New Aspects for Oscillation of Differential Systems with Mixed Delays and Impulses
Abstract
1. Introduction
2. Some Preliminaries
3. Oscillation Theorems
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bainov, D.D.; Simeonov, P.S. Impulsive Differential Equations: Asymptotic Properties of the Solutions; Series on Advances in Mathematics for Applied Sciences; World Scientific: Singapore, 1995; Volume 28. [Google Scholar]
- Lakshmikantham, V.; Bainov, D.D.; Simeonov, P.S. Oscillation Theory of Impulsive Differential Equations; World Scientific: Singapore, 1989. [Google Scholar]
- Agarwal, R.P.; O’Regan, D.; Saker, S.H. Oscillation and Stability of Delay Models in Biology; Springer: New York, NY, USA, 2014. [Google Scholar]
- Li, T.; Pintus, N.; Viglialoro, G. Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys. 2019, 70, 86. [Google Scholar] [CrossRef]
- Li, T.; Viglialoro, G. Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime. Differ. Integral Equ. 2011, 34, 315–336. [Google Scholar]
- Viglialoro, G.; Woolley, T.E. Solvability of a Keller-Segel system with signal-dependent sensitivity and essentially sublinear production. Appl. Anal. 2020, 99, 2507–2525. [Google Scholar] [CrossRef]
- Infusino, M.; Kuhlmann, S. Infinite dimensional moment problem: Open questions and applications. Contemp. Math. 2017, 697, 187–201. [Google Scholar]
- Shen, J.; Zou, Z. Oscillation criteria for first-order impulsive differential equations with positive and negative coefficients. J. Comput. Appl. Math. 2008, 217, 28–37. [Google Scholar] [CrossRef][Green Version]
- Graef, J.R.; Shen, J.H.; Stavroulakis, I.P. Oscillation of impulsive neutral delay differential equations. J. Math. Anal. Appl. 2002, 268, 310–333. [Google Scholar] [CrossRef]
- Shen, J.H.; Wang, Z.C. Oscillation and asympotic behaviour of solutions of delay differential equations with impulses. Ann. Differ. Eqs. 1994, 10, 61–68. [Google Scholar]
- Tripathy, A.K.; Santra, S.S. Characterization of a class of second-order neutral impulsive systems via pulsatile constant. Differ. Equ. Appl. 2017, 9, 87–98. [Google Scholar] [CrossRef]
- Tripathy, A.K.; Santra, S.S. Necessary and Sufficient Conditions for Oscillation of a Class of second-order Impulsive Systems. Differ. Equ. Dyn. Syst. 2018. [Google Scholar] [CrossRef]
- Santra, S.S.; Tripathy, A.K. On oscillatory first-order nonlinear neutral differential equations with nonlinear impulses. J. Appl. Math. Comput. 2019, 59, 257–270. [Google Scholar] [CrossRef]
- Santra, S.S.; Dix, J.G. Necessary and sufficient conditions for the oscillation of solutions to a second-order neutral differential equation with impulses. Nonlinear Stud. 2020, 27, 375–387. [Google Scholar] [CrossRef]
- Tripathy, A.K.; Santra, S.S. On the forced impulsive oscillatory nonlinear neutral systems of the second-order. Nonlinear Oscil. 2020, 23, 274–288. [Google Scholar]
- Tripathy, A.K.; Santra, S.S. Necessary and sufficient conditions for oscillations to a second-order neutral differential equations with impulses. Kragujev. J. Math. 2020, 47, 81–93. [Google Scholar]
- Karpuz, B.; Ocalan, O. Oscillation criteria for a class of first-order forced differential equations under impulse effects. Adv. Dyn. Syst. Appl. 2012, 7, 205–218. [Google Scholar]
- Santra, S.S.; Khedher, K.M.; Moaaz, O.; Muhib, A.; Yao, S.-W. Second-order impulsive delay differential systems: Necessary and sufficient conditions for oscillatory or asymptotic behavior. Symmetry 2021, 13, 722. [Google Scholar] [CrossRef]
- Santra, S.S.; Ghosh, T.; Bazighifan, O. Explicit Criteria for the Oscillation of Second-Order Differential Equations with Several Sub-linear Neutral Coefficients. Adv. Differ. Equ. 2020, 2020, 643. [Google Scholar] [CrossRef]
- Santra, S.S.; Dassios, I.; Ghosh, T. On the asymptotic behavior of a class of second-order non-linear neutral differential Equations with multiple delays. Axioms 2020, 9, 134. [Google Scholar] [CrossRef]
- Bazighifan, O.; Ruggieri, M.; Scapellato, A. An Improved Criterion for the Oscillation of Fourth-Order Differential Equations. Mathematics 2020, 8, 610. [Google Scholar] [CrossRef]
- Bazighifan, O.; Ruggieri, M.; Santra, S.S.; Scapellato, A. Qualitative Properties of Solutions of Second-Order Neutral Differential Equations. Symmetry 2020, 12, 1520. [Google Scholar] [CrossRef]
- Berezansky, L.; Braverman, E. Oscillation of a linear delay impulsive differential equations. Commun. Appl. Nonlinear Anal. 1996, 3, 61–77. [Google Scholar]
- Diblik, J.; Svoboda, Z.; Smarda, Z. Retract principle for neutral functional differential equation. Nonlinear Anal. Theory Methods Appl. 2009, 71, 1393–1400. [Google Scholar] [CrossRef]
- Diblik, J. Positive solutions of nonlinear delayed differential equations with impulses. Appl. Math. Lett. 2017, 72, 16–22. [Google Scholar] [CrossRef]
- Santra, S.S.; Alotaibi, H.; Bazighifan, O. On the qualitative behavior of the solutions to second-order neutral delay differential equations. J. Ineq. Appl. 2020, 2020, 256. [Google Scholar] [CrossRef]
- Santra, S.S.; Bazighifan, O.; Ahmad, H.; Chu, Y.-M. Second-Order Differential Equation: Oscillation Theorems and Applications. Math. Probl. Eng. 2020, 2020, 8820066. [Google Scholar] [CrossRef]
- Santra, S.S.; Bazighifan, O.; Ahmad, H.; Yao, S.-W. Second-Order Differential Equation with Multiple Delays: Oscillation Theorems and Applications. Complexity 2020, 2020, 8853745. [Google Scholar] [CrossRef]
- Luo, Z.; Jing, Z. Periodic boundary value problem for first-order impulsive functional differential equations. Comput. Math. Appl. 2008, 55, 2094–2107. [Google Scholar] [CrossRef][Green Version]
- Yu, J.; Yan, J. Positive solutions and asymptotic behavior of delay differential equations with nonlinear impulses. J. Math. Anal. Appl. 1997, 207, 388–396. [Google Scholar]
- Tripathy, A.K. Oscillation criteria for a class of first-order neutral impulsive differential-difference equations. J. Appl. Anal. Comput. 2014, 4, 89–101. [Google Scholar]
- Berezansky, L.; Domoshnitsky, A.; Koplatadze, R. Oscillation, Nonoscillation, Stability and Asymptotic Properties for Second and Higher Order Functional Differential Equations; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Santra, S.S.; Majumder, D.; Bhattacharjee, R.; Bazighifan, O.; Khedher, K.; Marin, M. New Theorems for Oscillations to the Differential Equations with Mixed Delays. Symmetry 2021, 13, 367. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. A new approach in the study of oscillatory behavior of even-order neutral delay differential equations. Appl. Math. Comput. 2013, 225, 787–794. [Google Scholar] [CrossRef]
- Bohner, M.; Li, T. Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient. Appl. Math. Lett. 2014, 37, 72–76. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Grace, S.R.; Jadlovská, I.; Li, T.; Tunç, E. Oscillation criteria for third-order Emden-Fowler differential equations with unbounded neutral coefficients. Complexity 2019, 2019, 5691758. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. Oscillation of second-order neutral differential equations. Math. Nachr. 2015, 288, 1150–1162. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. Oscillation criteria for even-order neutral differential equations. Appl. Math. Lett. 2016, 61, 35–41. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations. Monatsh. Math. 2017, 184, 489–500. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations. Appl. Math. Lett. 2020, 105, 106293. [Google Scholar] [CrossRef]
- Džurina, J.; Grace, S.R.; Jadlovská, I.; Li, T. Oscillation criteria for second-order Emden-Fowler delay differential equations with a sublinear neutral term. Math. Nachr. 2020, 293, 910–922. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santra, S.S.; Khedher, K.M.; Yao, S.-W. New Aspects for Oscillation of Differential Systems with Mixed Delays and Impulses. Symmetry 2021, 13, 780. https://doi.org/10.3390/sym13050780
Santra SS, Khedher KM, Yao S-W. New Aspects for Oscillation of Differential Systems with Mixed Delays and Impulses. Symmetry. 2021; 13(5):780. https://doi.org/10.3390/sym13050780
Chicago/Turabian StyleSantra, Shyam Sundar, Khaled Mohamed Khedher, and Shao-Wen Yao. 2021. "New Aspects for Oscillation of Differential Systems with Mixed Delays and Impulses" Symmetry 13, no. 5: 780. https://doi.org/10.3390/sym13050780
APA StyleSantra, S. S., Khedher, K. M., & Yao, S.-W. (2021). New Aspects for Oscillation of Differential Systems with Mixed Delays and Impulses. Symmetry, 13(5), 780. https://doi.org/10.3390/sym13050780