# H-Irregularity Strengths of Plane Graphs

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Results

#### 2.1. Lower Bounds

**Theorem**

**1.**

**Proof.**

**Theorem**

**2.**

**Theorem**

**3.**

**Proof.**

**Theorem**

**4.**

**Proof.**

**Theorem**

**5.**

**Proof.**

**Theorem**

**6.**

**Theorem**

**7.**

**Proof.**

**Theorem**

**8.**

**Proof.**

#### 2.2. Upper Bounds

**Theorem**

**9.**

**Proof.**

## 3. Conclusions

**Conjecture**

**1.**

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Chartrand, G.; Lesniak, L.; Zhang, P. Graphs & Digraphs, 6th ed.; Taylor & Francis Group: Boca Raton, FL, USA; New York, NY, USA, 2016. [Google Scholar]
- Chartrand, G.; Jacobson, M.S.; Lehel, J.; Oellermann, O.R.; Ruiz, S.; Saba, F. Irregular networks. Congr. Numer.
**1988**, 64, 187–192. [Google Scholar] - Aigner, M.; Triesch, E. Irregular assignments of trees and forests. SIAM J. Discret. Math.
**1990**, 3, 439–449. [Google Scholar] [CrossRef] - Nierhoff, T. A tight bound on the irregularity strength of graphs. SIAM J. Discret. Math.
**2000**, 13, 313–323. [Google Scholar] [CrossRef] - Cuckler, B.; Lazebnik, F. Irregularity strength of dense graphs. J. Graph Theory
**2008**, 58, 299–313. [Google Scholar] [CrossRef][Green Version] - Przybyło, J. Linear bound on the irregularity strength and the total vertex irregularity strength of graphs. SIAM J. Discret. Math.
**2009**, 23, 511–516. [Google Scholar] [CrossRef] - Kalkowski, M.; Karonski, M.; Pfender, F. A new upper bound for the irregularity strength of graphs. SIAM J. Discret. Math.
**2011**, 25, 1319–1321. [Google Scholar] [CrossRef] - Majerski, P.; Przybylo, J. On the irregularity strength of dense graphs. SIAM J. Discret. Math.
**2014**, 28, 197–205. [Google Scholar] [CrossRef] - Amar, D.; Togni, O. Irregularity strength of trees. Discrete Math.
**1998**, 190, 15–38. [Google Scholar] [CrossRef][Green Version] - Anholcer, M.; Palmer, C. Irregular labellings of Circulant graphs. Discrete Math.
**2012**, 312, 3461–3466. [Google Scholar] [CrossRef][Green Version] - Bohman, T.; Kravitz, D. On the irregularity strength of trees. J. Graph Theory
**2004**, 45, 241–254. [Google Scholar] [CrossRef] - Frieze, A.; Gould, R.J.; Karonski, M.; Pfender, F. On graph irregularity strength. J. Graph Theory
**2002**, 41, 120–137. [Google Scholar] [CrossRef] - Ashraf, F.; Bača, M.; Kimáková, Z.; Semaničová-Feňovčíková, A. On vertex and edge H-irregularity strengths of graphs. Discrete Math. Algorithms Appl.
**2016**, 8, 1650070. [Google Scholar] [CrossRef] - Bača, M.; Jendrol’, S.; Kathiresan, K.; Muthugurupackiam, K. On the face irregularity strength. Appl. Math. Inf. Sci.
**2015**, 9, 263–267. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bača, M.; Hinding, N.; Javed, A.; Semaničová-Feňovčíková, A. *H*-Irregularity Strengths of Plane Graphs. *Symmetry* **2021**, *13*, 229.
https://doi.org/10.3390/sym13020229

**AMA Style**

Bača M, Hinding N, Javed A, Semaničová-Feňovčíková A. *H*-Irregularity Strengths of Plane Graphs. *Symmetry*. 2021; 13(2):229.
https://doi.org/10.3390/sym13020229

**Chicago/Turabian Style**

Bača, Martin, Nurdin Hinding, Aisha Javed, and Andrea Semaničová-Feňovčíková. 2021. "*H*-Irregularity Strengths of Plane Graphs" *Symmetry* 13, no. 2: 229.
https://doi.org/10.3390/sym13020229