Infinitely Many Solutions for Fractional p-Laplacian Schrödinger–Kirchhoff Type Equations with Symmetric Variable-Order
Abstract
:1. Introduction and the Main Results
- (S1):
- is symmetric function, that is, for all .
- (S2):
- for all
- (V1):
- is the continuous function, satisfying , where is a positive constant. Moreover, there is such that the set is nonempty and meas.
- (V2):
- There exists positive constant h such that
- (F1):
- There exist positive constants and such that
- (F2):
- for uniformly.
- (F3):
- There exist positive constants and r such that
- (F4):
- .
2. Preliminary Results
2.1. Variable Exponent Lebesgue Spaces
2.2. Variable-Order Fractional Sobolev Spaces
3. Palais–Smale Condition
4. Proof of Theorem 1 by Using the Fountain Theorem
5. Proof of Theorem 1 by Applying the Symmetric Mountain Pass Theorem
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iannizzotto, A.; Liu, S.; Perera, K.; Squassina, M. Existence results for fractional p-Laplacian problems via Morse theory. Advan. Calcu. Variat. 2014, 92, 101–125. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, C.F.; Hartley, T.T. Variable order and distributed order fractional operators. Nonlinear Dynam. 2002, 29, 57–98. [Google Scholar] [CrossRef]
- Mosconi, S.; Perera, K.; Squassina, M.; Yang, Y. The Brezis-Nirenberg problem for the fractional p-Laplacian. Calc. Var. Part. Differ. Equ. 2016, 55–105. [Google Scholar] [CrossRef] [Green Version]
- Pucci, P.; Xiang, M.Q.; Zhang, B.L. Multiple solutions for nonhomogeneous Schröinger-Kirchhoff type equations involving the fractional p-Laplacian in . Calc.Var. Part. Differ. Equ. 2015, 54, 2785–2806. [Google Scholar] [CrossRef]
- Sun, M.Z. Multiple solutions of a superlinear p-Laplacian equation without the (AR) condition. Appl. Anal. 2010, 89, 325–336. [Google Scholar] [CrossRef]
- Xiang, M.Q.; Zhang, B.L. Degenerate Kirchhoff problems involving the fractional p-Laplacian without the (AR) condition. Complex Var. Elliptic Equ. 2015, 60, 1277–1287. [Google Scholar] [CrossRef]
- Lorenzo, C.F.; Hartley, T.T. Initialized fractional calculus. Int. J. Appl. Math. 2000, 3, 249–265. [Google Scholar]
- Ruiz-Medina, M.D.; Anh, V.V.; Angulo, J.M. Fractional generalized random fields of variable order. Stoch Anal Appl. 2004, 22, 775–799. [Google Scholar] [CrossRef]
- Samko, S.; Ross, B. Integration and differentiation to a variable fractional order. Integral Trans Special Func. 1993, 1, 277–300. [Google Scholar] [CrossRef]
- Samko, S. Fractional integration and differentiation of variable order. Anal Math. 1995, 21, 213–236. [Google Scholar] [CrossRef]
- Xiang, M.Q.; Zhang, B.L.; Yang, D. Multiplicity results for variable-order fractional Laplacian equations with variable growth. Nonlinear Anal. 2019, 178, 190–204. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, B.L. Infinitely many solutions for Kirchhoff-type variable-order fractional Laplacian problems involving variable exponents. Appl. Anal. 2019, 2418–2435. [Google Scholar] [CrossRef]
- Rabinowitz, P.H. On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 1992, 43, 270–291. [Google Scholar] [CrossRef]
- Ge, B. Multiple solutions of nonlinear Schrödinger equation with the fractional Laplacian. Nonlinear Anal. Real World Appl. 2016, 30, 236–247. [Google Scholar] [CrossRef]
- Nyamoradi, N.; Zaidan, L.I. Existence and multiplicity of solutions for fractional p-Laplacian Schrödinger-Kirchhoff type equations. Complex Var. Elliptic Equ. 2018, 63, 346–359. [Google Scholar] [CrossRef]
- Teng, K.M. Multiple solutions for a class of fractional Schrödinger equationsin . Nonlinear Anal. Real World Appl. 2015, 21, 76–86. [Google Scholar] [CrossRef]
- César, E. Torres Ledesma. Multiplicity result for non-homogeneous fractional Schrödinger–Kirchhoff-type equations in . Adv. Nonlinear Anal. 2016, 7, 247–257. [Google Scholar]
- Kirchhoff, G. Vorlesungen über mathematische Physik. In Band 1: Mechanik; B.G. Teubner: Leipzig, Germany, 1883. [Google Scholar]
- Fiscella, A.; Valdinoci, E. A critical Kirchhoff type problem involving a nonlocal operator. Nonliear Anal. 2014, 94, 156–170. [Google Scholar] [CrossRef]
- Bisci, G.M.; Vilasi, L. On a fractional degenerate Kirchhoff-type problem. Commun. Contemp. Math. 2017, 19, 1550088. [Google Scholar] [CrossRef]
- Fan, X.L.; Zhang, Q.H. Existence of solutions for p(x)-Laplacian Dirichlet problem. Nonliear Anal. 2003, 52, 1843–1852. [Google Scholar] [CrossRef]
- Liu, D.C. On a p-Kirchhoff equation via fountain theorem and dual fountain theorem. Nonlinear Anal. 2010, 72, 302–308. [Google Scholar] [CrossRef]
- Nyamoradi, N. Existence of three solutions for Kirchhoff nonlocal operators of elliptic type. Math. Commun. 2013, 18, 489–502. [Google Scholar]
- Nyamoradi, N.; Chung, N. Existence of solutions to nonlocal Kirchhoff equations of elliptic type via genus theory. Electron. J. Differ. Equ. 2014, 86, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Alves, C.O.; Corraa, F.S.J.A.; Ma, T.F. Positive solutions for a quasilinear elliptic equations of Kirchhoff type. Comput. Math. Appl. 2005, 49, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Graef, J.R.; Heidarkhani, S.; Kong, L. A variational approach to a Kirchhoff-type problem involving two parameters. Results Math. 2013, 63, 877–889. [Google Scholar] [CrossRef]
- Ricceri, B. On an elliptic Kirchhoff-type problem depending on two parameters. J. Glob. Optim. 2010, 46, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, P.; Athanassoulis, A.; Hajaiej, H.; Markowich, P. On the xfel schrdinger equation: Highly oscillatory magnetic potentials and time averaging. Arch. Ration. Mech. Anal. 2014, 211, 711–732. [Google Scholar] [CrossRef] [Green Version]
- Felmer, P.; Quaas, A.; Tan, J. Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 2012, 142, 1237–1262. [Google Scholar] [CrossRef] [Green Version]
- Xiang, M.; Pucci, P.; Squassina, M.; Zhang, B. Nonlocal schrödinger-kirchhoff equations with external magnetic field. Discrete Cont. Dyn. 2017, 37, 1631–1649. [Google Scholar] [CrossRef] [Green Version]
- Ambrosetti, A.; Rabinowitz, P. Dual variational methods in critical points theory and applications. J. Funct. nal. 1973, 14, 349–381. [Google Scholar] [CrossRef] [Green Version]
- Servadei, R.; Valdinoci, E. Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 2012, 389, 887–898. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wang, Z.Q. On the Ambrosetti-Rabinowitz superlinear condition. Adv. Nonlinear Stud. 2004, 4, 561–572. [Google Scholar] [CrossRef]
- Zang, A.B. p(x)-Laplacian equations satisfying Cerami condition. J. Math. Anal. Appl. 2008, 337, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Bahrouni, A.; Rǎdulescu, V.D. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete Contin. Dyn. Syst. Ser. S 2018, 11, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Diening, L.; Harjulehto, P.; Hästö, P.; Ružička, M. Lebesgue and Sobolev Spaces with Variable Exponents; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2011; Volume 2017. [Google Scholar]
- Edmunds, D.; Rákosník, J. Sobolev embeddings with variable exponent. Stud. Math. 2000, 143, 267–293. [Google Scholar] [CrossRef]
- Fan, X.L.; Zhao, D. On the spaces Lp(x)(Ω) and Wk,p(x)(Ω). J. Math. Anal. Appl. 2001, 263, 424–446. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, U.; Rossi, J.D.; Vidal, R. Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians. Electron. J. Qual. Theory Differ. Equ. 2017, 76, 1–10. [Google Scholar] [CrossRef]
- Yao, J. Solutions for Neumann boundary value problems involving p(x)-Laplace operators. Nonlinear Anal. 2008, 68, 1271–1283. [Google Scholar] [CrossRef]
- Di Nezza, E.; Palatucci, G.; Valdinoci, E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 2012, 136, 521–573. [Google Scholar] [CrossRef]
- Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Universitext; Springer: New York, NY, USA, 2011. [Google Scholar]
- Bartsch, T.; Willem, M. On an elliptic equation with concave and convex nonlinearities. Proc. Am. Math. Soc. 1995, 123, 3555–3561. [Google Scholar] [CrossRef]
- Rabinowitz, P. Minimax method in critical point theory with applications to differential equations. CBMS Am. Math. Soc. 1986, 65–100. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bu, W.; An, T.; Sousa, J.V.d.C.; Yun, Y. Infinitely Many Solutions for Fractional p-Laplacian Schrödinger–Kirchhoff Type Equations with Symmetric Variable-Order. Symmetry 2021, 13, 1393. https://doi.org/10.3390/sym13081393
Bu W, An T, Sousa JVdC, Yun Y. Infinitely Many Solutions for Fractional p-Laplacian Schrödinger–Kirchhoff Type Equations with Symmetric Variable-Order. Symmetry. 2021; 13(8):1393. https://doi.org/10.3390/sym13081393
Chicago/Turabian StyleBu, Weichun, Tianqing An, José Vanteler da C. Sousa, and Yongzhen Yun. 2021. "Infinitely Many Solutions for Fractional p-Laplacian Schrödinger–Kirchhoff Type Equations with Symmetric Variable-Order" Symmetry 13, no. 8: 1393. https://doi.org/10.3390/sym13081393
APA StyleBu, W., An, T., Sousa, J. V. d. C., & Yun, Y. (2021). Infinitely Many Solutions for Fractional p-Laplacian Schrödinger–Kirchhoff Type Equations with Symmetric Variable-Order. Symmetry, 13(8), 1393. https://doi.org/10.3390/sym13081393