# A Novel Information Theoretical Criterion for Climate Network Construction

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methods

#### 2.1. Proposed CN Construction Algorithm

#### 2.2. CN Construction as Correlation Networks

## 3. Experiments and Results

#### 3.1. Data Description and Methodology

#### 3.2. Results and Discussion

#### 3.3. Physical Interpretation of the Obtained Results

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Albert, R.; Barabási, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys.
**2002**, 74, 47–97. [Google Scholar] [CrossRef] [Green Version] - Cuadra, L.; Salcedo-Sanz, S.; Ser, J.D.; Jiménez-Fernández, S.; Geem, Z.W. A critical review of robustness in Power Grids using complex networks concepts. Energies
**2015**, 8, 9211–9265. [Google Scholar] [CrossRef] [Green Version] - He, X.; Wang, L.; Liu, Z.; Liu, Y. Similar seismic activities analysis by using complex networks approach. Symmetry
**2020**, 12, 778. [Google Scholar] [CrossRef] - Barabási, A.L. Network Science; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Barthélemy, M. Spatial networks. Phys. Rep.
**2011**, 499, 1–101. [Google Scholar] [CrossRef] [Green Version] - Barthélemy, M. Morphogenesis of Spatial Networks; Springer International Publishing: New York, NY, USA, 2018. [Google Scholar]
- Tsonis, A.A.; Roebber, P.J. The architecture of the climate network. Phys. A: Stat. Mech. Appl.
**2004**, 333, 497–504. [Google Scholar] [CrossRef] - Tsonis, A.A.; Swanson, K.L.; Roebber, P.J. What do networks have to do with climate? Bull. Am. Meteorol. Soc.
**2006**, 87, 585–596. [Google Scholar] [CrossRef] [Green Version] - Hlinka, J.; Hartman, D.; Vejmelka, M.; Runge, J.; Marwan, N.; Kurths, J.; Palus, M. Reliability of Inference of Directed Climate Networks Using Conditional Mutual Information. Entropy
**2013**, 15, 2023–2045. [Google Scholar] [CrossRef] - Steinhaeuser, K.; Chawla, N.V.; Ganguly, A.R. Complex Networks In Climate Science: Progress, Opportunities And Challenges. In Proceedings of the 2010 Conference on Intelligent Data Understanding (CIDU 2010), Mountain View, CA, USA, 5–6 October 2010; pp. 16–26. [Google Scholar]
- Charakopoulos, A.; Katsouli, G.; Karakasidis, T. Dynamics and causalities of atmospheric and oceanic data identified by complex networks and Granger causality analysis. Phys. A Stat. Mech. Appl.
**2018**, 495, 436–453. [Google Scholar] [CrossRef] - Yamasaki, K.; Gozolchiani, A.; Havlin, S. Climate networks around the globe are significantly affected by El Nino. Phys. Rev. Lett.
**2008**, 100, 228501. [Google Scholar] [CrossRef] [PubMed] - Zhou, D.; Gozolchiani, A.; Ashkenazy, Y.; Havlin, S. Teleconnection paths via climate network direct link detection. Phys. Rev. Lett.
**2015**, 115, 268501. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Boers, N.; Goswami, B.; Rheinwalt, A.; Bookhagen, B.; Hoskins, B.; Kurths, J. Complex networks reveal global pattern of extreme-rainfall teleconnections. Nature
**2019**, 566, 373–377. [Google Scholar] [CrossRef] [PubMed] - Berezin, Y.; Gozolchiani, A.; Guez, O.; Havlin, S. Stability of climate networks with time. Sci. Rep.
**2012**, 2, 1–8. [Google Scholar] [CrossRef] [PubMed] - Ludescher, J.; Gozolchiani, A.; Bogachev, M.I.; Bunde, A.; Havlin, S.; Schellnhuber, H.J. Very early warning of next El Niño. Proc. Natl. Acad. Sci. USA
**2014**, 111, 2064–2066. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Fountalis, I.; Dovrolis, C.; Bracco, A.; Dilkina, B.; Keilholz, S. δ-MAPS: From spatio-temporal data to a weighted and lagged network between functional domains. Appl. Netw. Sci.
**2018**, 3, 21. [Google Scholar] [CrossRef] [Green Version] - Donges, J.F.; Zou, Y.; Marwan, N.; Kurths, J. The backbone of the climate network. EPL (Europhys. Lett.)
**2009**, 87, 48007. [Google Scholar] [CrossRef] [Green Version] - Palus, M.; Hartman, D.; Hlinka, J.; Vejmelka, M. Discerning connectivity from dynamics in climate networks Nonlinear Processes in Geophysics. Nonlinear Process. Geophys.
**2011**, 18, 751–763. [Google Scholar] [CrossRef] - Yamasaki, K.; Gozolchiani, A.; Havlin, S. Climate networks based on phase synchronization analysis track El-Niño. Prog. Theor. Phys. Suppl.
**2009**, 179, 178–188. [Google Scholar] [CrossRef] - Malik, N.; Bookhagen, B.; Marwan, N.; Kurths, J. Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks. Clim. Dyn.
**2012**, 39, 971–987. [Google Scholar] [CrossRef] - Boers, N.; Rheinwalt, A.; Bookhagen, B.; Barbosa, H.M.; Marwan, N.; Marengo, J.; Kurths, J. The South American rainfall dipole: A complex network analysis of extreme events. Geophys. Res. Lett.
**2014**, 41, 7397–7405. [Google Scholar] [CrossRef] - Fountalis, I.; Bracco, A.; Dovrolis, C. Spatio-temporal network analysis for studying climate patterns. Clim. Dyn.
**2014**, 42, 879–899. [Google Scholar] [CrossRef] - Ebert-Uphoff, I.; Deng, Y. A new type of climate network based on probabilistic graphical models: Results of boreal winter versus summer. Geophys. Res. Lett.
**2012**, 39. [Google Scholar] [CrossRef] [Green Version] - Ebert-Uphoff, I.; Deng, Y. Causal discovery for climate research using graphical models. J. Clim.
**2012**, 25, 5648–5665. [Google Scholar] [CrossRef] [Green Version] - Hlinka, J.; Jajcay, N.; Hartman, D.; Palus, M. Smooth information flow in temperature climate network reflects mass transport. Chaos
**2017**, 27, 035811. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Melbourne, Australia, 2018. [Google Scholar]
- Aghabozorgi, S.; Shirkhorshidi, A.S.; Wah, T.Y. Time-series clustering—A decade review. Inf. Syst.
**2015**, 53, 16–38. [Google Scholar] [CrossRef] - Ferreira, L.N.; Zhao, L. Time series clustering via community detection in networks. Inf. Sci.
**2016**, 326, 227–242. [Google Scholar] [CrossRef] [Green Version] - Guimerà, R.; Sales-Pardo, M. Missing and spurious interactions and the reconstruction of complex networks. Proc. Natl. Acad. Sci. USA
**2009**, 106, 22073–22078. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Guez, O.C.; Gozolchiani, A.; Havlin, S. Influence of autocorrelation on the topology of the climate network. Phys. Rev. E
**2014**, 90, 062814. [Google Scholar] [CrossRef] [Green Version] - Chidean, M.I.; Morgado, E.; del Arco-Fernández-Cano, E.; Ramiro-Bargueno, J.; Caamaño, A.J. Scalable Data-Coupled Clustering for Large Scale WSN. IEEE Trans. Wirel. Commun.
**2015**, 14, 4681–4694. [Google Scholar] [CrossRef] - Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat.
**1951**, 22, 79–86. [Google Scholar] [CrossRef] - Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 2; Technical Report; National Center For Atmospheric Research Boulder Co Mesoscale and Microscale: Boulder, CO, USA, 2005. [Google Scholar]
- MacArthur, B.D.; Sanchez-Garcia, R.J.; Anderson, J.W. Symmetry in complex networks. Discret. Appl. Math.
**2008**, 156, 3525–3531. [Google Scholar] [CrossRef] [Green Version] - Garlaschelli, D.; Ruzzenenti, F.; Basosi, R. Complex Networks and Symmetry I: A Review. Symmetry
**2010**, 2, 1683–1709. [Google Scholar] [CrossRef] [Green Version] - Ruzzenenti, F.; Garlaschelli, D.; Basosi, R. Complex Networks and Symmetry II: Reciprocity and Evolution of World Trade. Symmetry
**2010**, 2, 1710–1744. [Google Scholar] [CrossRef] [Green Version] - Wang, Y.; Gozolchiani, A.; Ashkenazy, Y.; Berezin, Y.; Guez, O.; Havlin, S. Dominant imprint of Rossby waves in the climate network. Phys. Rev. Lett.
**2013**, 111, 138501. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ludescher, J.; Gozolchiani, A.; Bogachev, M.I.; Bunde, A.; Havlin, S.; Schellnhuber, H.J. Improved El Niño forecasting by cooperativity detection. Proc. Natl. Acad. Sci. USA
**2013**, 110, 11742–11745. [Google Scholar] [CrossRef] [Green Version] - Radebach, A.; Donner, R.V.; Runge, J.; Donges, J.F.; Kurths, J. Disentangling different types of El Niño episodes by evolving climate network analysis. Phys. Rev. E
**2013**, 88, 052807. [Google Scholar] [CrossRef] [Green Version] - Fan, J.; Meng, J.; Ashkenazy, Y.; Havlin, S.; Schellnhuber, H.J. Network analysis reveals strongly localized impacts of El Niño. Proc. Natl. Acad. Sci. USA
**2017**, 114, 7543–7548. [Google Scholar] [CrossRef] [Green Version] - Chidean, M.I.; Muñoz-Bulnes, J.; Ramiro-Bargueño, J.; Caamaño, A.J.; Salcedo-Sanz, S. Spatio-temporal trend analysis of air temperature in Europe and Western Asia using data-coupled clustering. Glob. Planet. Chang.
**2015**, 129, 45–55. [Google Scholar] [CrossRef] - Chidean, M.I.; Caamaño, A.J.; Ramiro-Bargueño, J.; Casanova-Mateo, C.; Salcedo-Sanz, S. Spatio-temporal analysis of wind resource in the Iberian Peninsula with data-coupled clustering. Renew. Sustain. Energy Rev.
**2018**, 81, 2684–2694. [Google Scholar] [CrossRef] - Xu, G.; Kailath, T. Fast Subspace Decomposition. IEEE Trans. Signal Process.
**1994**, 42, 539–551. [Google Scholar] - Nadler, B. Finite Sample Approximation Results for Principal Component Analysis: A Matrix Perturbation Approach. Ann. Stat.
**2008**, 36, 2791–2817. [Google Scholar] [CrossRef] - Donges, J.F.; Zou, Y.; Marwan, N.; Kurths, J. Complex networks in climate dynamics. Comparing linear and nonlinear network construction methods. Eur. Phys. J. Spec. Top.
**2009**, 174, 157–179. [Google Scholar] [CrossRef] [Green Version] - Litta, A.; Mohanty, U.; Idicula, S.M. The diagnosis of severe thunderstorms with high-resolution WRF model. J. Earth Syst. Sci.
**2012**, 121, 297–316. [Google Scholar] [CrossRef] [Green Version] - Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Santos, C.S. Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula. Appl. Energy
**2014**, 135, 234–246. [Google Scholar] [CrossRef] - Fortunato, S. Community detection in graphs. Phys. Rep.
**2010**, 486, 75–174. [Google Scholar] [CrossRef] [Green Version] - Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA
**2002**, 99, 7821–7826. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Radicchi, F.; Castellano, C.; Cecconi, F.; Loreto, V.; Paris, D. Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA
**2004**, 101, 2658–2663. [Google Scholar] [CrossRef] [Green Version] - Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature
**1998**, 393, 440–442. [Google Scholar] [CrossRef] - Lorente-Plazas, R.; Montávez, J.P.; Jiménez, P.A.; Jerez, S.; Gómez-Navarro, J.J.; García-Valero, J.A.; Jimenez-Guerrero, P. Characterization of surface winds over the Iberian Peninsula. Int. J. Climatol.
**2015**, 35, 1007–1026. [Google Scholar] [CrossRef] - Gómez, G.; Cabos, W.D.; Liguori, G.; Sein, D.; Lozano-Galeana, S.; Fita, L.; Fernández, J.; Magariño, M.E.; Jiménez-Guerrero, P.; Montávez, J.P.; et al. Characterization of the wind speed variability and future change in the Iberian Peninsula and the Balearic Islands. Wind Energy
**2016**, 19, 1223–1237. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) Relationship between MP distribution for the node of interest (black circle), three examples of cluster sizes ${N}_{1}$, ${N}_{2}$ and, ${N}_{3}$) and time series length in the SODCC algorithm. (

**b**) Synthetic MP histograms that show some of the expected behaviours.

**Figure 3.**Degree distribution (${P}_{k}$) obtained for the CN constructed with both the proposed SODCC based methodology for different KLD values and the TCB methodology.

**Figure 4.**CN obtained with the proposed method for 2 h time-horizon prediction (MCP), with different KLD thresholds. The corresponding clustering coefficient for each CN is shown at the bottom right-hand corner of each figure.

**Figure 5.**Cn obtained with the proposed method for 8 h time-horizon prediction (CP), with different KLD thresholds. The corresponding clustering coefficient $\left({C}_{i}\right)$ for each CN is shown at the bottom right-hand corner of the each figure.

**Figure 6.**CN obtained with the proposed method for 24 h time-horizon prediction (MD), with different KLD thresholds. The corresponding clustering coefficient $\left({C}_{i}\right)$ for each Climate Networkis shown at the bottom right-hand corner of the each figure.

**Figure 7.**CN obtained with TCB method for the MCP (a), CP (b) and MD (c) time-horizons, with ${d}_{i,j}\le 300$ and $u=2$, and associated clustering coefficient (${C}_{i}$).

**Figure 8.**CN obtained with TCB method for the MCP (a), CP (b) and MD (c) time-horizons, with ${d}_{i,j}\le 1000$ and $u=2$, and associated clustering coefficient (${C}_{i}$).

**Figure 9.**Wind speed clustering in the IP. Source: Elaborated by the authors with results from [53].

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Cornejo-Bueno, S.; Chidean, M.I.; Caamaño, A.J.; Prieto-Godino, L.; Salcedo-Sanz, S.
A Novel Information Theoretical Criterion for Climate Network Construction. *Symmetry* **2020**, *12*, 1500.
https://doi.org/10.3390/sym12091500

**AMA Style**

Cornejo-Bueno S, Chidean MI, Caamaño AJ, Prieto-Godino L, Salcedo-Sanz S.
A Novel Information Theoretical Criterion for Climate Network Construction. *Symmetry*. 2020; 12(9):1500.
https://doi.org/10.3390/sym12091500

**Chicago/Turabian Style**

Cornejo-Bueno, Sara, Mihaela I. Chidean, Antonio J. Caamaño, Luis Prieto-Godino, and Sancho Salcedo-Sanz.
2020. "A Novel Information Theoretical Criterion for Climate Network Construction" *Symmetry* 12, no. 9: 1500.
https://doi.org/10.3390/sym12091500