Diamond-α Hardy-Type Inequalities on Time Scales
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hardy, G.H. Note on a theorem of Hilbert. Math. Z. 1920, 6, 314–317. [Google Scholar] [CrossRef]
- Hardy, G.H. Notes on some points in the integral calculus (lx). Messenger Math. 1925, 54, 150–156. [Google Scholar]
- Andersen, K.F.; Heinig, H.P. Weighted norm inequalities for certain integral operators. SIAM J. Math. Anal. 1983, 14, 834–844. [Google Scholar] [CrossRef]
- Andersen, K.F.; Muckenhoupt, B. Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions. Studia Math. 1982, 72, 9–26. [Google Scholar] [CrossRef]
- Bennett, G. Some elementary inequalities. Quart. J. Math. Oxf. Ser. 2 1987, 38, 401–425. [Google Scholar] [CrossRef]
- Hardy, G.H. Notes on some points in the integral calculus (lxit). Messenger Math. 1928, 57, 12–16. [Google Scholar]
- Abdeldaim, A.; El-Deeb, A.A.; Agarwal, P.; El-Sennary, H.A. On some dynamic inequalities of Steffensen type on time scales. Math. Methods Appl. Sci. 2018, 41, 4737–4753. [Google Scholar] [CrossRef]
- El-Deeb, A.A. Some Gronwall-bellman type inequalities on time scales for Volterra-Fredholm dynamic integral equations. J. Egypt. Math. Soc. 2018, 26, 1–17. [Google Scholar] [CrossRef]
- El-Deeb, A.A.; Xu, H.; Abdeldaim, A.; Wang, G. Some dynamic inequalities on time scales and their applications. Adv. Differ. Equ. 2019, 19, 130. [Google Scholar] [CrossRef]
- El-Deeb, A.A.; Rashid, S. On some new double dynamic inequalities associated with leibniz integral rule on time scales. Adv. Differ. Equ. 2021, 2021, 125. [Google Scholar] [CrossRef]
- Kh, F.M.; El-Deeb, A.A.; Abdeldaim, A.; Khan, Z.A. On some generalizations of dynamic Opial-type inequalities on time scales. Adv. Differ. Equ. 2019, 2019, 323. [Google Scholar] [CrossRef]
- Tian, Y.; El-Deeb, A.A.; Meng, F. Some nonlinear delay Volterra-Fredholm type dynamic integral inequalities on time scales. Discret. Dyn. Nat. Soc. 2018, 8, 5841985. [Google Scholar] [CrossRef]
- Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
- Kufner, A.; Persson, L.-E. Weighted Inequalities of Hardy Type; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 2003. [Google Scholar]
- Hilger, S. Analysis on measure chainsa unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhauser Boston, Inc.: Boston, MA, USA, 2001. [Google Scholar]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhauser Boston, Inc.: Boston, MA, USA, 2003. [Google Scholar]
- Sheng, Q.; Fadag, M.; Henderson, J.; Davis, J.M. An exploration of combined dynamic derivatives on time scales and their applications. Nonlinear Anal. Real World Appl. 2006, 7, 395–413. [Google Scholar] [CrossRef]
- Rehak, P. Hardy inequality on time scales and its application to half-linear dynamic equations. J. Inequal. Appl. 2005, 5, 495–507. [Google Scholar]
- Saker, S.H.; O’Regan, D.; Agarwal, R. Generalized Hardy, Copson, Leindler and Bennett inequalities on time scales. Math. Nachr. 2014, 287, 686–698. [Google Scholar] [CrossRef]
- Ozkan, U.M.; Yildirim, H. Hardy-Knopp-type inequalities on time scales. Dynam. Syst. Appl. 2008, 17, 477–486. [Google Scholar]
- Bohner, M.; Guseinov, G.S. Multiple integration on time scales. Dyn.Syst. Appl. 2005, 14, 579–606. [Google Scholar]
- Agarwal, R.; O’Regan, D.; Saker, S. Dynamic Inequalities on Time Scales; Springer: Cham, Switzerland, 2014. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Deeb, A.A.; Awrejcewicz, J. Diamond-α Hardy-Type Inequalities on Time Scales. Symmetry 2022, 14, 2047. https://doi.org/10.3390/sym14102047
El-Deeb AA, Awrejcewicz J. Diamond-α Hardy-Type Inequalities on Time Scales. Symmetry. 2022; 14(10):2047. https://doi.org/10.3390/sym14102047
Chicago/Turabian StyleEl-Deeb, Ahmed A., and Jan Awrejcewicz. 2022. "Diamond-α Hardy-Type Inequalities on Time Scales" Symmetry 14, no. 10: 2047. https://doi.org/10.3390/sym14102047
APA StyleEl-Deeb, A. A., & Awrejcewicz, J. (2022). Diamond-α Hardy-Type Inequalities on Time Scales. Symmetry, 14(10), 2047. https://doi.org/10.3390/sym14102047