# 4D Einstein–Gauss–Bonnet Gravity Coupled with Nonlinear Electrodynamics

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. 4D EGB Model Coupled with NED

## 3. The BH Thermodynamics

## 4. The Black Hole Shadow

## 5. Conclusions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Gross, D.J.; Witten, E. Superstring modifications of Einstein’s equations. Nucl. Phys. B
**1986**, 277, 1–10. [Google Scholar] [CrossRef] - Gross, D.J.; Sloan, J.H. The quartic effective action for the heterotic string. Nucl. Phys. B
**1987**, 291, 41–89. [Google Scholar] [CrossRef] - Metsaev, R.R.; Tseytlin, A.A. Two-loop β-function for the generalized bosonic sigma model. Phys. Lett. B
**1987**, 191, 354–362. [Google Scholar] [CrossRef] - Zwiebach, B. Curvature squared terms and string theories. Phys. Lett. B
**1985**, 156, 315–317. [Google Scholar] [CrossRef] - Metsaev, R.R.; Tseytlin, A.A. Order α
^{′}(two-loop) equivalence of the string equations of motion and the -model Weyl invariance conditions: Dependence on the dilaton and the antisymmetric tensor. Nucl. Phys. B**1987**, 293, 385–419. [Google Scholar] [CrossRef] - Glavan, D.; Lin, C. Einstein–Gauss–Bonnet gravity in four-dimensional spacetime. Phys. Rev. Lett.
**2020**, 124, 081301. [Google Scholar] [CrossRef] [Green Version] - Boulware, D.G.; Deser, S. String-generated gravity models. Phys. Rev. Lett.
**1985**, 55, 2656. [Google Scholar] [CrossRef] [Green Version] - Wheeler, J.T. Symmetric solutions to the Gauss-Bonnet extended Einstein equations. Nucl. Phys. B
**1986**, 268, 737–746. [Google Scholar] [CrossRef] - Myers, R.C.; Simon, J.Z. Black-hole thermodynamics in Lovelock gravity. Phys. Rev. D
**1988**, 38, 2434. [Google Scholar] [CrossRef] [Green Version] - Cognola, G.; Myrzakulov, R.; Sebastiani, L.; Zerbini, S. Einstein gravity with Gauss-Bonnet entropic corrections. Phys. Rev. D
**2013**, 88, 024006. [Google Scholar] [CrossRef] [Green Version] - Fernandes, P.G.S. Charged black holes in AdS spaces in 4D Einstein Gauss-Bonnet gravity. Phys. Lett. B
**2020**, 805, 135468. [Google Scholar] [CrossRef] - Konoplya, R.A.; Zhidenko, A. Black holes in the four-dimensional Einstein-Lovelock gravity. Phys. Rev. D
**2020**, 101, 084038. [Google Scholar] [CrossRef] [Green Version] - Konoplya, R.A.; Zinhailo, A.F. Grey-body factors and Hawking radiation of black holes in 4D Einstein–Gauss–Bonnet gravity. Phys. Lett. B
**2020**, 810, 135793. [Google Scholar] [CrossRef] - Ghosh, S.G.; Maharaj, S.D. Radiating black holes in the novel 4D Einstein–Gauss–Bonnet gravity. Phys. Dark Univ.
**2020**, 30, 100687. [Google Scholar] [CrossRef] - Kumar, R.; Ghosh, S.G. Rotating black holes in 4D Einstein–Gauss–Bonnet gravity and its shadow. J. Cosmol. Astropart. Phys.
**2020**, 7, 53. [Google Scholar] [CrossRef] - Jin, X.H.; Gao, Y.X.; Liu, D.J. Strong gravitational lensing of a 4D Einstein–Gauss–Bonnet black hole in homogeneous plasma. Int. J. Mod. Phys. D
**2020**, 29, 2050065. [Google Scholar] [CrossRef] - Jusufi, K.; Banerjee, A.; Ghosh, S.G. Wormholes in 4D Einstein–Gauss–Bonnet gravity. Eur. Phys. J. C
**2020**, 80, 698. [Google Scholar] [CrossRef] - Guo, M.; Li, P. Innermost stable circular orbit and shadow of the 4 D Einstein–Gauss–Bonnet black hole. Eur. Phys. J. C
**2020**, 80, 588. [Google Scholar] [CrossRef] - Zhang, C.; Zhang, S.; Li, P.; Guo, M. Superradiance and stability of the regularized 4D charged Einstein–Gauss–Bonnet black hole. J. High Energy Phys.
**2020**, 08, 105. [Google Scholar] [CrossRef] - Zhang, C.-Y.; Li, P.-C.; Guo, M. Greybody factor and power spectra of the Hawking radiation in the 4 D Einstein–Gauss–Bonnet de-Sitter gravity. Eur. Phys. J. C
**2020**, 80, 874. [Google Scholar] [CrossRef] - Odintsov, S.; Oikonomou, V.; Fronimos, F. Rectifying Einstein–Gauss–Bonnet inflation in view of GW170817. Nucl. Phys. B
**2020**, 958, 115135. [Google Scholar] [CrossRef] - Ai, W. A note on the novel 4D Einstein–Gauss–Bonnet gravity. Commun. Theor. Phys.
**2020**, 72, 095402. [Google Scholar] [CrossRef] - Fernandes, P.G.; Carrilho, P.; Clifton, T.; Mulryne, D.J. Derivation of regularized field equations for the Einstein–Gauss–Bonnet theory in four dimensions. Phys. Rev. D
**2020**, R14, 024025. [Google Scholar] [CrossRef] - Hennigar, R.A.; Kubiznak, D.; Mann, R.B.; Pollack, C. On taking the D→ 4 limit of Gauss-Bonnet gravity: Theory and solutions. J. High Energy Phys.
**2020**, 2020, 27. [Google Scholar] [CrossRef] - Gonzalez, H.A.; Hassaine, M.; Martinez, C. Thermodynamics of charged black holes with a nonlinear electrodynamics source. Phys. Rev. D
**2009**, 80, 104008. [Google Scholar] [CrossRef] [Green Version] - Miskovic, O.; Olea, R. Conserved charges for black holes in Einstein–Gauss–Bonnet gravity coupled to nonlinear electrodynamics in AdS space. Phys. Rev. D
**2011**, 83, 024011. [Google Scholar] [CrossRef] [Green Version] - Hendi, S.H.; Panahiyan, S.; Momennia, M. Extended phase space of AdS black holes in Einstein–Gauss–Bonnet gravity with a quadratic nonlinear electrodynamics. Int. J. Mod. Phys. D
**2016**, 25, 1650063. [Google Scholar] [CrossRef] [Green Version] - Rubiera-Garcia, D. Gauss-Bonnet black holes supported by a nonlinear electromagnetic field. Phys. Rev. D
**2015**, 91, 064065. [Google Scholar] [CrossRef] [Green Version] - Hendi, S.H.; Eslam, B.; Panahiyan, S. Black Hole Solutions in Gauss-Bonnet-Massive Gravity in the Presence of Power-Maxwell Field. Fortsch. Phys.
**2018**, 66, 1800005. [Google Scholar] [CrossRef] [Green Version] - Nojiri, S.; Odintsov, S.D. Regular multihorizon black holes in modified gravity with nonlinear electrodynamics. Phys. Rev. D
**2017**, 96, 104008. [Google Scholar] [CrossRef] [Green Version] - Nam, C.H. Gauss–Bonnet holographic superconductors in exponential nonlinear electrodynamics. Gen. Relat. Grav.
**2019**, 51, 104. [Google Scholar] [CrossRef] [Green Version] - Hyun, S.; Nam, C.H. Charged AdS black holes in Gauss–Bonnet gravity and nonlinear electrodynamics. Eur. Phys. J. C
**2019**, 79, 737. [Google Scholar] [CrossRef] [Green Version] - Churilova, M.S.; Stuchlik, Z. Quasinormal modes of black holes in 5D Gauss–Bonnet gravity combined with non-linear electrodynamics. Ann. Phys.
**2020**, 418, 168181. [Google Scholar] [CrossRef] [Green Version] - Jusufi, K. Nonlinear magnetically charged black holes in 4D Einstein–Gauss–Bonnet gravity. Ann. Phys.
**2020**, 421, 168285. [Google Scholar] [CrossRef] - Jafarzade, K.; Zangeneh, M.K.; Lobo, F.S.N. Optical features of AdS black holes in the novel 4D Einstein–Gauss–Bonnet gravity coupled to nonlinear electrodynamics. arXiv
**2020**, arXiv:2009.12988. [Google Scholar] - Tomozawa, Y. Quantum corrections to gravity. arXiv
**2011**, arXiv:1107.1424. [Google Scholar] - Cai, R.G.; Cao, L.M.; Ohta, N. Black holes in gravity with conformal anomaly and logarithmic term in black hole entropy. J. High Energy Phys.
**2010**, 1004, 82. [Google Scholar] [CrossRef] [Green Version] - Gurses, M.; Sisman, T.C.; Tekin, B. Comment on “Einstein–Gauss–Bonnet Gravity in Four-Dimensional Spacetime”. Phys. Rev. Lett.
**2020**, 125, 149001. [Google Scholar] [CrossRef] - Gurses, M.; Sisman, T.C.; Tekin, B. Is there a novel Einstein–Gauss–Bonnet theory in four dimensions? Eur. Phys. J. C
**2020**, 80, 647. [Google Scholar] [CrossRef] - Mahapatra, S. A note on the total action of 4D Gauss-Bonnet theory. arXiv
**2020**, arXiv:2004.09214. [Google Scholar] [CrossRef] - Tian, S.X.; Zhu, Z.-H. Comment on “Einstein–Gauss–Bonnet Gravity in Four-Dimensional Spacetime”. arXiv
**2020**, arXiv:2004.09954. [Google Scholar] - Arrechea, J.; Delhom, A.; Jiménez-Cano, A. Yet another comment on four-dimensional Einstein–Gauss–Bonnet gravity. arXiv
**2020**, arXiv:2004.12998. [Google Scholar] - Hohmann, M.; Pfeifer, C. Canonical variational completion and 4D Einstein–Gauss–Bonnet gravity. arXiv
**2020**, arXiv:2009.05459. [Google Scholar] - Aoki, K.; Gorji, M.A.; Mukohyama, S. A consistent theory of D→ 4 Einstein–Gauss–Bonnet gravity. Phys. Lett. B
**2020**, 810, 135843. [Google Scholar] [CrossRef] - Aoki, K.; Gorji, M.A.; Mukohyama, S. Cosmology and gravitational waves in consistent D→4 Einstein–Gauss–Bonnet gravity. J. Cosmol. Astropart. Phys.
**2020**, 2009, 14. [Google Scholar] [CrossRef] - Kruglov, S.I. Nonlinear electrodynamics and magnetic black holes. Ann. Phys.
**2017**, 529, 1700073. [Google Scholar] [CrossRef] [Green Version] - Bronnikov, K.A. Regular magnetic black holes and monopoles from nonlinear electrodynamics. Phys. Rev. D
**2001**, 63, 044005. [Google Scholar] [CrossRef] [Green Version] - Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay., R.; Baczko, A.-K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J.
**2019**, 875, L5. [Google Scholar] - Synge, J.L. The escape of photons from gravitationally intense stars. Mon. Not. R. Astron. Soc.
**1966**, 131, 463. [Google Scholar] [CrossRef] - Zhang, M.; Guo, M. Can shadows reflect phase structures of black holes? Eur. Phys. J. C
**2020**, 80, 790. [Google Scholar] [CrossRef] - Novello, M.; Lorenci, V.A.D.; Salim, J.M.; Klippert, R. Geometrical aspects of light propagation in nonlinear electrodynamics. Phys. Rev. D
**2000**, 61, 045001. [Google Scholar] [CrossRef] [Green Version] - Novello, M.; Bergliaffa, S.E.P.; Salim, J.M. Singularities in general relativity coupled to nonlinear electrodynamics. Class. Quantum Gravity
**2000**, 17, 3821. [Google Scholar] [CrossRef] [Green Version] - Kocherlakota, P.; Rezzolla, L. Accurate mapping of spherically symmetric black holes in a parametrized framework. Phys. Rev. D
**2020**, 6, 064058. [Google Scholar] [CrossRef]

**Figure 2.**The plot of the function ${T}_{H}\left({x}_{+}\right)\sqrt[4]{\beta {q}_{m}^{2}}$ for $c=1$ at $b=0.1,1,3$.

**Figure 3.**The plot of the function ${C}_{q}\left({x}_{+}\right)\alpha G/\left(\beta {q}_{m}^{2}\right)$ for $b=0.1,1,3$ at $c=1$.

b | 1.5 | 1.7 | 1.8 | 2 | 2.2 | 2.3 | 2.4 | 2.5 | 2.6 |

${x}_{+}$ | 1.93 | 1.87 | 1.84 | 1.77 | 1.69 | 1.65 | 1.61 | 1.56 | 1.51 |

${x}_{p}$ | 3.12 | 3.05 | 3.01 | 2.94 | 2.86 | 2.82 | 2.77 | 2.73 | 2.68 |

${x}_{s}$ | 5.78 | 5.70 | 5.65 | 5.56 | 5.47 | 5.42 | 5.37 | 5.32 | 5.26 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kruglov, S.I.
4D Einstein–Gauss–Bonnet Gravity Coupled with Nonlinear Electrodynamics. *Symmetry* **2021**, *13*, 204.
https://doi.org/10.3390/sym13020204

**AMA Style**

Kruglov SI.
4D Einstein–Gauss–Bonnet Gravity Coupled with Nonlinear Electrodynamics. *Symmetry*. 2021; 13(2):204.
https://doi.org/10.3390/sym13020204

**Chicago/Turabian Style**

Kruglov, Sergey Il’ich.
2021. "4D Einstein–Gauss–Bonnet Gravity Coupled with Nonlinear Electrodynamics" *Symmetry* 13, no. 2: 204.
https://doi.org/10.3390/sym13020204