# Quantum Universe, Horizon, and Antimatter

## Abstract

**:**

## 1. Introduction

## 2. Creation and Annihilation of Particles as a Mechanism of Transition from a Pure Quantum State to a Mixed State

_{z}is the Pauli spin operator, and g

_{k}are coupling constants.

## 3. Dynamics of Transition from a Pure State of the System to a Mixed State and Establishment of Equilibrium

_{j}after each implementation. Then, we get the final sample

- -
- statistical stabilization of the relative frequencies of each characteristic,$$P\left(\alpha \right)=\mathrm{lim}{\nu}_{N}\left(\alpha ,x\right),$$
- -
- the principle of randomness—the limits of relative frequencies must be stable relative to the rules for choosing a sequence in a collective.

_{n}are the permissible energy levels, $\Omega (a,N,E)$ is the statistical weight, and a is the external parameter. Entropy corresponds to this distribution:

## 4. Mechanism of Thermalization and Solution of the Horizon Problem

- In the early stages, the curvature of the universe is absent, and it itself was in a pure quantum state, characterized by a wave function ${\Psi}_{N}$.
- The pure state of the universe is metastable. As a result of interaction with vacuum fluctuations, after some time τ
_{pure}, the universe comes into a mixed state. - In a pure state, the universe is a maximally entangled system of many particles, described by a single wave function.
- After the transition of the universe from a pure state to a mixed one as a result of many subsequent births and annihilation of particles, a thermodynamic equilibrium is formed, that is, the universe is thermalized and warmed up (Figure 2).

Entangled states are such states that cannot be simulated by classical correlations.

Entanglement implies that the whole system cannot be represented as a product of the subsystems:$${\Psi}_{N}\ne {\Psi}_{1}\otimes {\Psi}_{2}\otimes {\Psi}_{3}\dots .$$

Two identical particles are entangled if their wave functions substantially overlap in the past (time t_{1}), and these particles have hitherto been unitarily removed from each other (without radiation or particle absorption) (time t_{0}> t_{1}).

## 5. Predominance of Matter over Antimatter as a Consequence of Particle Entanglement

- There must be a physical process that violates the law of conservation of the baryon number.
- There must be a violation of the invariance of C (charge symmetry) and CP (charge conjugation parity symmetry).
- A violation of the state of thermal equilibrium is necessary.

## 6. Conclusions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Gogolin, C.; Eisert, J. Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Rep. Prog. Phys.
**2016**, 79, 056001. [Google Scholar] [CrossRef] [Green Version] - Hornberger, K. Entanglement and Decoherence. In Introduction to Decoherence Theory; Buchleitner, A., Viviescas, C., Tiersch, M., Eds.; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2009; Volume 768, pp. 221–276. [Google Scholar]
- Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Schlosshauer, M. Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys.
**2004**, 76, 1267. [Google Scholar] [CrossRef] [Green Version] - Allahverdyan, A.E.; Balian, R.; Nieuwenhuizen, T.M. Understanding quantum measurement from the solution of dynamical models. Phys. Rep.
**2013**, 525, 1–166. [Google Scholar] [CrossRef] [Green Version] - Gurvitz, S. Does the measurement take place when nobody observes it? Fortschr. Phys.
**2016**, 65, 1600065. [Google Scholar] [CrossRef] [Green Version] - Melkikh, A.V. Nonlinearity of Quantum Mechanics and Solution of the Problem of Wave Function Collapse. Comm. Theor. Phys.
**2015**, 64, 47. [Google Scholar] [CrossRef] - Melkikh, A.V. Quantum information and microscopic measuring instruments. Comm. Theor. Phys.
**2019**, 72, 015101. [Google Scholar] [CrossRef] - von Mises, R. The Mathematical Theory of Probability and Statistics; Academic: London, UK, 1964. [Google Scholar]
- Rumer, I.B.; Ryvkin, M.S. Thermodynamics, Statistical Physics and Kinetics; Mir: Moscow, Russia, 1980. [Google Scholar]
- Borgonovi, F.; Izrailev, F.M.; Santos, L.F.; Zelevinsky, V.G. Quantum chaos and thermalization in isolated systems of interacting particles. Phys. Rep.
**2016**, 626, 1–58. [Google Scholar] [CrossRef] [Green Version] - Batterfeald, D.; Peter, P. A critical review of classical bouncing cosmologies. Phys. Rep.
**2015**, 571, 1–66. [Google Scholar] [CrossRef] [Green Version] - Starobinskii, A.A. A New Type of Isotropic Cosmological Models without Singularity. Phys. Lett. B
**1980**, 1, 99–102. [Google Scholar] [CrossRef] - Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D.
**1981**, 23, 347. [Google Scholar] [CrossRef] [Green Version] - Albrecht, A.; Steinhardt, P.J. Cosmology for grand unified theories with radiatively induces symmetry breaking. Phys. Rev. Lett.
**1982**, 48, 1220. [Google Scholar] [CrossRef] - Linde, A.D. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys. Lett.
**1982**, 108B, 389. [Google Scholar] [CrossRef] - Linde, A.D. Chaotic Inflation Chaotic Inflation. Phys. Lett. B
**1983**, 129, 177. [Google Scholar] [CrossRef] - Penrose, R. Cycles of Time, an Extraordinary New View of the Universe; Knopf: New York, NY, USA, 2011. [Google Scholar]
- Melkikh, A.V. A pure quantum universe as an alternative to inflation. International journal of cosmology, astronomy and astrophysics. Int. J. Cosmol. Astron. Astrophys.
**2019**, 1, 88–93. [Google Scholar] [CrossRef] - Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys.
**2009**, 81, 865. [Google Scholar] [CrossRef] [Green Version] - Jaeger, G. Entanglement, Information, and the Interpretations of Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Melkikh, A.V. Quantum paradoxes, entanglement and their explanation on the basis of quantization of fields. Modern Phys. Lett. B
**2017**, 31, 1750007. [Google Scholar] [CrossRef] - Melkikh, A.V. Quantum system: Wave function, entanglement and the uncertainty principle. Modern Phys. Lett. B
**2021**. Accepted. [Google Scholar] - Bennett, C.H.; DiVincenzo, D.P.; Smolin, J.A.; Wootters, W.K. Mixed-state entanglement and quantum error correction. Phys. Rev. A
**1996**, 54, 3824. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Hill, S.; Wootters, W.K. Entanglement of a Pair of Quantum Bits. Phys. Rev. Lett.
**1997**, 78, 5022. [Google Scholar] [CrossRef] [Green Version] - Salart, D.; Baas, A.; Branciard, C.; Gisin, N.; Zbinden, H. Testing the speed of ‘spooky action at a distance. Nature
**2008**, 454, 861–864. [Google Scholar] [CrossRef] - Peacock, K.A.; Hapburn, P.S. Begging the signaling question: Quantum signaling and the dynamics of multiparticle systems. arXiv
**1999**, arXiv:quant-ph/9906036. [Google Scholar] - Wheeler, J.A. Mathematical Foundations of Quantum Mechanics; Marlow, A.R., Ed.; Academic: New York, NY, USA, 1978; pp. 9–48. [Google Scholar]
- Ma, X.; Kofler, J.; Zeilinger, A. Delayed-choice gedanken experiments and their realizations. Rev. Mod. Phys.
**2016**, 88, 015005. [Google Scholar] [CrossRef] - Kim, Y.-H.; Yu, R.; Kulik, S.P.; Shih, Y.H.; Scully, M. Delayed “choice” quantum eraser. Phys. Rev. Lett.
**2000**, 84, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Walborn, S.P.; Terra Cunha, M.O.; Pádua, S.; Monken, C.H. Double-slit quantum eraser. Phys. Rev. A
**2002**, 65, 0033818. [Google Scholar] [CrossRef] [Green Version] - Jacques, V.; Wu, E.; Grosshans, F.; Treussart, F.; Grangier, P.; Aspect, A.; Roch, J.F. Experimental Realization of Wheeler’s Delayed-Choice Gedanken Experiment. Science
**2007**, 315, 966. [Google Scholar] [CrossRef] [Green Version] - Kaiser, F.; Courdeau, T.; Milman, P.; Ostrowsky, D.B.; Tanzilli, S. Entanglement-Enabled Delayed-Choice Experiment. Science
**2012**, 338, 637. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Peruzzo, A.; Shadbolt, P.; Brunner, N.; Popescu, S.; O’Brien, J.L. A Quantum Delayed-Choice Experiment. Science
**2012**, 338, 634. [Google Scholar] [CrossRef] [Green Version] - Ma, X.S.; Zotter, S.; Kofler, J.; Ursin, R.; Jennewein, T.; Brunker, C.; Zeilinger, A. Experimental delayed-choice entanglement swapping. Nat. Phys.
**2012**, 8, 479. [Google Scholar] [CrossRef] [Green Version] - Melkikh, A.V. Quantum entanglement, Wheeler’s delayed choice experiment and its explanation on the basis of quantization of fields. J. Phys. Conf. Ser.
**2017**, 880, 012030. [Google Scholar] [CrossRef] [Green Version] - Peres, A.; Terno, D.R. Quantum information and relativity theory. Rev. Mod. Phys.
**2004**, 76, 93. [Google Scholar] [CrossRef] [Green Version] - Sakharov, A.D. Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. JETP Lett.
**1967**, 5, 24. [Google Scholar] - Kuzmin, V.A.; Rubakov, V.A.; Shaposhnikov, M.E. On anomalous electroweak baryon-number non-conservation in the early universe. Phys. Lett. B
**1985**, 155, 36–42. [Google Scholar] [CrossRef] - Dolgov, A.; Silk, J. Baryon isocurvature fluctuations at small scales and baryonic dark matter. Phys. Rev. D
**1993**, 47, 4244. [Google Scholar] [CrossRef] [PubMed] - Kusenko, A.; Pearce, L.; Yang, L. Postinflationary Higgs relaxation and the origin of matter-antimatter asymmetry. Phys. Rev. Lett.
**2015**, 114, 061302. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Weinberg, S. Cosmology; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Trodden, M. Electroweak baryogenesis. Rev. Mod. Phys.
**1999**, 71, 1463. [Google Scholar] [CrossRef] [Green Version] - Asaka, T.; Shaposhnikov, M. νMSM, dark matter and baryon asymmetry of the universe. Phys. Lett. B
**2005**, 620, 17. [Google Scholar] [CrossRef] [Green Version] - Davidson, S.; Nardi, E.; Nir, Y. Leptogenesis. Phys. Rep.
**2008**, 466, 105. [Google Scholar] [CrossRef] - Giovannini, M. Hypermagnetic gyrotropy, inflation, and the baryon asymmetry of the Universe. Phys. Rev. D.
**2015**, 92, 121301. [Google Scholar] [CrossRef] [Green Version] - Heeck, J.; Takhistov, V. Inclusive nucleon decay searches as a frontier of baryon number violation. Phys. Rev. D
**2020**, 101, 015005. [Google Scholar] [CrossRef] [Green Version] - Drewes, M.; Klaríc, J.; Klose, P. On lepton number violation in heavy neutrino decays at colliders. J. High Energy Phys.
**2019**, 32. [Google Scholar] [CrossRef] [Green Version] - LHCb Collaboration. Observation of CP Violation in Charm Decays. Phys. Rev. Lett.
**2019**, 122, 211803. [Google Scholar] [CrossRef] [PubMed] [Green Version] - T2K Collaboration. Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations. Nature
**2020**, 580, 339–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Melkikh, A.V.
Quantum Universe, Horizon, and Antimatter. *Symmetry* **2021**, *13*, 337.
https://doi.org/10.3390/sym13020337

**AMA Style**

Melkikh AV.
Quantum Universe, Horizon, and Antimatter. *Symmetry*. 2021; 13(2):337.
https://doi.org/10.3390/sym13020337

**Chicago/Turabian Style**

Melkikh, Alexey V.
2021. "Quantum Universe, Horizon, and Antimatter" *Symmetry* 13, no. 2: 337.
https://doi.org/10.3390/sym13020337