Surfaces and Curves Induced by Nonlinear Schrödinger-Type Equations and Their Spin Systems
Abstract
:1. Introduction
2. Isomorphism of the su(2) ≈ so(3) Lie Algebras and Integrable Equations
3. NLSE and HFE
4. Chen–Lee–Liu Equation and Its Equivalent Derivative Spin System
5. Soliton Solution
6. Soliton Surface
7. Nonlocal Versions of the Nonlinear Schrödinger-Type Equations and Related Integrable Spin Systems
7.1. The Nonlocal NLSE and Nonlocal HFE
7.2. The Nonlocal CLLE and Nonlocal Derivative HFE
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lakshmanan, M. On the geometrical interpretation of solitons. Phys. Lett. A 1978, 64, 354–356. [Google Scholar] [CrossRef]
- Zakharov, V.E.; Takhtajan, L.A. Equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet. Theor. Math. Phys. 1979, 38, 17–23. [Google Scholar] [CrossRef]
- Dubrovin, B.; Novikov, S.; Fomenko, A. Modern Geometry (In Rush); Nauka: Moscow, Russia, 1981. [Google Scholar]
- Chen, H.H.; Lee, Y.C.; Liu, C.S. Integrability of nonlinear Hamiltonian systems by inverse scattering method. Phys. Scr. 1979, 20, 490–492. [Google Scholar] [CrossRef]
- Peng, W.; Pu, J.; Chen, Y. PINN Deep Learning for the Chen-Lee-Liu Equation: Rogue Wave on the Periodic Background. arXiv 2021, arXiv:2105.13027v1. [Google Scholar]
- Inui, T.; Tanabe, Y.; Onodera, Y. Group Theory and Its Applications in Physics; Springer Series in Solid State Science; Springer: Tokyo, Japan, 1990. [Google Scholar]
- Myrzakulov, R.; Vijayalakshmi, S.; Nugmanova, G.; Lakshmanan, M. A (2+1)-dimensional integrable spin model: Geometrical and gauge equivalent counterpart, solitons and localized coherent structures. Phys. Lett. A 1997, 233, 391–396. [Google Scholar] [CrossRef] [Green Version]
- Myrzakulov, R.; Danlybaeva, A.; Nugmanova, G. Geometry and multidimensional soliton equations. Theor. Math. Phys. 1999, 118, 441–451. [Google Scholar] [CrossRef]
- Myrzakulov, R.; Mamyrbekova, G.; Nugmanova, G.; Lakshmanan, M. Integrable (2+1)-dimensional spin models with self-consistent potentials. Symmetry 2015, 7, 1352–1375. [Google Scholar] [CrossRef] [Green Version]
- Yersultanova, Z.; Zhassybayeva, M.; Yesmakhanova, K.; Nugmanova, G.; Myrzakulov, R. Darboux Transformation Exact Solutions of the Heisenberg Ferromagnetic Equation with Self-Consistent Potentials. Int. J. Geom. Methods Mod. Phys. 2016, 13, 1550134. [Google Scholar] [CrossRef] [Green Version]
- Rogers, C.; Schief, W.K. Backlund and Darboux Transfotmations. In Geometry and Modern Applications in Soliton Theory; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. Method for solving the Sine-Gordon equation. Phys. Rev. Lett. 1973, 30, 1262–1264. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Musslimani, Z.H. Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 2013, 110, 5. [Google Scholar] [CrossRef] [Green Version]
- Ablowitz, M.J.; Segur, H. Solitons and the Inverse Scattering Transform; SIAM: Philadelphia, PA, USA, 1981. [Google Scholar]
- Chang, N.-H.; Shatah, J.; Unlenbeck, K. Schrödinger maps. Commun. Pure Appl. Math. 2000, 53, 590–602. [Google Scholar]
- Da Rios, L.S. On the motion of an unbounded fluid with a vortex filament of any shape. Rend. Circ. Mat. Palermo 1906, 22, 117–135. [Google Scholar] [CrossRef] [Green Version]
- Ding, Q. A note on the NLS and the Schrödinger flow of maps. Phys. Lett. A 1998, 248, 49–56. [Google Scholar] [CrossRef]
- Ding, Q.; Inoguchi, J. Schr?odinger flows, binormal motion of curves and the second AKNS hierarchies. Chaos Solitons Fractals 2004, 21, 669–677. [Google Scholar] [CrossRef]
- Ding, W.Y.; Wang, Y.D. Schrödinger flows of maps into symplectic manifolds. Sci. China A 1998, 41, 746–755. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, W.; Wang, Y.D. A motion of spacelike curves in the Minkowski 3-space and the KdV equation. Phys. Lett. A 2010, 374, 3201–3205. [Google Scholar] [CrossRef]
- Ding, Q.; Zhong, S.P. The complex 2-sphere in C3 and Schrödinger flows. Sci. China Math. 2021, 63, 777–788. [Google Scholar] [CrossRef]
- Doliwa, A.; Santini, P.M. An elementary geometric characterization of the integrable motions of a curve. Phys. Lett. A 1994, 185, 373–384. [Google Scholar] [CrossRef] [Green Version]
- Fukumoto, Y.; Miyazaki, T. Three-dimensional distortions of a vortex filament with axial velocity. J. Fluid. Mech. 1991, 22, 369–416. [Google Scholar] [CrossRef]
- Gadzhimuradov, T.A.; Agalarov, A.M. Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation. Phys. Rev. A 2016, 93, 062124. [Google Scholar] [CrossRef]
- Gollek, H. Deformations of Minimal Curves in C3, in Proc: 1-st NOSONGE Conference. 1996, pp. 269–286. Available online: http://www.cns.gatech.edu/~danek/preprints/gollek.ps.gz (accessed on 8 July 2021).
- Gollek, H. Duals of vector fields and of null curves. Result. Math. 2007, 50, 53–79. [Google Scholar] [CrossRef]
- Gray, A. Modern Differential Geometry of Curves and Surfaces; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Gurses, M. Motion of curves on two-dimensional surfaces and soliton equations. Phys. Lett. A 1998, 241, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Gurses, M.; Pekcan, A. Nonlocal nonlinear Schrödinger equations and their soliton solutions. J. Math. Phys. 2018, 59, 17. [Google Scholar] [CrossRef] [Green Version]
- Hasimoto, H. A soliton on a vortex filament. J. Fluid Mech. 1972, 51, 477–485. [Google Scholar] [CrossRef]
- Lakshmanan, K.M.; Tamizhmani, K.M. Motion of strings, embedding problem and soliton equations. Appl. Sci. Res. 1981, 37, 127–143. [Google Scholar] [CrossRef]
- Lamb, G.L. Solitons on moving space curves. J. Math. Phys. 1977, 18, 1654–1661. [Google Scholar] [CrossRef]
- Makhankov, V.G.; Pashaev, O.K. On the gauge equivalence of the Landau-Lifshitz and the nonlinear Schrödinger equations on symmetric spaces. Phys. Lett. A 1983, 95, 95–100. [Google Scholar] [CrossRef]
- Murugesh, S.; Balakrishnana, R. New geometries associated with the nonlinear Schrödinger equation. Eur. Phys. J. B Condens. Matter Phys. 2002, 29, 193–196. [Google Scholar] [CrossRef] [Green Version]
- Novikov, S.P.; Manakov, S.V.; Pitaevskii, L.P.; Zakharov, V.E. Theory of Solitons: The Inverse Scattering Method; Plenum: New York, NY, USA, 1984. [Google Scholar]
- Pessers, V.; der Veken, J.V. On holomorphic Riemannian geometry and submanifolds of Wick-related spaces. J. Geom. Phys. 2016, 104, 163–174. [Google Scholar] [CrossRef] [Green Version]
- Sarma, A.K.; Miri, M.-A.; Musslimani, Z.H.; Christodoulides, D.N. Continuous and discrete Schrödinger systems with parity-time-symmetric nonlinearities. Phys. Rev. E 2014, 89, 7. [Google Scholar] [CrossRef] [Green Version]
- Terng, C.-L.; Uhlenbeck, K. Schrödinger flows on Grassmannians. AMS/IP Stud. Adv. Math. 2006, 36, 235–256. [Google Scholar]
- Cen, J.; Correa, F.; Fring, A. Nonlocal gauge equivalence: Hirota versus extended continuous Heisenberg and Landau-Lifschitz equation. J. Phys. A Math. Theor. 2020, 53, 195201. [Google Scholar] [CrossRef] [Green Version]
- de Laire, A. The Landau-Lifshitz Equation and Related Models. Analysis of PDEs [math.AP]. Université de Lille, 2020. Available online: https://hal.archives-ouvertes.fr/tel-02985356/document (accessed on 8 June 2021).
- Ablowitz, M.J.; Musslimani, Z.H. Integrable nonlocal nonlinear equations. Stud. Appl. Math. 2017, 139, 7–59. [Google Scholar] [CrossRef] [Green Version]
- Ablowitz, M.J.; Musslimani, Z.H. Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 2016, 29, 915. [Google Scholar] [CrossRef] [Green Version]
- Ablowitz, M.J.; Musslimani, Z.H. Integrable space-time shifted nonlocal nonlinear equations. Phys. Lett. A 2021, 409, 127516. [Google Scholar] [CrossRef]
- Gao, X.-Y.; Guo, Y.-J.; Shan, W.-R. Water-wave symbolic computation for the Earth, Enceladus and Titan: The higher-order Boussinesq-Burgers system, auto- and non-auto-Bäcklund transformations. Appl. Math. Lett. 2020, 104, 106170. [Google Scholar] [CrossRef]
- Gao, X.-Y.; Shan, W.-R. Shallow water in an open sea or a wide channel: Auto-and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system. Chaos Solitons Fractals 2020, 138, 109950. [Google Scholar] [CrossRef]
- Gao, X.-Y.; Guo, Y.-J.; Shan, W.-R. Cosmic dusty plasmas via a (3+1)-dimensional generalized variable-coefficient Kadomtsev-Petviashvili-Burgers-type equation: Auto-Bäcklund transformations, solitons and similarity reductions plus observational/experimental supports. Waves Random Complex Media 2021. [Google Scholar] [CrossRef]
- Myrzakulov, R.; Vijayalakshmi, S.; Syzdykova, R.; Lakshmanan, M. On the simplest (2+1) dimensional integrable spin systems and their equivalent nonlinear Schrödinger equations. J. Math. Phys. 1998, 39, 2122–2139. [Google Scholar] [CrossRef] [Green Version]
- Myrzakulov, R.; Lakshmanan, M.; Vijayalakshmi, S.; Danlybaeva, A. Motion of curves and surfaces and nonlinear evolution equations in (2+1) dimensions. J. Math. Phys. 1998, 39, 3765–3771. [Google Scholar]
- Myrzakulov, R.; Nugmanova, G.; Syzdykova, R. Gauge equivalence between (2+1) - dimensional continuous Heisenberg ferromagnetic models and nonlinear Schrödinger-type equations. J. Phys. Math. Theor. 1998, 31, 9535–9545. [Google Scholar] [CrossRef]
- Myrzakulov, R.; Daniel, M.; Amuda, R. Nonlinear spin-phonon excitations in an inhomogeneous compressible biquadratic Heisenberg spin chain. Physica A 1997, 234, 715–724. [Google Scholar] [CrossRef]
- Anco, S.C.; Myrzakulov, R. Integrable generalizations of Schrödinger maps and Heisenberg spin models from Hamiltonian flows of curves and surfaces. J. Geom. Phys. 2010, 60, 1576–1603. [Google Scholar] [CrossRef]
- Myrzakulov, R.; Mamyrbekova, G.K.; Nugmanova, G.N.; Yesmakhanova, K.; Lakshmanan, M. Integrable Motion of Curves in Self-Consistent Potentials: Relation to Spin Systems and Soliton Equations. Phys. Lett. A 2014, 378, 2118–2123. [Google Scholar] [CrossRef] [Green Version]
- Martina, L.; Myrzakul, K.; Myrzakulov, R.; Soliani, G. Deformation of surfaces, integrable systems, and Chern–Simons theory. J. Math. Phys. 2001, 42, 1397–1417. [Google Scholar] [CrossRef] [Green Version]
- Myrzakul, A.; Myrzakulov, R. Integrable geometric flows of interacting curves/surfaces, multilayer spin systems and the vector nonlinear Schrödinger equation. Int. J. Geom. Methods Mod. Phys. 2017, 14, 1750136. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Shen, S.; Zhu, Z. From discrete nonlocal nonlinear Schrödinger equation to coupled discrete Heisenberg ferromagnet equation. arXiv 2017, arXiv:1704.06937. [Google Scholar]
- Ma, L.; Zhu, Z. Nonlocal nonlinear Schrödinger equation and its discrete version: Soliton solutions and gauge equivalence. J. Math. Phys. 2016, 57, 083507. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S. A motion of complex curves in C3 and the nonlocal nonlinear Schrödinger equation. J. Nonlinear Sci. Appl. 2019, 12, 75–85. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myrzakul, A.; Nugmanova, G.; Serikbayev, N.; Myrzakulov, R. Surfaces and Curves Induced by Nonlinear Schrödinger-Type Equations and Their Spin Systems. Symmetry 2021, 13, 1827. https://doi.org/10.3390/sym13101827
Myrzakul A, Nugmanova G, Serikbayev N, Myrzakulov R. Surfaces and Curves Induced by Nonlinear Schrödinger-Type Equations and Their Spin Systems. Symmetry. 2021; 13(10):1827. https://doi.org/10.3390/sym13101827
Chicago/Turabian StyleMyrzakul, Akbota, Gulgassyl Nugmanova, Nurzhan Serikbayev, and Ratbay Myrzakulov. 2021. "Surfaces and Curves Induced by Nonlinear Schrödinger-Type Equations and Their Spin Systems" Symmetry 13, no. 10: 1827. https://doi.org/10.3390/sym13101827
APA StyleMyrzakul, A., Nugmanova, G., Serikbayev, N., & Myrzakulov, R. (2021). Surfaces and Curves Induced by Nonlinear Schrödinger-Type Equations and Their Spin Systems. Symmetry, 13(10), 1827. https://doi.org/10.3390/sym13101827