1. Introduction
The construction of integrable deformations of a given integrable system was the subject of some recent articles. In [
1], taking into account the fact that Poisson algebras endowed with a co-product map give rise to a systematic way of constructing integrable systems, integrable deformations of a class of three-dimensional Lotka–Volterra equations were given. In [
2], considering Poisson–Lie groups as deformations of Lie–Poisson (co)algebras, integrable deformations of certain integrable types of Rössler and Lorenz systems were presented. Based on the construction of a family of compatible Poisson structures, in [
3], a family of integrable deformations of the Bogoyavlenskij–Itoh systems was constructed. In [
4], altering the constants of motion, integrable deformations of the Euler top were constructed. In the same manner, in [
5,
6,
7,
8,
9], integrable deformations of some three-dimensional systems were obtained. Moreover, in [
10], the integrable deformations method for a three-dimensional system of differential equations was presented. The property that allows to construct integrable deformations of the above-mentioned three-dimensional systems is their maximal superintegrability.
Both in classical mechanics and in quantum mechanics, the superintegrable systems have been widely investigated (see, e.g, [
11,
12,
13] and references therein). In classical mechanics, a superintegrable system on a 
-dimensional phase space is a completely integrable Hamiltonian system which possesses more functionally independent first integrals than degrees of freedom. Moreover, such a system is called maximally superintegrable if the number of the independent first integrals is 
 (see, e.g., [
14,
15]). Similarly, for an arbitrary natural number 
n, a system of first-order differential equations on 
 which has 
 functionally independent constants of motion is called a maximally superintegrable system.
In this paper, we present some integrable deformations of maximally superintegrable systems. Firstly, using 
 functionally independent functions, we construct a family of maximally superintegrable systems for which the considered functions are constants of motion, and we point out a Hamilton–Poisson realization of such a system. Secondly, the Hamilton–Poisson realization allows us to give integrable deformations of the obtained system, which are also maximally superintegrable Hamilton–Poisson systems. Moreover, under certain conditions, the obtained system and its integrable deformations are generalized Nambu–Hamilton systems [
16]. In 
Section 3 we analyze the particular case of Hamiltonian mechanical systems. In 
Section 4 we extend the method given in [
10] to the case of 
 dimensional systems of first-order differential equations.
  2. The Integrable Deformations Method for Maximally Superintegrable Systems
In this section, using the idea given in [
4], we give integrable deformations of a maximally superintegrable system. For this purpose, we present a construction of a maximally superintegrable system considering 
 functionally independent functions as its constants of motion.
Let 
 be on an open set. Consider the functions 
 such that 
 on 
, where
      
      with 
. Thus, 
 are 
 functionally independent functions on 
Considering that these functions are constants of motion, that is, 
 for every 
, it follows that:
This linear system has a unique solution given by
      
      where
      
From (
1) and (
4), it is easy to see that 
.
Set 
. Therefore, the functions 
 give rise to the following differential system on 
Considering the Poisson bracket on 
 generated by 
 (see, e.g., [
17]), namely,
      
      for every 
, system (
5) reads
      
Thus, it is a Hamilton–Poisson system with the Hamiltonian  and Casimirs . We notice that  for every .
Now, we set 
, where 
 is an arbitrary function. Then system (
3) becomes
      
      and it is obvious that it has the same constants of motion 
 Furthermore, System (
8) is the Hamilton–Poisson system
      
      with the Hamiltonian 
 and the Poisson bracket (see, e.g., [
18]) given by
      
In this manner, a family of maximally superintegrable systems with the same constants of motion was constructed. On the other hand, for a given maximally superintegrable system, there is a unique function 
 such that the system takes the form (
9) [
17,
18] (see the next Remark). The function 
 is called the rescaling function [
18] and it is usually defined on an open and dense subset of 
Remark 1. In the papers [17,18], a system  on  is considered. For this system, it is assumed there are  functionally independent constants of motion . In [17] it was proven that  is orthogonal to the vectors , , and consequently there is a function μ such that  In [18], using the orthogonality of the vector fields X and , , it was obtained that X is given as the vector field ☆ multiplied by a  real function, where ☆ denotes the Hodge star operator for multivector fields.  In the final part of this section, we give integrable deformations of system (
9).
By a deformation of a system , where , , we understand a system  where  and each function  depends on some real parameters such that when these parameters vanish, then  vanishes. When the initial system and its deformation are maximally superintegrable, then we talk about an integrable deformation.
In the next result, we give a family of integrable deformations of a maximally superintegrable system.
Theorem 1. Consider system (9) generated by the constants of motion  a rescaling function ν, and the Poisson bracket (10). Let  be arbitrary functions such that the functions are functionally independent on an open set , where . Then an integrable deformation of system (9) is given by  Proof.  The functions 
 and the rescaling function 
 generate the system
        
        where the Poisson bracket 
 is given by (
10). Using the properties of determinants, for every 
 equation (
13) successively becomes
        
        and finally, system (
13) takes the form (
12).
It is easy to see that if the deformation parameters 
 vanish, then system (
12) is the initial system (
9). Moreover, functions 
 are a constant of motions of (
12); therefore, system (
12) is an integrable deformation of system (
9).    □
 Remark 2. In order to apply the above Theorem to a maximally superintegrable system  where , , first we determine the rescaling function ν, as in Remark 1. Secondly, we alter the constants of motion and then apply (12). The new system (12) can be considered as the controlled initial system, where deformation parameters become control parameters. By choosing appropriate deformation functions , the dynamics of the initial system may be controlled in a desired way. In addition, the methods of geometric mechanics are applicable to such systems.  Remark 3. Every three-dimensional Hamilton–Poisson system is a maximally superintegrable system; therefore, Theorem 1 gives integrable deformations for such systems.
 Remark 4. The integrable deformation (12) of system (9) is a Hamilton–Poisson system with the Hamiltonian  and the Poisson bracket . On the other hand, System (5) may be expressed in the Nambu mechanics formalism [16,19], namely, where the canonical Nambu bracket is given by Under some supplementary conditions, for example  (see, e.g., [20]), the bracket is also a Nambu bracket, therefore system (9) is a generalized Nambu–Hamilton system. Consequently, we have the following integrable deformation of this Nambu system:  Remark 5. In order to preserve the Poisson bracket (10) generated by , we alter only the Hamiltonian , namely, . In this case, the integrable deformation (12) becomes where p is a deformation parameter.
 Example 1. Consider the periodic Volterra system (see, e.g., [21]) that describes an interaction between only the close neighboring variables. This system has the Hamiltonian function  and the constants of motion  and  Therefore, it is maximally superintegrable. Furthermore, this system is the Nambu system where the Nambu bracket is given by (17) Consider the deformation parameters  and deformation functions  Denote  Therefore, system gives an integrable deformation of the considered system.
Considering particular deformation functions, one can obtain various new Nambu systems. For example, when we choose , then we obtain the following integrable deformation:    3. Integrable Deformations of a Maximally Superintegrable Hamiltonian System
In this section, we discuss some integrable deformations of a Hamiltonian system on a -dimensional phase space in the case when it possesses  functionally independent integrals of motion.
Let 
 be a smooth manifold and let 
 be a Hamiltonian mechanical system, where 
 and 
H is the Hamiltonian. The equations of motion are given by
      
      where 
 is the Poisson bracket on 
, that is, 
 (see, e.g., [
22,
23]).
Consider that 
 are functionally independent integrals of motion of system (
20), thus, 
, 
 System (
20) has the form 
 where 
, 
, and the procedure used in the previous section gives integrable deformations of system (
20). It is natural to ask whether such a deformation is a Hamiltonian mechanical system. In addition, if the Hamiltonian mechanical system (
20) is completely integrable in Arnold–Liouville’s sense, then it is maximally superintegrable [
15] and, consequently, the following question arises: is the above-mentioned deformation a maximally superintegrable Hamiltonian mechanical system? To give a partial answer to this questions, we consider the case when only the Hamiltonian is deformed.
First, we perturb the Hamiltonian function 
H; that is, we consider the new Hamiltonian function 
 given by 
, where 
 and 
 is an arbitrary differentiable function on 
M such that 
 are functionally independent. Then we obtain the following Hamiltonian mechanical system
      
      which is a deformation of system (
20). In general, we notice that the equality 
 does not hold.
On the other hand, taking into account Remark 1, there is a function 
 such that
      
Using the Poisson bracket (
10)
      
      system (
20) reads
      
Therefore, via Theorem 1, an integrable deformation of system (
22) in the case 
 is given by
      
It is clear that , .
Remark 6. Systems (21) and (23) represent two deformations of the same Hamiltonian system (20) obtained by a perturbation of the Hamiltonian H. In the first case, system (21) is still a Hamiltonian mechanical system, but it does not preserve the other constants of motion. In the second case, system (23) preserves the integrals of motion, and it is a Hamilton–Poisson system; however, generally, it is not a Hamiltonian mechanical system with the Hamiltonian function . We notice that if the deformation function α is chosen such that then systems (21) and (23) are identical. Therefore, system (21) preserves the first integrals  and (23) is also a Hamiltonian mechanical system. Moreover, if the Hamiltonian mechanical system (20) is maximally superintegrable, then (21) is also a maximally superintegrable Hamiltonian mechanical system.  Example 2. Consider the Hamiltonian function  where  are smooth functions. The equations of motion are given by It immediately follows that the functions  and  are first integrals of the above system. This Hamiltonian mechanical system is maximally superintegrable. In addition, it can be written in the form (22) with  Taking  Theorem 1 furnishes the following integrable deformation of the considered system Particularly, if we alter only the Hamiltonian function, that is, , then the above integrable deformation becomes By Remark 6, we deduce that this particular integrable deformation is in fact a Hamiltonian mechanical system with the Hamiltonian function  if, and only if  where W is a smooth function. In this case, the above integrable deformation is a maximally superintegrable Hamiltonian mechanical system.
 Remark 7. While the deformation (21) of system (20) can be obtained in one way, namely by a perturbation of the Hamiltonian function, integrable deformations of the same system, written in the form (22), can be obtained in many more ways by altering one or more of the functions .    4. Some Deformations of an Arbitrary System of First-Order Autonomous Differential Equations
In [
10], some deformations of three-dimensional systems of differential equations were obtained. First, a Hamilton–Poisson part of the considered system is identified. Then an integrable deformations of this part is constructed by the alteration of its constants of motion. Lastly, the non-Hamilton–Poisson part and the obtained integrable deformation are put together to obtain a new system, that is, a deformation of the initial system. In this section we extend this method to systems of differential equations on 
 More precisely, the same method works if we can identify a maximally superintegrable part of the considered system.
Consider a dynamical system of the form
      
      where 
, 
. We assume that system (
24) can be written in the form
      
      where the system
      
      is maximally superintegrable. Then, using the notations from 
Section 2, system (
26) takes the form (
9) and one of its integrable deformations is given by Theorem 1. We denote this deformation by
      
Adding 
 to the right side, we obtain the following deformation of system (
24)
      
Note that in the case of maximally superintegrable systems, some constants of motions can be preserved. If a system has a constant of motion, but it is not maximally superintegrable, its above-mentioned deformation does not generally preserve that constant of motion. It is natural to ask whether there are deformations that preserve a constant of motion.
Example 3. Another Lotka–Volterra type system (see, e.g., [21]) is given by The function  is a constant of motion of this system. Apparently, this system is not maximally superintegrable. However, we can consider a maximally superintegrable part of it, namely, Indeed, the functions  and  are constants of motion. Moreover, the above system takes the form where  and the bracket is given by (10). If we consider  then an integrable deformation of the maximally superintegrable part of the considered system is given by Theorem 1 Now we bring back the unused terms into the system and obtain the following deformation of the considered system A particular deformation is obtained if we consider particular deformation functions. For example, if we take  and , then we get It is easy to see that H is not a constant of motion of the above system. Nevertheless, we can find some deformation functions such that H will be a constant of motion. For example, if we choose  and  then we obtain Therefore, if  then H is a constant of motion of the deformed system.
   5. Conclusions
Integrable deformations of a maximally superintegrable system were obtained by the alteration of their constants of motion. The new systems are also maximally superintegrable. Moreover, this method can be used to perturb a maximally superintegrable part of an arbitrary system of first-order differential equations, which gives a deformation of the considered system.
Note that the systems obtained by deformations depend on more parameters than the initial system. Therefore, they can exhibit rich dynamics and can display some types of bifurcations, such as Hopf, zero-Hopf, Bogdanov–Takens, Bautin, or even three co-dimension bifurcations. Moreover, the functions added to a system by deformation can be viewed as control functions, and as a consequence, some natural queries arise, such as: how the stability changes, whether they can be stabilized by some states/orbits, how the periodic motion is affected, and whether new chaotic systems can be obtained or whether some chaotic trajectories can be stabilized, and so forth.