A New Design of Codebook for Hybrid Precoding in Millimeter-Wave Massive MIMO Systems
Abstract
:1. Introduction
2. System Model
2.1. Channel Model
2.2. Problem Formulation
3. Proposed Joint Codebooks Design Algorithm
Algorithm 1 Hybrid precoding codebook generation algorithm based on dictionary learning and the reconstruction algorithm |
Input: Output:,
|
4. Simulation Results
4.1. Simulation Setup and Explanations
4.2. Comparison and Analysis of Spectral Efficiency Performance
4.3. Comparison and Analysis of Computational Complexity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El Ayach, O.; Rajagopal, S.; Abu-Surra, S.; Pi, Z.; Heath, R.W. Spatially Sparse Precoding in Millimeter Wave MIMO Systems. IEEE Trans. Wirel. Commun. 2014, 13, 1499–1513. [Google Scholar] [CrossRef] [Green Version]
- Alkhateeb, A.; Mo, J.; Gonzalez-Prelcic, N.; Heath, R.W. MIMO Precoding and Combining Solutions for Millimeter-Wave Systems. IEEE Commun. Mag. 2014, 52, 122–131. [Google Scholar] [CrossRef]
- Kolawole, O.Y.; Biswas, S.; Singh, K.; Ratnarajah, T. Transceiver Design for Energy-Efficiency Maximization in mmWave MIMO IoT Networks. IEEE Trans. Green Commun. Netw. 2020, 4, 109–123. [Google Scholar] [CrossRef]
- Liu, X.; Zou, W.; Chen, S. Joint Design of Analog and Digital Codebooks for Hybrid Precoding in Millimeter Wave Massive MIMO Systems. IEEE Access 2018, 6, 69818–69825. [Google Scholar] [CrossRef]
- Li, N.; Wei, Z.; Yang, H.; Zhang, X.; Yang, D. Hybrid Precoding for mmWave Massive MIMO Systems With Partially Connected Structure. IEEE Access 2017, 5, 15142–15151. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, J. Hybrid Precoding Design for Adaptive Subconnected Structures in Millimeter-Wave MIMO Systems. IEEE Syst. J. 2019, 13, 137–146. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Y.; Li, X.; Xiang, W. Hybridly Connected Structure for Hybrid Beamforming in mmWave Massive MIMO Systems. IEEE Trans. Commun. 2018, 66, 662–674. [Google Scholar] [CrossRef]
- Li, X.; Alkhateeb, A. Deep Learning for Direct Hybrid Precoding in Millimeter Wave Massive MIMO Systems. In Proceedings of the 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2019; pp. 800–805. [Google Scholar]
- Chen, J.; Wen, C.; Jin, S.; Wong, K. A Low Complexity Pilot Scheduling Algorithm for Massive MIMO. IEEE Wirel. Commun. Lett. 2017, 6, 18–21. [Google Scholar] [CrossRef]
- Chen, C.H.; Tsai, C.R.; Liu, Y.H.; Hung, W.L.; Wu, A.Y. Compressive Sensing (CS) Assisted Low-Complexity Beamspace Hybrid Precoding for Millimeter-Wave MIMO Systems. IEEE Trans. Signal Process. 2017, 65, 1412–1424. [Google Scholar] [CrossRef]
- Gao, X.; Dai, L.; Han, S.; Chih-Lin, I.; Heath, R.W. Energy-Efficient Hybrid Analog and Digital Precoding for MmWave MIMO Systems With Large Antenna Arrays. IEEE J. Sel. Areas Commun. 2016, 34, 998–1009. [Google Scholar] [CrossRef] [Green Version]
- Rusu, C.; Mendez-Rial, R.; Gonzalez-Prelcicy, N.; Heath, R.W. Low complexity hybrid sparse precoding and combining in millimeter wave MIMO systems. In Proceedings of the IEEE International Conference on Communications, Kuala Lumpur, Malaysia, 23–27 May 2016; pp. 1340–1345. [Google Scholar]
- Seleem, H.; Sulyman, A.; Alsanie, A. Hybrid Precoding-Beamforming Design with Hadamard RF Codebook for mmWave Large-Scale MIMO Systems. IEEE Access 2017, 5, 6813–6823. [Google Scholar] [CrossRef]
- Bai, T.; Alkhateeb, A.; Heath, R.W. Coverage and capacity of millimeter-wave cellular networks. IEEE Commun. Mag. 2014, 52, 70–77. [Google Scholar]
- Pi, Z.; Khan, F. An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 2011, 49, 101–107. [Google Scholar] [CrossRef]
- Alkhateeb, A.; El Ayach, O.; Leus, G.; Heath, R.W. Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems. IEEE J. Sel. Top. Signal Process. 2014, 8, 831–846. [Google Scholar] [CrossRef] [Green Version]
- Raghavan, V.; Sayeed, A.M. Sublinear Capacity Scaling Laws for Sparse MIMO Channels. IEEE Trans. Inf. Theory 2010, 57, 345–364. [Google Scholar] [CrossRef]
- Palomar, D.P.; Cioffi, J.M.; Lagunas, M.A. Joint Tx-Rx Beamforming Design for Multicarrier MIMO Channels: A Unified Framework for Convex Optimization. IEEE Trans. Signal Process. 2003, 51, 2381–2401. [Google Scholar] [CrossRef]
- Palomar, D.P.; Chiang, M. A Tutorial on Decomposition Methods for Network Utility Maximization (Tutorial Paper). IEEE J. Sel. Areas Commun. 2006, 24, 1439–1451. [Google Scholar] [CrossRef] [Green Version]
- Love, D.J.; Heath, R.W. Limited feedback unitary precoding for spatial multiplexing systems. IEEE Trans. Inf. Theory 2005, 51, 2967–2976. [Google Scholar] [CrossRef]
- Needell, D.; Tropp, J. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 2009, 26, 301–321. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
Number of clusters | 4 |
Number of propagation paths per cluster | 20 |
Antenna array deployed | USPA |
AoA and AoD cluster angles distribution | Uniform |
Angular spread | |
Number of transmitter antennas | 64 |
Number of receiver antennas | 32 |
Number of of RF chains | 8 |
Number of data streams | 3 |
Algorithm | Spectral Efficiency (bps/Hz) | ||
---|---|---|---|
SNR = 0 dB | SNR = 5 dB | SNR = 10 dB | |
Hybrid Precoding with quantization [1] | 14.4082 | 17.5505 | 20.8505 |
OMP-based Codebook [4] | 15.3462 | 18.3034 | 21.5461 |
Proposed Codebook | 15.8109 | 18.7715 | 22.0345 |
Optimal unconstrained precoding | 16.5443 | 20.0332 | 24.0119 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Deng, H.; Yang, K.; Zhu, Z.; Liu, J.; Dong, H. A New Design of Codebook for Hybrid Precoding in Millimeter-Wave Massive MIMO Systems. Symmetry 2021, 13, 743. https://doi.org/10.3390/sym13050743
Liu G, Deng H, Yang K, Zhu Z, Liu J, Dong H. A New Design of Codebook for Hybrid Precoding in Millimeter-Wave Massive MIMO Systems. Symmetry. 2021; 13(5):743. https://doi.org/10.3390/sym13050743
Chicago/Turabian StyleLiu, Gang, Honggui Deng, Kai Yang, Zaoxing Zhu, Jitai Liu, and Hu Dong. 2021. "A New Design of Codebook for Hybrid Precoding in Millimeter-Wave Massive MIMO Systems" Symmetry 13, no. 5: 743. https://doi.org/10.3390/sym13050743
APA StyleLiu, G., Deng, H., Yang, K., Zhu, Z., Liu, J., & Dong, H. (2021). A New Design of Codebook for Hybrid Precoding in Millimeter-Wave Massive MIMO Systems. Symmetry, 13(5), 743. https://doi.org/10.3390/sym13050743