4 + 9408 p 2 p 3 3 p 4 4 p 5 4 ) z 12 + ( 48384 p 1 2 p 2 3 p 3 3 p 4 3 p 5 2 + 126000 p 1 p 2 3 p 3 4 p 4 3 p 5 2 + 45360 p 1 2 p 2 2 p 3 3 p 4 3 p 5 3 + 444528 p 1 p 2 3 p 3 3 p 4 3 p 5 3 + 680400 p 1 p 2 2 p 3 4 p 4 3 p 5 3 + 127008 p 1 p 2 2 p 3 3 p 4 4 p 5 3 + 960960 p 1 p 2 2 p 3 3 p 4 3 p 5 4 + 52920 p 1 p 2 p 3 3 p 4 4 p 5 4 + 10584 p 2 2 p 3 3 p 4 4 p 5 4 ) z 13 + ( 24696 p 1 2 p 2 3 p 3 4 p 4 3 p 5 2 + 90720 p 1 2 p 2 3 p 3 3 p 4 3 p 5 3 + 387072 p 1 p 2 3 p 3 4 p 4 3 p 5 3 + 190512 p 1 p 2 2 p 3 4 p 4 4 p 5 3 + 37800 p 1 2 p 2 2 p 3 3 p 4 3 p 5 4 + 370440 p 1 p 2 3 p 3 3 p 4 3 p 5 4 + 567000 p 1 p 2 2 p 3 4 p 4 3 p 5 4 + 291720 p 1 p 2 2 p 3 3 p 4 4 p 5 4 + 1296 p 2 2 p 3 4 p 4 4 p 5 4 ) z 14 + ( 82320 p 1 2 p 2 3 p 3 4 p 4 3 p 5 3 + 117600 p 1 p 2 3 p 3 4 p 4 4 p 5 3 + 86016 p 1 2 p 2 3 p 3 3 p 4 3 p 5 4 + 408240 p 1 p 2 3 p 3 4 p 4 3 p 5 4 + 17496 p 1 2 p 2 2 p 3 3 p 4 4 p 5 4 + 147000 p 1 p 2 3 p 3 3 p 4 4 p 5 4 + 434720 p 1 p 2 2 p 3 4 p 4 4 p 5 4 + 14112 p 1 p 2 2 p 3 3 p 4 4 p 5 5 ) z 15 + ( 26460 p 1 2 p 2 3 p 3 4 p 4 4 p 5 3 + 98784 p 1 2 p 2 3 p 3 4 p 4 3 p 5 4 + 43200 p 1 2 p 2 3 p 3 3 p 4 4 p 5 4 + 3969 p 1 2 p 2 2 p 3 4 p 4 4 p 5 4 + 424710 p 1 p 2 3 p 3 4 p 4 4 p 5 4 + 90720 p 1 p 2 2 p 3 4 p 4 5 p 5 4 + 47628 p 1 p 2 2 p 3 4 p 4 4 p 5 5 ) z 16 + ( 123552 p 1 2 p 2 3 p 3 4 p 4 4 p 5 4 + 27000 p 1 p 2 3 p 3 5 p 4 4 p 5 4 + 126000 p 1 p 2 3 p 3 4 p 4 5 p 5 4 + 42336 p 1 p 2 3 p 3 4 p 4 4 p 5 5 + 27216 p 1 p 2 2 p 3 4 p 4 5 p 5 5 ) z 17 + ( 784 p 1 2 p 2 4 p 3 4 p 4 4 p 5 4 + 14700 p 1 2 p 2 3 p 3 5 p 4 4 p 5 4 + 40824 p 1 2 p 2 3 p 3 4 p 4 5 p 5 4 + 21000 p 1 p 2 3 p 3 5 p 4 5 p 5 4 + 11760 p 1 2 p 2 3 p 3 4 p 4 4 p 5 5 + 43008 p 1 p 2 3 p 3 4 p 4 5 p 5 5 + 2520 p 1 p 2 2 p 3 4 p 4 5 p 5 6 ) z 18 + ( 1176 p 1 2 p 2 4 p 3 5 p 4 4 p 5 4 + 12096 p 1 2 p 2 3 p 3 5 p 4 5 p 5 4 + 15120 p 1 2 p 2 3 p 3 4 p 4 5 p 5 5 + 9072 p 1 p 2 3 p 3 5 p 4 5 p 5 5 + 5040 p 1 p 2 3 p 3 4 p 4 5 p 5 6 ) z 19 + ( 1050 p 1 2 p 2 4 p 3 5 p 4 5 p 5 4 + 5670 p 1 2 p 2 3 p 3 5 p 4 5 p 5 5 + 2016 p 1 2 p 2 3 p 3 4 p 4 5 p 5 6 + 1890 p 1 p 2 3 p 3 5 p 4 5 p 5 6 ) z 20 + ( 560 p 1 2 p 2 4 p 3 5 p 4 5 p 5 5 + 1344 p 1 2 p 2 3 p 3 5 p 4 5 p 5 6 + 120 p 1 p 2 3 p 3 5 p 4 6 p 5 6 ) z 21 + ( 168 p 1 2 p 2 4 p 3 5 p 4 5 p 5 6 + 108 p 1 2 p 2 3 p 3 5 p 4 6 p 5 6 ) z 22 + 24 p 1 2 p 2 4 p 3 5 p 4 6 p 5 6 z 23 + p 1 2 p 2 4 p 3 6 p 4 6 p 5 6 z 24
H 4 =
1 + 28 p 4 z + ( 168 p 3 p 4 + 210 p 4 p 5 ) z 2 + ( 336 p 2 p 3 p 4 + 2240 p 3 p 4 p 5 + 700 p 4 p 5 2 ) z 3 + ( 210 p 1 p 2 p 3 p 4 + 5670 p 2 p 3 p 4 p 5 + 3920 p 3 p 4 2 p 5 + 9450 p 3 p 4 p 5 2 + 1225 p 4 2 p 5 2 ) z 4 + ( 4032 p 1 p 2 p 3 p 4 p 5 + 17640 p 2 p 3 p 4 2 p 5 + 27216 p 2 p 3 p 4 p 5 2 + 49392 p 3 p 4 2 p 5 2 ) z 5 + ( 15876 p 1 p 2 p 3 p 4 2 p 5 + 11760 p 2 p 3 2 p 4 2 p 5 + 21000 p 1 p 2 p 3 p 4 p 5 2 + 209916 p 2 p 3 p 4 2 p 5 2 + 19600 p 3 2 p 4 2 p 5 2 + 74088 p 3 p 4 3 p 5 2 + 24500 p 3 p 4 2 p 5 3 ) z 6 + ( 18816 p 1 p 2 p 3 2 p 4 2 p 5 + 195120 p 1 p 2 p 3 p 4 2 p 5 2 + 202176 p 2 p 3 2 p 4 2 p 5 2 + 411600 p 2 p 3 p 4 3 p 5 2 + 87808 p 3 2 p 4 3 p 5 2 + 158760 p 2 p 3 p 4 2 p 5 3 + 109760 p 3 p 4 3 p 5 3 ) z 7 + ( 5292 p 1 p 2 2 p 3 2 p 4 2 p 5 + 277830 p 1 p 2 p 3 2 p 4 2 p 5 2 + 35721 p 2 2 p 3 2 p 4 2 p 5 2 + 425250 p 1 p 2 p 3 p 4 3 p 5 2 + 961632 p 2 p 3 2 p 4 3 p 5 2 + 176400 p 1 p 2 p 3 p 4 2 p 5 3 + 238140 p 2 p 3 2 p 4 2 p 5 3 + 771750 p 2 p 3 p 4 3 p 5 3 + 164640 p 3 2 p 4 3 p 5 3 + 51450 p 3 p 4 3 p 5 4 ) z 8 + ( 109760 p 1 p 2 2 p 3 2 p 4 2 p 5 2 + 1292760 p 1 p 2 p 3 2 p 4 3 p 5 2 + 308700 p 2 2 p 3 2 p 4 3 p 5 2 + 537600 p 2 p 3 3 p 4 3 p 5 2 + 470400 p 1 p 2 p 3 2 p 4 2 p 5 3 + 907200 p 1 p 2 p 3 p 4 3 p 5 3 + 2731680 p 2 p 3 2 p 4 3 p 5 3 + 411600 p 2 p 3 p 4 3 p 5 4 + 137200 p 3 2 p 4 3 p 5 4 ) z 9 + ( 7056 p 1 2 p 2 2 p 3 2 p 4 2 p 5 2 + 666680 p 1 p 2 2 p 3 2 p 4 3 p 5 2 + 1029000 p 1 p 2 p 3 3 p 4 3 p 5 2 + 340200 p 2 2 p 3 3 p 4 3 p 5 2 + 190512 p 1 p 2 2 p 3 2 p 4 2 p 5 3 + 4484844 p 1 p 2 p 3 2 p 4 3 p 5 3 + 833490 p 2 2 p 3 2 p 4 3 p 5 3 + 2268000 p 2 p 3 3 p 4 3 p 5 3 + 576240 p 2 p 3 2 p 4 4 p 5 3 + 525000 p 1 p 2 p 3 p 4 3 p 5 4 + 2163672 p 2 p 3 2 p 4 3 p 5 4 + 38416 p 3 2 p 4 4 p 5 4 ) z 10 + ( 81648 p 1 2 p 2 2 p 3 2 p 4 3 p 5 2 + 1132320 p 1 p 2 2 p 3 3 p 4 3 p 5 2 + 2621472 p 1 p 2 2 p 3 2 p 4 3 p 5 3 + 4939200 p 1 p 2 p 3 3 p 4 3 p 5 3 + 1632960 p 2 2 p 3 3 p 4 3 p 5 3 + 1524096 p 1 p 2 p 3 2 p 4 4 p 5 3 + 1128960 p 2 p 3 3 p 4 4 p 5 3 + 3591000 p 1 p 2 p 3 2 p 4 3 p 5 4 + 1000188 p 2 2 p 3 2 p 4 3 p 5 4 + 2721600 p 2 p 3 3 p 4 3 p 5 4 + 1100736 p 2 p 3 2 p 4 4 p 5 4 ) z 11 + ( 166698 p 1 2 p 2 2 p 3 3 p 4 3 p 5 2 + 257250 p 1 p 2 3 p 3 3 p 4 3 p 5 2 + 272160 p 1 2 p 2 2 p 3 2 p 4 3 p 5 3 + 6419812 p 1 p 2 2 p 3 3 p 4 3 p 5 3 + 1190700 p 1 p 2 2 p 3 2 p 4 4 p 5 3 + 3111696 p 1 p 2 p 3 3 p 4 4 p 5 3 + 882000 p 2 2 p 3 3 p 4 4 p 5 3 + 2666720 p 1 p 2 2 p 3 2 p 4 3 p 5 4 + 6431250 p 1 p 2 p 3 3 p 4 3 p 5 4 + 2480058 p 2 2 p 3 3 p 4 3 p 5 4 + 2500470 p 1 p 2 p 3 2 p 4 4 p 5 4 + 540225 p 2 2 p 3 2 p 4 4 p 5 4 + 3358656 p 2 p 3 3 p 4 4 p 5 4 + 144060 p 2 p 3 2 p 4 4 p 5 5 ) z 12 + ( 65856 p 1 2 p 2 3 p 3 3 p 4 3 p 5 2 + 987840 p 1 2 p 2 2 p 3 3 p 4 3 p 5 3 + 1778112 p 1 p 2 3 p 3 3 p 4 3 p 5 3 + 5551504 p 1 p 2 2 p 3 3 p 4 4 p 5 3 + 403200 p 1 2 p 2 2 p 3 2 p 4 3 p 5 4 + 10190880 p 1 p 2 2 p 3 3 p 4 3 p 5 4 + 2744000 p 1 p 2 2 p 3 2 p 4 4 p 5 4 + 9560880 p 1 p 2 p 3 3 p 4 4 p 5 4 + 4000752 p 2 2 p 3 3 p 4 4 p 5 4 + 1053696 p 2 p 3 3 p 4 5 p 5 4 + 470400 p 1 p 2 p 3 2 p 4 4 p 5 5 + 635040 p 2 p 3 3 p 4 4 p 5 5 ) z 13 + ( 493920 p 1 2 p 2 3 p 3 3 p 4 3 p 5 3 + 714420 p 1 2 p 2 2 p 3 3 p 4 4 p 5 3 + 2160900 p 1 p 2 3 p 3 3 p 4 4 p 5 3 + 529200 p 1 p 2 2 p 3 4 p 4 4 p 5 3 + 1852200 p 1 2 p 2 2 p 3 3 p 4 3 p 5 4 + 3333960 p 1 p 2 3 p 3 3 p 4 3 p 5 4 + 291600 p 1 2 p 2 2 p 3 2 p 4 4 p 5 4 + 21364200 p 1 p 2 2 p 3 3 p 4 4 p 5 4 + 291600 p 2 2 p 3 4 p 4 4 p 5 4 + 3333960 p 1 p 2 p 3 3 p 4 5 p 5 4 + 1852200 p 2 2 p 3 3 p 4 5 p 5 4 + 529200 p 1 p 2 2 p 3 2 p 4 4 p 5 5 + 2160900 p 1 p 2 p 3 3 p 4 4 p 5 5 + 714420 p 2 2 p 3 3 p 4 4 p 5 5 + 493920 p 2 p 3 3 p 4 5 p 5 5 ) z 14 + ( 635040 p 1 2 p 2 3 p 3 3 p 4 4 p 5 3 + 470400 p 1 p 2 3 p 3 4 p 4 4 p 5 3 + 1053696 p 1 2 p 2 3 p 3 3 p 4 3 p 5 4 + 4000752 p 1 2 p 2 2 p 3 3 p 4 4 p 5 4 + 9560880 p 1 p 2 3 p 3 3 p 4 4 p 5 4 + 2744000 p 1 p 2 2 p 3 4 p 4 4 p 5 4 + 10190880 p 1 p 2 2 p 3 3 p 4 5 p 5 4 + 403200 p 2 2 p 3 4 p 4 5 p 5 4 + 5551504 p 1 p 2 2 p 3 3 p 4 4 p 5 5 + 1778112 p 1 p 2 p 3 3 p 4 5 p 5 5 + 987840 p 2 2 p 3 3 p 4 5 p 5 5 + 65856 p 2 p 3 3 p 4 5 p 5 6 ) z 15 + ( 144060 p 1 2 p 2 3 p 3 4 p 4 4 p 5 3 + 3358656 p 1 2 p 2 3 p 3 3 p 4 4 p 5 4 + 540225 p 1 2 p 2 2 p 3 4 p 4 4 p 5 4 + 2500470 p 1 p 2 3 p 3 4 p 4 4 p 5 4 + 2480058 p 1 2 p 2 2 p 3 3 p 4 5 p 5 4 + 6431250 p 1 p 2 3 p 3 3 p 4 5 p 5 4 + 2666720 p 1 p 2 2 p 3 4 p 4 5 p 5 4 + 882000 p 1 2 p 2 2 p 3 3 p 4 4 p 5 5 + 3111696 p 1 p 2 3 p 3 3 p 4 4 p 5 5 + 1190700 p 1 p 2 2 p 3 4 p 4 4 p 5 5 + 6419812 p 1 p 2 2 p 3 3 p 4 5 p 5 5 + 272160 p 2 2 p 3 4 p 4 5 p 5 5 + 257250 p 1 p 2 p 3 3 p 4 5 p 5 6 + 166698 p 2 2 p 3 3 p 4 5 p 5 6 ) z 16 + ( 1100736 p 1 2 p 2 3 p 3 4 p 4 4 p 5 4 + 2721600 p 1 2 p 2 3 p 3 3 p 4 5 p 5 4 + 1000188 p 1 2 p 2 2 p 3 4 p 4 5 p 5 4 + 3591000 p 1 p 2 3 p 3 4 p 4 5 p 5 4 + 1128960 p 1 2 p 2 3 p 3 3 p 4 4 p 5 5 + 1524096 p 1 p 2 3 p 3 4 p 4 4 p 5 5 + 1632960 p 1 2 p 2 2 p 3 3 p 4 5 p 5 5 + 4939200 p 1 p 2 3 p 3 3 p 4 5 p 5 5 + 2621472 p 1 p 2 2 p 3 4 p 4 5 p 5 5 + 1132320 p 1 p 2 2 p 3 3 p 4 5 p 5 6 + 81648 p 2 2 p 3 4 p 4 5 p 5 6 ) z 17 + ( 38416 p 1 2 p 2 4 p 3 4 p 4 4 p 5 4 + 2163672 p 1 2 p 2 3 p 3 4 p 4 5 p 5 4 + 525000 p 1 p 2 3 p 3 5 p 4 5 p 5 4 + 576240 p 1 2 p 2 3 p 3 4 p 4 4 p 5 5 + 2268000 p 1 2 p 2 3 p 3 3 p 4 5 p 5 5 + 833490 p 1 2 p 2 2 p 3 4 p 4 5 p 5 5 + 4484844 p 1 p 2 3 p 3 4 p 4 5 p 5 5 + 190512 p 1 p 2 2 p 3 4 p 4 6 p 5 5 + 340200 p 1 2 p 2 2 p 3 3 p 4 5 p 5 6 + 1029000 p 1 p 2 3 p 3 3 p 4 5 p 5 6 + 666680 p 1 p 2 2 p 3 4 p 4 5 p 5 6 + 7056 p 2 2 p 3 4 p 4 6 p 5 6 ) z 18 + ( 137200 p 1 2 p 2 4 p 3 4 p 4 5 p 5 4 + 411600 p 1 2 p 2 3 p 3 5 p 4 5 p 5 4 + 2731680 p 1 2 p 2 3 p 3 4 p 4 5 p 5 5 + 907200 p 1 p 2 3 p 3 5 p 4 5 p 5 5 + 470400 p 1 p 2 3 p 3 4 p 4 6 p 5 5 + 537600 p 1 2 p 2 3 p 3 3 p 4 5 p 5 6 + 308700 p 1 2 p 2 2 p 3 4 p 4 5 p 5 6 + 1292760 p 1 p 2 3 p 3 4 p 4 5 p 5 6 + 109760 p 1 p 2 2 p 3 4 p 4 6 p 5 6 ) z 19 + ( 51450 p 1 2 p 2 4 p 3 5 p 4 5 p 5 4 + 164640 p 1 2 p 2 4 p 3 4 p 4 5 p 5 5 + 771750 p 1 2 p 2 3 p 3 5 p 4 5 p 5 5 + 238140 p 1 2 p 2 3 p 3 4 p 4 6 p 5 5 + 176400 p 1 p 2 3 p 3 5 p 4 6 p 5 5 + 961632 p 1 2 p 2 3 p 3 4 p 4 5 p 5 6 + 425250 p 1 p 2 3 p 3 5 p 4 5 p 5 6 + 35721 p 1 2 p 2 2 p 3 4 p 4 6 p 5 6 + 277830 p 1 p 2 3 p 3 4 p 4 6 p 5 6 + 5292 p 1 p 2 2 p 3 4 p 4 6 p 5 7 ) z 20 + ( 109760 p 1 2 p 2 4 p 3 5 p 4 5 p 5 5 + 158760 p 1 2 p 2 3 p 3 5 p 4 6 p 5 5 + 87808 p 1 2 p 2 4 p 3 4 p 4 5 p 5 6 + 411600 p 1 2 p 2 3 p 3 5 p 4 5 p 5 6 + 202176 p 1 2 p 2 3 p 3 4 p 4 6 p 5 6 + 195120 p 1 p 2 3 p 3 5 p 4 6 p 5 6 + 18816 p 1 p 2 3 p 3 4 p 4 6 p 5 7 ) z 21 + ( 24500 p 1 2 p 2 4 p 3 5 p 4 6 p 5 5 + 74088 p 1 2 p 2 4 p 3 5 p 4 5 p 5 6 + 19600 p 1 2 p 2 4 p 3 4 p 4 6 p 5 6 + 209916 p 1 2 p 2 3 p 3 5 p 4 6 p 5 6 + 21000 p 1 p 2 3 p 3 5 p 4 7 p 5 6 + 11760 p 1 2 p 2 3 p 3 4 p 4 6 p 5 7 + 15876 p 1 p 2 3 p 3 5 p 4 6 p 5 7 ) z 22 + ( 49392 p 1 2 p 2 4 p 3 5 p 4 6 p 5 6 + 27216 p 1 2 p 2 3 p 3 5 p 4 7 p 5 6 + 17640 p 1 2 p 2 3 p 3 5 p 4 6 p 5 7 + 4032 p 1 p 2 3 p 3 5 p 4 7 p 5 7 ) z 23 + ( 1225 p 1 2 p 2 4 p 3 6 p 4 6 p 5 6 + 9450 p 1 2 p 2 4 p 3 5 p 4 7 p 5 6 + 3920 p 1 2 p 2 4 p 3 5 p 4 6 p 5 7 + 5670 p 1 2 p 2 3 p 3 5 p 4 7 p 5 7 + 210 p 1 p 2 3 p 3 5 p 4 7 p 5 8 ) z 24 + ( 700 p 1 2 p 2 4 p 3 6 p 4 7 p 5 6 + 2240 p 1 2 p 2 4 p 3 5 p 4 7 p 5 7 + 336 p 1 2 p 2 3 p 3 5 p 4 7 p 5 8 ) z 25 + ( 210 p 1 2 p 2 4 p 3 6 p 4 7 p 5 7 + 168 p 1 2 p 2 4 p 3 5 p 4 7 p 5 8 ) z 26 + 28 p 1 2 p 2 4 p 3 6 p 4 7 p 5 8 z 27 + p 1 2 p 2 4 p 3 6 p 4 8 p 5 8 z 28
H 5 =
1 + 15 p 5 z + 105 p 4 p 5 z 2 + ( 280 p 3 p 4 p 5 + 175 p 4 p 5 2 ) z 3 + ( 315 p 2 p 3 p 4 p 5 + 1050 p 3 p 4 p 5 2 ) z 4 + ( 126 p 1 p 2 p 3 p 4 p 5 + 1701 p 2 p 3 p 4 p 5 2 + 1176 p 3 p 4 2 p 5 2 ) z 5 + ( 840 p 1 p 2 p 3 p 4 p 5 2 + 3675 p 2 p 3 p 4 2 p 5 2 + 490 p 3 p 4 2 p 5 3 ) z 6 + ( 2430 p 1 p 2 p 3 p 4 2 p 5 2 + 1800 p 2 p 3 2 p 4 2 p 5 2 + 2205 p 2 p 3 p 4 2 p 5 3 ) z 7 + ( 2205 p 1 p 2 p 3 2 p 4 2 p 5 2 + 1800 p 1 p 2 p 3 p 4 2 p 5 3 + 2430 p 2 p 3 2 p 4 2 p 5 3 ) z 8 + ( 490 p 1 p 2 2 p 3 2 p 4 2 p 5 2 + 3675 p 1 p 2 p 3 2 p 4 2 p 5 3 + 840 p 2 p 3 2 p 4 3 p 5 3 ) z 9 + ( 1176 p 1 p 2 2 p 3 2 p 4 2 p 5 3 + 1701 p 1 p 2 p 3 2 p 4 3 p 5 3 + 126 p 2 p 3 2 p 4 3 p 5 4 ) z 10 + ( 1050 p 1 p 2 2 p 3 2 p 4 3 p 5 3 + 315 p 1 p 2 p 3 2 p 4 3 p 5 4 ) z 11 + ( 175 p 1 p 2 2 p 3 3 p 4 3 p 5 3 + 280 p 1 p 2 2 p 3 2 p 4 3 p 5 4 ) z 12 + 105 p 1 p 2 2 p 3 3 p 4 3 p 5 4 z 13 + 15 p 1 p 2 2 p 3 3 p 4 4 p 5 4 z 14 + p 1 p 2 2 p 3 3 p 4 4 p 5 5 z 15
C 5 -case. For the Lie algebra C 5 s p ( 5 ) , we find
H 1 = 1 + 9 p 1 z + 36 p 1 p 2 z 2 + 84 p 1 p 2 p 3 z 3 + 126 p 1 p 2 p 3 p 4 z 4 + 126 p 1 p 2 p 3 p 4 p 5 z 5 + 84 p 1 p 2 p 3 p 4 2 p 5 z 6 + 36 p 1 p 2 p 3 2 p 4 2 p 5 z 7 + 9 p 1 p 2 2 p 3 2 p 4 2 p 5 z 8 + p 1 2 p 2 2 p 3 2 p 4 2 p 5 z 9 H 2 = 1 + 16 p 2 z + ( 36 p 1 p 2 + 84 p 2 p 3 ) z 2 + ( 336 p 1 p 2 p 3 + 224 p 2 p 3 p 4 ) z 3 + ( 336 p 1 p 2 2 p 3 + 1134 p 1 p 2 p 3 p 4 + 350 p 2 p 3 p 4 p 5 ) z 4 + ( 2016 p 1 p 2 2 p 3 p 4 + 2016 p 1 p 2 p 3 p 4 p 5 + 336 p 2 p 3 p 4 2 p 5 ) z 5 + ( 1176 p 1 p 2 2 p 3 2 p 4 + 4536 p 1 p 2 2 p 3 p 4 p 5 + 2100 p 1 p 2 p 3 p 4 2 p 5 + 196 p 2 p 3 2 p 4 2 p 5 ) z 6 + ( 4704 p 1 p 2 2 p 3 2 p 4 p 5 + 5376 p 1 p 2 2 p 3 p 4 2 p 5 + 1296 p 1 p 2 p 3 2 p 4 2 p 5 + 64 p 2 2 p 3 2 p 4 2 p 5 ) z 7 + 12870 p 1 p 2 2 p 3 2 p 4 2 p 5 z 8 + ( 64 p 1 2 p 2 2 p 3 2 p 4 2 p 5 + 1296 p 1 p 2 3 p 3 2 p 4 2 p 5 + 5376 p 1 p 2 2 p 3 3 p 4 2 p 5 + 4704 p 1 p 2 2 p 3 2 p 4 3 p 5 ) z 9 + ( 196 p 1 2 p 2 3 p 3 2 p 4 2 p 5 + 2100 p 1 p 2 3 p 3 3 p 4 2 p 5 + 4536 p 1 p 2 2 p 3 3 p 4 3 p 5 + 1176 p 1 p 2 2 p 3 2 p 4 3 p 5 2 ) z 10 + ( 336 p 1 2 p 2 3 p 3 3 p 4 2 p 5 + 2016 p 1 p 2 3 p 3 3 p 4 3 p 5 + 2016 p 1 p 2 2 p 3 3 p 4 3 p 5 2 ) z 11 + ( 350 p 1 2 p 2 3 p 3 3 p 4 3 p 5 + 1134 p 1 p 2 3 p 3 3 p 4 3 p 5 2 + 336 p 1 p 2 2 p 3 3 p 4 4 p 5 2 ) z 12 + ( 224 p 1 2 p 2 3 p 3 3 p 4 3 p 5 2 + 336 p 1 p 2 3 p 3 3 p 4 4 p 5 2 ) z 13 + ( 84 p 1 2 p 2 3 p 3 3 p 4 4 p 5 2 + 36 p 1 p 2 3 p 3 4 p 4 4 p 5 2 ) z 14 + 16 p 1 2 p 2 3 p 3 4 p 4 4 p 5 2 z 15 + p 1 2 p 2 4 p 3 4 p 4 4 p 5 2 z 16 H 3 = 1 + 21 p 3 z + ( 84 p 2 p 3 + 126 p 3 p 4 ) z 2 + ( 84 p 1 p 2 p 3 + 896 p 2 p 3 p 4 + 350 p 3 p 4 p 5 ) z 3 + ( 1134 p 1 p 2 p 3 p 4 + 1176 p 2 p 3 2 p 4 + 3150 p 2 p 3 p 4 p 5 + 525 p 3 p 4 2 p 5 ) z 4 + ( 2646 p 1 p 2 p 3 2 p 4 + 4536 p 1 p 2 p 3 p 4 p 5 + 7350 p 2 p 3 2 p 4 p 5 + 5376 p 2 p 3 p 4 2 p 5 + 441 p 3 2 p 4 2 p 5 ) z 5 + ( 1176 p 1 p 2 2 p 3 2 p 4 + 18816 p 1 p 2 p 3 2 p 4 p 5 + 8400 p 1 p 2 p 3 p 4 2 p 5 + 25872 p 2 p 3 2 p 4 2 p 5 ) z 6 + ( 10584 p 1 p 2 2 p 3 2 p 4 p 5 + 68112 p 1 p 2 p 3 2 p 4 2 p 5 + 2304 p 2 2 p 3 2 p 4 2 p 5 + 16464 p 2 p 3 3 p 4 2 p 5 + 18816 p 2 p 3 2 p 4 3 p 5 ) z 7 + ( 48510 p 1 p 2 2 p 3 2 p 4 2 p 5 + 48384 p 1 p 2 p 3 3 p 4 2 p 5 + 8400 p 2 2 p 3 3 p 4 2 p 5 + 66150 p 1 p 2 p 3 2 p 4 3 p 5 + 24696 p 2 p 3 3 p 4 3 p 5 + 7350 p 2 p 3 2 p 4 3 p 5 2 ) z 8 + ( 784 p 1 2 p 2 2 p 3 2 p 4 2 p 5 + 65142 p 1 p 2 2 p 3 3 p 4 2 p 5 + 75264 p 1 p 2 2 p 3 2 p 4 3 p 5 + 91854 p 1 p 2 p 3 3 p 4 3 p 5 + 14336 p 2 2 p 3 3 p 4 3 p 5 + 29400 p 1 p 2 p 3 2 p 4 3 p 5 2 + 17150 p 2 p 3 3 p 4 3 p 5 2 ) z 9 + ( 5376 p 1 2 p 2 2 p 3 3 p 4 2 p 5 + 18900 p 1 p 2 3 p 3 3 p 4 2 p 5 + 196812 p 1 p 2 2 p 3 3 p 4 3 p 5 + 42336 p 1 p 2 2 p 3 2 p 4 3 p 5 2 + 72576 p 1 p 2 p 3 3 p 4 3 p 5 2 + 12600 p 2 2 p 3 3 p 4 3 p 5 2 + 4116 p 2 p 3 3 p 4 4 p 5 2 ) z 10 + ( 4116 p 1 2 p 2 3 p 3 3 p 4 2 p 5 + 12600 p 1 2 p 2 2 p 3 3 p 4 3 p 5 + 72576 p 1 p 2 3 p 3 3 p 4 3 p 5 + 42336 p 1 p 2 2 p 3 4 p 4 3 p 5 + 196812 p 1 p 2 2 p 3 3 p 4 3 p 5 2 + 18900 p 1 p 2 p 3 3 p 4 4 p 5 2 + 5376 p 2 2 p 3 3 p 4 4 p 5 2 ) z 11 + ( 17150 p 1 2 p 2 3 p 3 3 p 4 3 p 5 + 29400 p 1 p 2 3 p 3 4 p 4 3 p 5 + 14336 p 1 2 p 2 2 p 3 3 p 4 3 p 5 2 + 91854 p 1 p 2 3 p 3 3 p 4 3 p 5 2 + 75264 p 1 p 2 2 p 3 4 p 4 3 p 5 2 + 65142 p 1 p 2 2 p 3 3 p 4 4 p 5 2 + 784 p 2 2 p 3 4 p 4 4 p 5 2 ) z 12 + ( 7350 p 1 2 p 2 3 p 3 4 p 4 3 p 5 + 24696 p 1 2 p 2 3 p 3 3 p 4 3 p 5 2 + 66150 p 1 p 2 3 p 3 4 p 4 3 p 5 2 + 8400 p 1 2 p 2 2 p 3 3 p 4 4 p 5 2 + 48384 p 1 p 2 3 p 3 3 p 4 4 p 5 2 + 48510 p 1 p 2 2 p 3 4 p 4 4 p 5 2 ) z 13 + ( 18816 p 1 2 p 2 3 p 3 4 p 4 3 p 5 2 + 16464 p 1 2 p 2 3 p 3 3 p 4 4 p 5 2 + 2304 p 1 2 p 2 2 p 3 4 p 4 4 p 5 2 + 68112 p 1 p 2 3 p 3 4 p 4 4 p 5 2 + 10584 p 1 p 2 2 p 3 4 p 4 5 p 5 2 ) z 14 + ( 25872 p 1 2 p 2 3 p 3 4 p 4 4 p 5 2 + 8400 p 1 p 2 3 p 3 5 p 4 4 p 5 2 + 18816 p 1 p 2 3 p 3 4 p 4 5 p 5 2 + 1176 p 1 p 2 2 p 3 4 p 4 5 p 5 3 ) z 15 + ( 441 p 1 2 p 2 4 p 3 4 p 4 4 p 5 2 + 5376 p 1 2 p 2 3 p 3 5 p 4 4 p 5 2 + 7350 p 1 2 p 2 3 p 3 4 p 4 5 p 5 2 + 4536 p 1 p 2 3 p 3 5 p 4 5 p 5 2 + 2646 p 1 p 2 3 p 3 4 p 4 5 p 5 3 ) z 16 + ( 525 p 1 2 p 2 4 p 3 5 p 4 4 p 5 2 + 3150 p 1 2 p 2 3 p 3 5 p 4 5 p 5 2 + 1176 p 1 2 p 2 3 p 3 4 p 4 5 p 5 3 + 1134 p 1 p 2 3 p 3 5 p 4 5 p 5 3 ) z 17 + ( 350 p 1 2 p 2 4 p 3 5 p 4 5 p 5 2 + 896 p 1 2 p 2 3 p 3 5 p 4 5 p 5 3 + 84 p 1 p 2 3 p 3 5 p 4 6 p 5 3 ) z 18 + ( 126 p 1 2 p 2 4 p 3 5 p 4 5 p 5 3 + 84 p 1 2 p 2 3 p 3 5 p 4 6 p 5 3 ) z 19 + 21 p 1 2 p 2 4 p 3 5 p 4 6 p 5 3 z 20 + p 1 2 p 2 4 p 3 6 p 4 6 p 5 3 z 21 H 4 = 1 + 24 p 4 z + ( 126 p 3 p 4 + 150 p 4 p 5 ) z 2 + ( 224 p 2 p 3 p 4 + 1400 p 3 p 4 p 5 + 400 p 4 2 p 5 ) z 3 + ( 126 p 1 p 2 p 3 p 4 + 3150 p 2 p 3 p 4 p 5 + 7350 p 3 p 4 2 p 5 ) z 4 + ( 2016 p 1 p 2 p 3 p 4 p 5 + 20832 p 2 p 3 p 4 2 p 5 + 7056 p 3 2 p 4 2 p 5 + 12600 p 3 p 4 3 p 5 ) z 5 + ( 15288 p 1 p 2 p 3 p 4 2 p 5 + 29400 p 2 p 3 2 p 4 2 p 5 + 57344 p 2 p 3 p 4 3 p 5 + 23814 p 3 2 p 4 3 p 5 + 8750 p 3 p 4 3 p 5 2 ) z 6 + ( 22752 p 1 p 2 p 3 2 p 4 2 p 5 + 14400 p 2 2 p 3 2 p 4 2 p 5 + 50400 p 1 p 2 p 3 p 4 3 p 5 + 178752 p 2 p 3 2 p 4 3 p 5 + 50400 p 2 p 3 p 4 3 p 5 2 + 29400 p 3 2 p 4 3 p 5 2 ) z 7 + ( 16758 p 1 p 2 2 p 3 2 p 4 2 p 5 + 180900 p 1 p 2 p 3 2 p 4 3 p 5 + 98304 p 2 2 p 3 2 p 4 3 p 5 + 98784 p 2 p 3 3 p 4 3 p 5 + 50400 p 1 p 2 p 3 p 4 3 p 5 2 + 279300 p 2 p 3 2 p 4 3 p 5 2 + 11025 p 3 2 p 4 4 p 5 2 ) z 8 + ( 3136 p 1 2 p 2 2 p 3 2 p 4 2 p 5 + 143472 p 1 p 2 2 p 3 2 p 4 3 p 5 + 163296 p 1 p 2 p 3 3 p 4 3 p 5 + 89600 p 2 2 p 3 3 p 4 3 p 5 + 321600 p 1 p 2 p 3 2 p 4 3 p 5 2 + 194400 p 2 2 p 3 2 p 4 3 p 5 2 + 274400 p 2 p 3 3 p 4 3 p 5 2 + 117600 p 2 p 3 2 p 4 4 p 5 2 ) z 9 + ( 29400 p 1 2 p 2 2 p 3 2 p 4 3 p 5 + 233100 p 1 p 2 2 p 3 3 p 4 3 p 5 + 322812 p 1 p 2 2 p 3 2 p 4 3 p 5 2 + 516096 p 1 p 2 p 3 3 p 4 3 p 5 2 + 315000 p 2 2 p 3 3 p 4 3 p 5 2 + 142200 p 1 p 2 p 3 2 p 4 4 p 5 2 + 147456 p 2 2 p 3 2 p 4 4 p 5 2 + 255192 p 2 p 3 3 p 4 4 p 5 2 ) z 10 + ( 50400 p 1 2 p 2 2 p 3 3 p 4 3 p 5 + 50400 p 1 p 2 3 p 3 3 p 4 3 p 5 + 75264 p 1 2 p 2 2 p 3 2 p 4 3 p 5 2 + 932400 p 1 p 2 2 p 3 3 p 4 3 p 5 2 + 268128 p 1 p 2 2 p 3 2 p 4 4 p 5 2 + 550368 p 1 p 2 p 3 3 p 4 4 p 5 2 + 470400 p 2 2 p 3 3 p 4 4 p 5 2 + 98784 p 2 p 3 3 p 4 5 p 5 2 ) z 11 + ( 17150 p 1 2 p 2 3 p 3 3 p 4 3 p 5 + 229376 p 1 2 p 2 2 p 3 3 p 4 3 p 5 2 + 255150 p 1 p 2 3 p 3 3 p 4 3 p 5 2 + 78400 p 1 2 p 2 2 p 3 2 p 4 4 p 5 2 + 1544004 p 1 p 2 2 p 3 3 p 4 4 p 5 2 + 78400 p 2 2 p 3 4 p 4 4 p 5 2 + 255150 p 1 p 2 p 3 3 p 4 5 p 5 2 + 229376 p 2 2 p 3 3 p 4 5 p 5 2 + 17150 p 2 p 3 3 p 4 5 p 5 3 ) z 12 + ( 98784 p 1 2 p 2 3 p 3 3 p 4 3 p 5 2 + 470400 p 1 2 p 2 2 p 3 3 p 4 4 p 5 2 + 550368 p 1 p 2 3 p 3 3 p 4 4 p 5 2 + 268128 p 1 p 2 2 p 3 4 p 4 4 p 5 2 + 932400 p 1 p 2 2 p 3 3 p 4 5 p 5 2 + 75264 p 2 2 p 3 4 p 4 5 p 5 2 + 50400 p 1 p 2 p 3 3 p 4 5 p 5 3 + 50400 p 2 2 p 3 3 p 4 5 p 5 3 ) z 13 + ( 255192 p 1 2 p 2 3 p 3 3 p 4 4 p 5 2 + 147456 p 1 2 p 2 2 p 3 4 p 4 4 p 5 2 + 142200 p 1 p 2 3 p 3 4 p 4 4 p 5 2 + 315000 p 1 2 p 2 2 p 3 3 p 4 5 p 5 2 + 516096 p 1 p 2 3 p 3 3 p 4 5 p 5 2 + 322812 p 1 p 2 2 p 3 4 p 4 5 p 5 2 + 233100 p 1 p 2 2 p 3 3 p 4 5 p 5 3 + 29400 p 2 2 p 3 4 p 4 5 p 5 3 ) z 14 + ( 117600 p 1 2 p 2 3 p 3 4 p 4 4 p 5 2 + 274400 p 1 2 p 2 3 p 3 3 p 4 5 p 5 2 + 194400 p 1 2 p 2 2 p 3 4 p 4 5 p 5 2 + 321600 p 1 p 2 3 p 3 4 p 4 5 p 5 2 + 89600 p 1 2 p 2 2 p 3 3 p 4 5 p 5 3 + 163296 p 1 p 2 3 p 3 3 p 4 5 p 5 3 + 143472 p 1 p 2 2 p 3 4 p 4 5 p 5 3 + 3136 p 2 2 p 3 4 p 4 6 p 5 3 ) z 15 + ( 11025 p 1 2 p 2 4 p 3 4 p 4 4 p 5 2 + 279300 p 1 2 p 2 3 p 3 4 p 4 5 p 5 2 + 50400 p 1 p 2 3 p 3 5 p 4 5 p 5 2 + 98784 p 1 2 p 2 3 p 3 3 p 4 5 p 5 3 + 98304 p 1 2 p 2 2 p 3 4 p 4 5 p 5 3 + 180900 p 1 p 2 3 p 3 4 p 4 5 p 5 3 + 16758 p 1 p 2 2 p 3 4 p 4 6 p 5 3 ) z 16 + ( 29400 p 1 2 p 2 4 p 3 4 p 4 5 p 5 2 + 50400 p 1 2 p 2 3 p 3 5 p 4 5 p 5 2 + 178752 p 1 2 p 2 3 p 3 4 p 4 5 p 5 3 + 50400 p 1 p 2 3 p 3 5 p 4 5 p 5 3 + 14400 p 1 2 p 2 2 p 3 4 p 4 6 p 5 3 + 22752 p 1 p 2 3 p 3 4 p 4 6 p 5 3 ) z 17 + ( 8750 p 1 2 p 2 4 p 3 5 p 4 5 p 5 2 + 23814 p 1 2 p 2 4 p 3 4 p 4 5 p 5 3 + 57344 p 1 2 p 2 3 p 3 5 p 4 5 p 5 3 + 29400 p 1 2 p 2 3 p 3 4 p 4 6 p 5 3 + 15288 p 1 p 2 3 p 3 5 p 4 6 p 5 3 ) z 18 + ( 12600 p 1 2 p 2 4 p 3 5 p 4 5 p 5 3 + 7056 p 1 2 p 2 4 p 3 4 p 4 6 p 5 3 + 20832 p 1 2 p 2 3 p 3 5 p 4 6 p 5 3 + 2016 p 1 p 2 3 p 3 5 p 4 7 p 5 3 ) z 19 + ( 7350 p 1 2 p 2 4 p 3 5 p 4 6 p 5 3 + 3150 p 1 2 p 2 3 p 3 5 p 4 7 p 5 3 + 126 p 1 p 2 3 p 3 5 p 4 7 p 5 4 ) z 20 + ( 400 p 1 2 p 2 4 p 3 6 p 4 6 p 5 3 + 1400 p 1 2 p 2 4 p 3 5 p 4 7 p 5 3 + 224 p 1 2 p 2 3 p 3 5 p 4 7 p 5 4 ) z 21 + ( 150 p 1 2 p 2 4 p 3 6 p 4 7 p 5 3 + 126 p 1 2 p 2 4 p 3 5 p 4 7 p 5 4 ) z 22 + 24 p 1 2 p 2 4 p 3 6 p 4 7 p 5 4 z 23 + p 1 2 p 2 4 p 3 6 p 4 8 p 5 4 z 24 H 5 = 1 + 25 p 5 z + 300 p 4 p 5 z 2 + ( 700 p 3 p 4 p 5 + 1600 p 4 2 p 5 ) z 3 + ( 700 p 2 p 3 p 4 p 5 + 9450 p 3 p 4 2 p 5 + 2500 p 4 2 p 5 2 ) z 4 + ( 252 p 1 p 2 p 3 p 4 p 5 + 10752 p 2 p 3 p 4 2 p 5 + 15876 p 3 2 p 4 2 p 5 + 26250 p 3 p 4 2 p 5 2 ) z 5 + ( 4200 p 1 p 2 p 3 p 4 2 p 5 + 39200 p 2 p 3 2 p 4 2 p 5 + 37800 p 2 p 3 p 4 2 p 5 2 + 78400 p 3 2 p 4 2 p 5 2 + 17500 p 3 p 4 3 p 5 2 ) z 6 + ( 16200 p 1 p 2 p 3 2 p 4 2 p 5 + 25600 p 2 2 p 3 2 p 4 2 p 5 + 16800 p 1 p 2 p 3 p 4 2 p 5 2 + 245000 p 2 p 3 2 p 4 2 p 5 2 + 44800 p 2 p 3 p 4 3 p 5 2 + 132300 p 3 2 p 4 3 p 5 2 ) z 7 + ( 22050 p 1 p 2 2 p 3 2 p 4 2 p 5 + 115200 p 1 p 2 p 3 2 p 4 2 p 5 2 + 202500 p 2 2 p 3 2 p 4 2 p 5 2 + 25200 p 1 p 2 p 3 p 4 3 p 5 2 + 617400 p 2 p 3 2 p 4 3 p 5 2 + 99225 p 3 2 p 4 4 p 5 2 ) z 8 + ( 4900 p 1 2 p 2 2 p 3 2 p 4 2 p 5 + 198450 p 1 p 2 2 p 3 2 p 4 2 p 5 2 + 353400 p 1 p 2 p 3 2 p 4 3 p 5 2 + 691200 p 2 2 p 3 2 p 4 3 p 5 2 + 137200 p 2 p 3 3 p 4 3 p 5 2 + 627200 p 2 p 3 2 p 4 4 p 5 2 + 30625 p 3 2 p 4 4 p 5 3 ) z 9 + ( 50176 p 1 2 p 2 2 p 3 2 p 4 2 p 5 2 + 798504 p 1 p 2 2 p 3 2 p 4 3 p 5 2 + 145152 p 1 p 2 p 3 3 p 4 3 p 5 2 + 280000 p 2 2 p 3 3 p 4 3 p 5 2 + 405000 p 1 p 2 p 3 2 p 4 4 p 5 2 + 1048576 p 2 2 p 3 2 p 4 4 p 5 2 + 296352 p 2 p 3 3 p 4 4 p 5 2 + 245000 p 2 p 3 2 p 4 4 p 5 3 ) z 10 + ( 235200 p 1 2 p 2 2 p 3 2 p 4 3 p 5 2 + 491400 p 1 p 2 2 p 3 3 p 4 3 p 5 2 + 1411200 p 1 p 2 2 p 3 2 p 4 4 p 5 2 + 340200 p 1 p 2 p 3 3 p 4 4 p 5 2 + 1075200 p 2 2 p 3 3 p 4 4 p 5 2 + 180000 p 1 p 2 p 3 2 p 4 4 p 5 3 + 518400 p 2 2 p 3 2 p 4 4 p 5 3 + 205800 p 2 p 3 3 p 4 4 p 5 3 ) z 11 + ( 179200 p 1 2 p 2 2 p 3 3 p 4 3 p 5 2 + 56700 p 1 p 2 3 p 3 3 p 4 3 p 5 2 + 490000 p 1 2 p 2 2 p 3 2 p 4 4 p 5 2 + 2118900 p 1 p 2 2 p 3 3 p 4 4 p 5 2 + 313600 p 2 2 p 3 4 p 4 4 p 5 2 + 793800 p 1 p 2 2 p 3 2 p 4 4 p 5 3 + 268800 p 1 p 2 p 3 3 p 4 4 p 5 3 + 945000 p 2 2 p 3 3 p 4 4 p 5 3 + 34300 p 2 p 3 3 p 4 5 p 5 3 ) z 12 + ( 34300 p 1 2 p 2 3 p 3 3 p 4 3 p 5 2 + 945000 p 1 2 p 2 2 p 3 3 p 4 4 p 5 2 + 268800 p 1 p 2 3 p 3 3 p 4 4 p 5 2 + 793800 p 1 p 2 2 p 3 4 p 4 4 p 5 2 + 313600 p 1 2 p 2 2 p 3 2 p 4 4 p 5 3 + 2118900 p 1 p 2 2 p 3 3 p 4 4 p 5 3 + 490000 p 2 2 p 3 4 p 4 4 p 5 3 + 56700 p 1 p 2 p 3 3 p 4 5 p 5 3 + 179200 p 2 2 p 3 3 p 4 5 p 5 3 ) z 13 + ( 205800 p 1 2 p 2 3 p 3 3 p 4 4 p 5 2 + 518400 p 1 2 p 2 2 p 3 4 p 4 4 p 5 2 + 180000 p 1 p 2 3 p 3 4 p 4 4 p 5 2 + 1075200 p 1 2 p 2 2 p 3 3 p 4 4 p 5 3 + 340200 p 1 p 2 3 p 3 3 p 4 4 p 5 3 + 1411200 p 1 p 2 2 p 3 4 p 4 4 p 5 3 + 491400 p 1 p 2 2 p 3 3 p 4 5 p 5 3 + 235200 p 2 2 p 3 4 p 4 5 p 5 3 ) z 14 + ( 245000 p 1 2 p 2 3 p 3 4 p 4 4 p 5 2 + 296352 p 1 2 p 2 3 p 3 3 p 4 4 p 5 3 + 1048576 p 1 2 p 2 2 p 3 4 p 4 4 p 5 3 + 405000 p 1 p 2 3 p 3 4 p 4 4 p 5 3 + 280000 p 1 2 p 2 2 p 3 3 p 4 5 p 5 3 + 145152 p 1 p 2 3 p 3 3 p 4 5 p 5 3 + 798504 p 1 p 2 2 p 3 4 p 4 5 p 5 3 + 50176 p 2 2 p 3 4 p 4 6 p 5 3 ) z 15 + ( 30625 p 1 2 p 2 4 p 3 4 p 4 4 p 5 2 + 627200 p 1 2 p 2 3 p 3 4 p 4 4 p 5 3 + 137200 p 1 2 p 2 3 p 3 3 p 4 5 p 5 3 + 691200 p 1 2 p 2 2 p 3 4 p 4 5 p 5 3 + 353400 p 1 p 2 3 p 3 4 p 4 5 p 5 3 + 198450 p 1 p 2 2 p 3 4 p 4 6 p 5 3 + 4900 p 2 2 p 3 4 p 4 6 p 5 4 ) z 16 + ( 99225 p 1 2 p 2 4 p 3 4 p 4 4 p 5 3 + 617400 p 1 2 p 2 3 p 3 4 p 4 5 p 5 3 + 25200 p 1 p 2 3 p 3 5 p 4 5 p 5 3 + 202500 p 1 2 p 2 2 p 3 4 p 4 6 p 5 3 + 115200 p 1 p 2 3 p 3 4 p 4 6 p 5 3 + 22050 p 1 p 2 2 p 3 4 p 4 6 p 5 4 ) z 17 + ( 132300 p 1 2 p 2 4 p 3 4 p 4 5 p 5 3 + 44800 p 1 2 p 2 3 p 3 5 p 4 5 p 5 3 + 245000 p 1 2 p 2 3 p 3 4 p 4 6 p 5 3 + 16800 p 1 p 2 3 p 3 5 p 4 6 p 5 3 + 25600 p 1 2 p 2 2 p 3 4 p 4 6 p 5 4 + 16200 p 1 p 2 3 p 3 4 p 4 6 p 5 4 ) z 18 + ( 17500 p 1 2 p 2 4 p 3 5 p 4 5 p 5 3 + 78400 p 1 2 p 2 4 p 3 4 p 4 6 p 5 3 + 37800 p 1 2 p 2 3 p 3 5 p 4 6 p 5 3 + 39200 p 1 2 p 2 3 p 3 4 p 4 6 p 5 4 + 4200 p 1 p 2 3 p 3 5 p 4 6 p 5 4 ) z 19 + ( 26250 p 1 2 p 2 4 p 3 5 p 4 6 p 5 3 + 15876 p 1 2 p 2 4 p 3 4 p 4 6 p 5 4 + 10752 p 1 2 p 2 3 p 3 5 p 4 6 p 5 4 + 252 p 1 p 2 3 p 3 5 p 4 7 p 5 4 ) z 20 + ( 2500 p 1 2 p 2 4 p 3 6 p 4 6 p 5 3 + 9450 p 1 2 p 2 4 p 3 5 p 4 6 p 5 4 + 700 p 1 2 p 2 3 p 3 5 p 4 7 p 5 4 ) z 21 + ( 1600 p 1 2 p 2 4 p 3 6 p 4 6 p 5 4 + 700 p 1 2 p 2 4 p 3 5 p 4 7 p 5 4 ) z 22 + 300 p 1 2 p 2 4 p 3 6 p 4 7 p 5 4 z 23 + 25 p 1 2 p 2 4 p 3 6 p 4 8 p 5 4 z 24 + p 1 2 p 2 4 p 3 6 p 4 8 p 5 5 z 25
D 5 -case. For the Lie algebra D 5 s o ( 10 ) , we find the following polynomials
H 1 = 1 + 8 p 1 z + 28 p 1 p 2 z 2 + 56 p 1 p 2 p 3 z 3 + ( 35 p 1 p 2 p 3 p 4 + 35 p 1 p 2 p 3 p 5 ) z 4 + 56 p 1 p 2 p 3 p 4 p 5 z 5 + 28 p 1 p 2 p 3 2 p 4 p 5 z 6 + 8 p 1 p 2 2 p 3 2 p 4 p 5 z 7 + p 1 2 p 2 2 p 3 2 p 4 p 5 z 8 H 2 = 1 + 14 p 2 z + ( 28 p 1 p 2 + 63 p 2 p 3 ) z 2 + ( 224 p 1 p 2 p 3 + 70 p 2 p 3 p 4 + 70 p 2 p 3 p 5 ) z 3 + ( 196 p 1 p 2 2 p 3 + 315 p 1 p 2 p 3 p 4 + 315 p 1 p 2 p 3 p 5 + 175 p 2 p 3 p 4 p 5 ) z 4 + ( 490 p 1 p 2 2 p 3 p 4 + 490 p 1 p 2 2 p 3 p 5 + 896 p 1 p 2 p 3 p 4 p 5 + 126 p 2 p 3 2 p 4 p 5 ) z 5 + ( 245 p 1 p 2 2 p 3 2 p 4 + 245 p 1 p 2 2 p 3 2 p 5 + 1764 p 1 p 2 2 p 3 p 4 p 5 + 700 p 1 p 2 p 3 2 p 4 p 5 + 49 p 2 2 p 3 2 p 4 p 5 ) z 6 + 3432 p 1 p 2 2 p 3 2 p 4 p 5 z 7 + ( 49 p 1 2 p 2 2 p 3 2 p 4 p 5 + 700 p 1 p 2 3 p 3 2 p 4 p 5 + 1764 p 1 p 2 2 p 3 3 p 4 p 5 + 245 p 1 p 2 2 p 3 2 p 4 2 p 5 + 245 p 1 p 2 2 p 3 2 p 4 p 5 2 ) z 8 + ( 126 p 1 2 p 2 3 p 3 2 p 4 p 5 + 896 p 1 p 2 3 p 3 3 p 4 p 5 + 490 p 1 p 2 2 p 3 3 p 4 2 p 5 + 490 p 1 p 2 2 p 3 3 p 4 p 5 2 ) z 9 + ( 175 p 1 2 p 2 3 p 3 3 p 4 p 5 + 315 p 1 p 2 3 p 3 3 p 4 2 p 5 + 315 p 1 p 2 3 p 3 3 p 4 p 5 2 + 196 p 1 p 2 2 p 3 3 p 4 2 p 5 2 ) z 10 + ( 70 p 1 2 p 2 3 p 3 3 p 4 2 p 5 + 70 p 1 2 p 2 3 p 3 3 p 4 p 5 2 + 224 p 1 p 2 3 p 3 3 p 4 2 p 5 2 ) z 11 + ( 63 p 1 2 p 2 3 p 3 3 p 4 2 p 5 2 + 28 p 1 p 2 3 p 3 4 p 4 2 p 5 2 ) z 12 + 14 p 1 2 p 2 3 p 3 4 p 4 2 p 5 2 z 13 + p 1 2 p 2 4 p 3 4 p 4 2 p 5 2 z 14 H 3 = 1 + 18 p 3 z + ( 63 p 2 p 3 + 45 p 3 p 4 + 45 p 3 p 5 ) z 2 + ( 56 p 1 p 2 p 3 + 280 p 2 p 3 p 4 + 280 p 2 p 3 p 5 + 200 p 3 p 4 p 5 ) z 3 + ( 315 p 1 p 2 p 3 p 4 + 315 p 2 p 3 2 p 4 + 315 p 1 p 2 p 3 p 5 + 315 p 2 p 3 2 p 5 + 1575 p 2 p 3 p 4 p 5 + 225 p 3 2 p 4 p 5 ) z 4 + ( 630 p 1 p 2 p 3 2 p 4 + 630 p 1 p 2 p 3 2 p 5 + 2016 p 1 p 2 p 3 p 4 p 5 + 5292 p 2 p 3 2 p 4 p 5 ) z 5 + ( 245 p 1 p 2 2 p 3 2 p 4 + 245 p 1 p 2 2 p 3 2 p 5 + 9996 p 1 p 2 p 3 2 p 4 p 5 + 1225 p 2 2 p 3 2 p 4 p 5 + 5103 p 2 p 3 3 p 4 p 5 + 875 p 2 p 3 2 p 4 2 p 5 + 875 p 2 p 3 2 p 4 p 5 2 ) z 6 + ( 5616 p 1 p 2 2 p 3 2 p 4 p 5 + 12600 p 1 p 2 p 3 3 p 4 p 5 + 3528 p 2 2 p 3 3 p 4 p 5 + 2520 p 1 p 2 p 3 2 p 4 2 p 5 + 2520 p 2 p 3 3 p 4 2 p 5 + 2520 p 1 p 2 p 3 2 p 4 p 5 2 + 2520 p 2 p 3 3 p 4 p 5 2 ) z 7 + ( 441 p 1 2 p 2 2 p 3 2 p 4 p 5 + 17172 p 1 p 2 2 p 3 3 p 4 p 5 + 2205 p 1 p 2 2 p 3 2 p 4 2 p 5 + 7875 p 1 p 2 p 3 3 p 4 2 p 5 + 2205 p 2 2 p 3 3 p 4 2 p 5 + 2205 p 1 p 2 2 p 3 2 p 4 p 5 2 + 7875 p 1 p 2 p 3 3 p 4 p 5 2 + 2205 p 2 2 p 3 3 p 4 p 5 2 + 1575 p 2 p 3 3 p 4 2 p 5 2 ) z 8 + ( 2450 p 1 2 p 2 2 p 3 3 p 4 p 5 + 5600 p 1 p 2 3 p 3 3 p 4 p 5 + 16260 p 1 p 2 2 p 3 3 p 4 2 p 5 + 16260 p 1 p 2 2 p 3 3 p 4 p 5 2 + 5600 p 1 p 2 p 3 3 p 4 2 p 5 2 + 2450 p 2 2 p 3 3 p 4 2 p 5 2 ) z 9 + ( 1575 p 1 2 p 2 3 p 3 3 p 4 p 5 + 2205 p 1 2 p 2 2 p 3 3 p 4 2 p 5 + 7875 p 1 p 2 3 p 3 3 p 4 2 p 5 + 2205 p 1 p 2 2 p 3 4 p 4 2 p 5 + 2205 p 1 2 p 2 2 p 3 3 p 4 p 5 2 + 7875 p 1 p 2 3 p 3 3 p 4 p 5 2 + 2205 p 1 p 2 2 p 3 4 p 4 p 5 2 + 17172 p 1 p 2 2 p 3 3 p 4 2 p 5 2 + 441 p 2 2 p 3 4 p 4 2 p 5 2 ) z 10 + ( 2520 p 1 2 p 2 3 p 3 3 p 4 2 p 5 + 2520 p 1 p 2 3 p 3 4 p 4 2 p 5 + 2520 p 1 2 p 2 3 p 3 3 p 4 p 5 2 + 2520 p 1 p 2 3 p 3 4 p 4 p 5 2 + 3528 p 1 2 p 2 2 p 3 3 p 4 2 p 5 2 + 12600 p 1 p 2 3 p 3 3 p 4 2 p 5 2 + 5616 p 1 p 2 2 p 3 4 p 4 2 p 5 2 ) z 11 + ( 875 p 1 2 p 2 3 p 3 4 p 4 2 p 5 + 875 p 1 2 p 2 3 p 3 4 p 4 p 5 2 + 5103 p 1 2 p 2 3 p 3 3 p 4 2 p 5 2 + 1225 p 1 2 p 2 2 p 3 4 p 4 2 p 5 2 + 9996 p 1 p 2 3 p 3 4 p 4 2 p 5 2 + 245 p 1 p 2 2 p 3 4 p 4 3 p 5 2 + 245 p 1 p 2 2 p 3 4 p 4 2 p 5 3 ) z 12 + ( 5292 p 1 2 p 2 3 p 3 4 p 4 2 p 5 2 + 2016 p 1 p 2 3 p 3 5 p 4 2 p 5 2 + 630 p 1 p 2 3 p 3 4 p 4 3 p 5 2 + 630 p 1 p 2 3 p 3 4 p 4 2 p 5 3 ) z 13 + ( 225 p 1 2 p 2 4 p 3 4 p 4 2 p 5 2 + 1575 p 1 2 p 2 3 p 3 5 p 4 2 p 5 2 + 315 p 1 2 p 2 3 p 3 4 p 4 3 p 5 2 + 315 p 1 p 2 3 p 3 5 p 4 3 p 5 2 + 315 p 1 2 p 2 3 p 3 4 p 4 2 p 5 3 + 315 p 1 p 2 3 p 3 5 p 4 2 p 5 3 ) z 14 + ( 200 p 1 2 p 2 4 p 3 5 p 4 2 p 5 2 + 280 p 1 2 p 2 3 p 3 5 p 4 3 p 5 2 + 280 p 1 2 p 2 3 p 3 5 p 4 2 p 5 3 + 56 p 1 p 2 3 p 3 5 p 4 3 p 5 3 ) z 15 + ( 45 p 1 2 p 2 4 p 3 5 p 4 3 p 5 2 + 45 p 1 2 p 2 4 p 3 5 p 4 2 p 5 3 + 63 p 1 2 p 2 3 p 3 5 p 4 3 p 5 3 ) z 16 + 18 p 1 2 p 2 4 p 3 5 p 4 3 p 5 3 z 17 + p 1 2 p 2 4 p 3 6 p 4 3 p 5 3 z 18 H 4 = 1 + 10 p 4 z + 45 p 3 p 4 z 2 + ( 70 p 2 p 3 p 4 + 50 p 3 p 4 p 5 ) z 3 + ( 35 p 1 p 2 p 3 p 4 + 175 p 2 p 3 p 4 p 5 ) z 4 + ( 126 p 1 p 2 p 3 p 4 p 5 + 126 p 2 p 3 2 p 4 p 5 ) z 5 + ( 175 p 1 p 2 p 3 2 p 4 p 5 + 35 p 2 p 3 2 p 4 2 p 5 ) z 6 + ( 50 p 1 p 2 2 p 3 2 p 4 p 5 + 70 p 1 p 2 p 3 2 p 4 2 p 5 ) z 7 + 45 p 1 p 2 2 p 3 2 p 4 2 p 5 z 8 + 10 p 1 p 2 2 p 3 3 p 4 2 p 5 z 9 + p 1 p 2 2 p 3 3 p 4 2 p 5 2 z 10 H 5 = 1 + 10 p 5 z + 45 p 3 p 5 z 2 + ( 70 p 2 p 3 p 5 + 50 p 3 p 4 p 5 ) z 3 + ( 35 p 1 p 2 p 3 p 5 + 175 p 2 p 3 p 4 p 5 ) z 4 + ( 126 p 1 p 2 p 3 p 4 p 5 + 126 p 2 p 3 2 p 4 p 5 ) z 5 + ( 175 p 1 p 2 p 3 2 p 4 p 5 + 35 p 2 p 3 2 p 4 p 5 2 ) z 6 + ( 50 p 1 p 2 2 p 3 2 p 4 p 5 + 70 p 1 p 2 p 3 2 p 4 p 5 2 ) z 7 + 45 p 1 p 2 2 p 3 2 p 4 p 5 2 z 8 + 10 p 1 p 2 2 p 3 3 p 4 p 5 2 z 9 + p 1 p 2 2 p 3 3 p 4 2 p 5 2 z 10

References

  1. Melvin, M.A. Pure magnetic and electric geons. Phys. Lett. 1964, 8, 65–68. [Google Scholar] [CrossRef]
  2. Golubtsova, A.A.; Ivashchuk, V.D. On Multidimensional Analogs of Melvin’s Solution for Classical Series of Lie Algebras. Gravit. Cosmol. 2009, 15, 144–147. [Google Scholar] [CrossRef]
  3. Ivashchuk, V.D. Composite fluxbranes with general intersections. Class. Quantum Grav. 2002, 19, 3033–3048. [Google Scholar] [CrossRef]
  4. Bronnikov, K.A.; Shikin, G.N. On interacting fields in general relativity theory. Russ. Phys. J. 1977, 20, 1138–1143. [Google Scholar] [CrossRef]
  5. Gibbons, G.W.; Wiltshire, D.L. Spacetime as a membrane in higher dimensions. Nucl. Phys. B 1987, 287, 717–742. [Google Scholar] [CrossRef]
  6. Gibbons, G.; Maeda, K. Black holes and membranes in higher dimensional theories with dilaton fields. Nucl. Phys. B 1994, 298, 741–775. [Google Scholar] [CrossRef]
  7. Dowker, F.; Gauntlett, J.P.; Kastor, D.A.; Traschen, J. Pair creation of dilaton black holes. Phys. Rev. D 1994, 49, 2909–2917. [Google Scholar] [CrossRef] [PubMed]
  8. Dowker, H.F.; Gauntlett, J.P.; Gibbons, G.W.; Horowitz, G.T. Nucleation of P-branes and fundamental strings. Phys. Rev. D 1996, 53, 7115. [Google Scholar] [CrossRef] [PubMed]
  9. Gal’tsov, D.V.; Rytchkov, O.A. Generating branes via sigma models. Phys. Rev. D 1998, 58, 122001. [Google Scholar] [CrossRef]
  10. Chen, C.-M.; Gal’tsov, D.V.; Sharakin, S.A. Intersecting M-fluxbranes. Grav. Cosmol. 1999, 5, 45–48. [Google Scholar]
  11. Costa, M.S.; Gutperle, M. The Kaluza-Klein Melvin solution in M-theory. J. High Energy Phys. 2001, 103, 27. [Google Scholar] [CrossRef]
  12. Saffin, P.M. Fluxbranes from p-branes. Phys. Rev. D 2001, 64, 104008. [Google Scholar] [CrossRef]
  13. Gutperle, M.; Strominger, A. Fluxbranes in string theory. J. High Energy Phys. 2001, 106, 35. [Google Scholar] [CrossRef]
  14. Costa, M.S.; Herdeiro, C.A.; Cornalba, L. Flux-branes and the dielectric effect in string theory. Nucl. Phys. B 2001, 619, 155–190. [Google Scholar] [CrossRef]
  15. Emparan, R. Tubular branes in fluxbranes. Nucl. Phys. B 2001, 610, 169. [Google Scholar] [CrossRef]
  16. Figueroa-O’Farrill, J.M.; Papadopoulos, G. Homogeneous fluxes, branes and a maximally supersymmetric solution of M-theory. J. High Energy Phys. 2001, 8, 36. [Google Scholar] [CrossRef]
  17. Russo, J.G.; Tseytlin, A.A. Supersymmetric fluxbrane intersections and closed string tachyons. J. High Energy Phys. 2001, 11, 65. [Google Scholar] [CrossRef]
  18. Chen, C.M.; Gal’tsov, D.V.; Saffin, P.M. Supergravity fluxbranes in various dimensions. Phys. Rev. D 2002, 65, 084004. [Google Scholar] [CrossRef]
  19. Ivashchuk, V.D. On brane solutions with intersection rules related to Lie algebras. Symmetry 2017, 9, 155. [Google Scholar] [CrossRef]
  20. Fuchs, J.; Schweigert, C. Symmetries, Lie Algebras and Representations. A Graduate Course for Physicists; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
  21. Kostant, B. The solution to a generalized Toda lattice and representation theory. Adv. in Math. 1979, 34, 195–338. [Google Scholar] [CrossRef]
  22. Olshanetsky, M.A.; Perelomov, A.M. Explicit solutions of classical generalized Toda models. Invent. Math. 1979, 54, 261–269. [Google Scholar] [CrossRef]
  23. Ivashchuk, V.D. Black brane solutions governed by fluxbrane polynomials. J. Geom. Phys. 2014, 86, 101–111. [Google Scholar] [CrossRef]
  24. Bolokhov, S.V.; Ivashchuk, V.D. On generalized Melvin solutions for Lie algebras of rank 2. Grav. Cosmol. 2017, 23, 337–342. [Google Scholar] [CrossRef]
  25. Bolokhov, S.V.; Ivashchuk, V.D. On generalized Melvin solutions for Lie algebras of rank 3. Int. J. Geom. Methods Mod. Phys. 2018, 15, 1850108. [Google Scholar] [CrossRef]
  26. Bolokhov, S.V.; Ivashchuk, V.D. Duality Identities for Moduli Functions of Generalized Melvin Solutions Related to Classical Lie Algebras of Rank 4. Adv. in Math. Phys. 2018, 2018, 8179570. [Google Scholar] [CrossRef]
  27. Bolokhov, S.V.; Ivashchuk, V.D. On generalized Melvin solutions for Lie algebras of rank 4. Eur. Phys. J. Plus 2021, 136, 225. [Google Scholar] [CrossRef]
  28. Bolokhov, S.V.; Ivashchuk, V.D. On generalized Melvin solution for the Lie algebra E6. Eur. Phys. J. C 2017, 77, 664. [Google Scholar] [CrossRef]
  29. Ivashchuk, V.D. On flux integrals for generalized Melvin solution related to simple finite-dimensional Lie algebra. Eur. Phys. J. C 2017, 77, 653. [Google Scholar] [CrossRef]
  30. Davydov, E.A. Discreteness of dyonic dilaton black holes. Theor. Math. Phys. 2018, 197, 1663–1676. [Google Scholar]
  31. Zadora, A.; Gal’tsov, D.V.; Chen, C.M. Higher-n triangular dilatonic black holes. Phys. Lett. B 2018, 779, 249–256. [Google Scholar] [CrossRef]
  32. Abishev, M.E.; Ivashchuk, V.D.; Malybayev, A.N.; Toktarbay, S. Dyon-Like Black Hole Solutions in the Model with Two Abelian Gauge Fields. Grav. Cosmol. 2019, 25, 374–382. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.