ZZ Polynomials for Isomers of (5,6)-Fullerenes Cn with n = 20–50
Abstract
:1. Introduction
2. ZZ Polynomials
3. List of ZZ Polynomials for Fullerene Isomers
- Kekulé count K is equal to the coefficient of , so here we have . Note that one can alternatively evaluate the ZZ polynomial at to obtain the same value.
- Clar number is equal to the degree of the ZZ polynomial, so here we have .
- The total number C of Clar covers is equal to the sum of all the coefficients in the ZZ polynomial. C is most conveniently computed by evaluating the ZZ polynomial at . For C, we have .
- The number of Clar formulas, i.e., the number of Clar covers with the maximal number of aromatic sextets, is equal to the coefficient of , which for C is equal to 16.
- The first Herndon number is equal to the coefficient of , which for C is equal to 4820.
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Austin, S.J.; Fowler, P.W.; Hansen, P.; Manolopoulos, D.E.; Zheng, M. Fullerene isomers of C60. Kekulé counts versus stability. Chem. Phys. Lett. 1994, 228, 478–484. [Google Scholar] [CrossRef]
- Manolopoulos, D.E.; May, J.C.; Down, S.E. Theoretical studies of the fullerenes: C34 to C70. Chem. Phys. Lett. 1991, 181, 105–111. [Google Scholar] [CrossRef]
- Fowler, P.W.; Manolopoulos, D.E. An Atlas of Fullerenes; Dover: Mineola, NY, USA, 2006. [Google Scholar]
- Manolopoulos, D.E.; Fowler, P.W. A fullerene without a spiral. Chem. Phys. Lett. 1993, 204, 1–7. [Google Scholar] [CrossRef]
- Brinkmann, G.; Dress, A.W. A Constructive Enumeration of Fullerenes. J. Algorithms 1997, 23, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Brinkmann, G.; Dress, A.W. PentHex Puzzles: A Reliable and Efficient Top-Down Approach to Fullerene-Structure Enumeration. Adv. Appl. Math. 1998, 21, 473–480. [Google Scholar] [CrossRef] [Green Version]
- Fullerene Structure Library by Mitsuho Yoshida Is Available Now as a FullereneLib.zip. Available online: http://www.jcrystal.com/steffenweber/gallery/Fullerenes/Fullerenes.html (accessed on 30 July 2020).
- Schwerdtfeger, P.; Wirz, L.; Avery, J. Fullerene—A Software Package for Constructing and Analyzing Structures of Regular Fullerenes; Version 4.4. J. Comput. Chem. 2013, 34, 1508–1526. [Google Scholar] [CrossRef]
- Małolepsza, E.; Witek, H.A.; Irle, S. Comparison of Geometric, Electronic, and Vibrational Properties for Isomers of small fullerenes C20–C36. J. Phys. Chem. A 2007, 111, 6649–6657. [Google Scholar] [CrossRef]
- Małolepsza, E.; Lee, Y.P.; Witek, H.A.; Irle, S.; Lin, C.F.; Hsieh, H.M. Comparison of geometric, electronic, and vibrational properties for all pentagon/hexagon-bearing isomers of fullerenes C38, C40, and C42. Int. J. Quantum Chem. 2009, 109, 1999–2011. [Google Scholar] [CrossRef]
- Witek, H.A.; Irle, S. Diversity in electronic structure and vibrational properties of fullerene isomers correlates with cage curvature. Carbon 2016, 100, 484–491. [Google Scholar] [CrossRef]
- Schwerdtfeger, P.; Wirz, L.; Avery, J. The topology of fullerenes. WIREs Comput. Mol. Sci. 2015, 5, 96–145. [Google Scholar] [CrossRef]
- Aihara, J.I. Topological resonance energies of fullerenes and their molecular ions. J. Mol. Struct. 1994, 311, 1–8. [Google Scholar]
- Balasubramanian, K. Exhaustive Generation and Analytical Expressions of Matching Polynomials of Fullerenes C20–C50. J. Chem. Inf. Comput. Sci. 1994, 34, 421–427. [Google Scholar] [CrossRef]
- Balaban, A.T.; Liu, X.; Klein, D.J.; Babics, D.; Schmalz, T.G.; Seitz, W.A.; Randić, M. Graph Invariants for Fullerenes. J. Chem. Inf. Comput. Sci. 1995, 35, 396–404. [Google Scholar] [CrossRef]
- Rogers, K.M.; Fowler, P.W. Leapfrog fullerenes, Hückel bond order and Kekulé structures. J. Chem. Soc. Perkin Trans. 2001, 2, 18–22. [Google Scholar] [CrossRef]
- Cvetković, D.; Stevanović, D. Spectral moments of fullerene graphs. MATCH Commun. Math. Comput. Chem. 2004, 50, 62–72. [Google Scholar]
- Vukičević, D.; Kroto, H.W.; Randić, M. Atlas of Kekulé valence structures of buckminsterfullerene. Croat. Chem. Acta 2005, 78, 223–234. [Google Scholar]
- Graver, J.E. The independence numbers of fullerenes and benzenoids. Eur. J. Combin. 2006, 27, 850–863. [Google Scholar] [CrossRef] [Green Version]
- Diudea, M.V.; Vukičević, D. Kekulé Structure Count in Corazulenic Fullerenes. J. Nanosci. Nanotech. 2007, 7, 1321–1328. [Google Scholar] [CrossRef]
- Graver, J.E. Kekulé structures and the face independence number of a fullerene. European J. Combin. 2007, 28, 1115–1130. [Google Scholar] [CrossRef] [Green Version]
- Marušič, D. Hamilton cycles and paths in fullerenes. J. Chem. Inf. Model. 2007, 47, 732–736. [Google Scholar] [CrossRef]
- Došlić, T. Fullerene graphs with exponentially many perfect matchings. J. Math. Chem. 2007, 41, 183–192. [Google Scholar] [CrossRef]
- Randić, M.; Kroto, H.W.; Vukičević, D. Numerical Kekulé structures of fullerenes and partitioning of π-electrons to pentagonal and hexagonal rings. J. Chem. Inf. Model. 2007, 47, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Kutnar, K.; Marušič, D. On cyclic edge-connectivity of fullerenes. Discrete Appl. Math. 2008, 156, 1661–1669. [Google Scholar] [CrossRef] [Green Version]
- Došlić, T. Leapfrog fullerenes have many perfect matchings. J. Math. Chem. 2008, 44, 1–4. [Google Scholar] [CrossRef]
- Réti, T.; László, I. On the Combinatorial Characterization of Fullerene Graphs. Acta Polytech. Hung. 2009, 6, 85–93. [Google Scholar]
- Došlić, T. Finding more matchings in leapfrog fullerenes. J. Math. Chem. 2009, 45, 1130–1136. [Google Scholar] [CrossRef]
- Ye, D.; Zhang, H. Extremal fullerene graphs with the maximum Clar number. Discrete Appl. Math. 2009, 157, 3152–3173. [Google Scholar] [CrossRef] [Green Version]
- Kardoš, F.; Král, D.; Miškufa, J.; Sereni, J.S. Fullerene graphs have exponentially many perfect matchings. J. Math. Chem. 2009, 46, 443–447. [Google Scholar] [CrossRef]
- Zhang, H.; Ye, D.; Shiu, W.C. Forcing matching numbers of fullerene graphs. Discrete Appl. Math. 2010, 158, 573–582. [Google Scholar] [CrossRef] [Green Version]
- Klein, D.J.; Balaban, A.T. Clarology for conjugated carbon nano-structures: Molecules, polymers, graphene, defected graphene, fractal benzenoids, fullerenes, nano-tubes, nano-cones, nano-tori, etc. Open Org. Chem. J. 2011, 5, 27–61. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Zhang, H. Hexagonal resonance of (3,6)-fullerenes. J. Math. Chem. 2012, 50, 261–273. [Google Scholar] [CrossRef]
- Andova, V.; Došlić, T.; Krnc, M.; Lužar, B.; Škrekovski, R. On the diameter and some related invariants of fullerene graphs. MATCH Commun. Math. Comput. Chem. 2012, 68, 109–130. [Google Scholar]
- Graver, J.E.; Hartung, E.J.; Souid, A.Y. Clar and Fries numbers for benzenoids. J. Math. Chem. 2013, 51, 1981–1989. [Google Scholar] [CrossRef]
- Hartung, E. Fullerenes with complete Clar structure. Discrete Appl. Math. 2013, 161, 2952–2957. [Google Scholar] [CrossRef]
- Andova, V.; Kardoš, F.; Škrekovski, R. Fullerene Graphs and Some Relevant Graph Invariants. In Topics in Chemical Graph Theory; Gutman, I., Ed.; Mathematical Chemistry Monographs, University of Kragujevac and Faculty of Science Kragujevac: Kragujevac, Serbia, 2014; pp. 39–54. [Google Scholar]
- Carr, J.A.; Wang, X.; Ye, D. Packing resonant hexagons in fullerenes. Discret. Optim. 2014, 13, 49–54. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, H. The Clar number of fullerenes on surfaces. MATCH Commun. Math. Comput. Chem. 2014, 72, 411–426. [Google Scholar]
- Gao, Y.; Zhang, H. Clar Structure and Fries Set of Fullerenes and (4,6)-Fullerenes on Surfaces. J. Appl. Math. 2014, 2014, 196792. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Zhang, H.; Lin, Y. On the anti-forcing number of fullerene graphs. MATCH Commun. Math. Comput. Chem. 2015, 74, 673–692. [Google Scholar]
- Berlic, M.; Tratnik, N.; Žigert Pleteršek, P. Equivalence of Zhang–Zhang polynomial and cube polynomial for spherical benzenoid systems. MATCH Commun. Math. Comput. Chem. 2015, 73, 443–456. [Google Scholar]
- Salami, M.; Ahmadi, M.B. A mathematical programming model for computing the Fries number of a fullerene. Appl. Math. Model. 2015, 39, 5473–5479. [Google Scholar] [CrossRef]
- Tratnik, N.; Žigert Pleteršek, P. Resonance graphs of fullerenes. Ars Math. Contemp. 2016, 11, 425–435. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, M.B.; Farhadi, E.; Khorasani, V.A. On computing the Clar number of a fullerene using optimization techniques. MATCH Commun. Math. Comput. Chem. 2016, 75, 695–701. [Google Scholar]
- Gao, Y.; Li, Q.; Zhang, H. Fullerenes with the maximum Clar number. Discrete Appl. Math. 2016, 202, 58–69. [Google Scholar] [CrossRef]
- Došlic, T.; Tratnik, N.; Ye, D.; Žigert Pleteršek, P. On 2-cores of resonance graphs of fullerenes. MATCH Commun. Math. Comput. Chem. 2017, 77, 729–736. [Google Scholar]
- Sure, R.; Hansen, A.; Schwerdtfeger, P.; Grimme, S. Comprehensive theoretical study of all 1812 C60 isomers. Phys. Chem. Chem. Phys. 2017, 19, 14296–14305. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, H. On Resonance of (4,5,6)-Fullerene Graphs. MATCH Commun. Math. Comput. Chem. 2018, 80, 227–244. [Google Scholar]
- Bérczi-Kovács, E.R.; Bernáth, A. The complexity of the Clar number problem and an exact algorithm. J. Math. Chem. 2018, 56, 597–605. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, H. Counting Clar structures of (4,6)-fullerenes. Appl. Math. Comput. 2019, 346, 559–574. [Google Scholar]
- Ahmadi, M.B.; Farhadi, E.; Ghavanloo, M. On the Stability of Fullerenes. Iranian J. Math. Chem. 2019, 10, 57–69. [Google Scholar]
- Ghorbani, M.; Dehmer, M.; Zangi, S. On Certain Aspects of Graph Entropies of Fullerenes. MATCH Commun. Math. Comput. Chem. 2019, 81, 163–174. [Google Scholar]
- Balasubramanian, K. Topological Peripheral Shapes and Distance-Based Characterization of Fullerenes C20–C720: Existence of Isoperipheral Fullerenes. Polycyclic Aromat. Compd. 2020. [Google Scholar] [CrossRef]
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Clar, E. The Aromatic Sextet; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Zhang, H.; Ye, D.; Liu, Y. A combination of Clar number and Kekulé count as an indicator of relative stability of fullerene isomers of C60. J. Math. Chem. 2010, 48, 733–740. [Google Scholar] [CrossRef]
- Fedorov, A.S.; Fedorov, D.A.; Kozubov, A.A.; Avramov, P.V.; Nishimura, Y.; Irle, S.; Witek, H.A. Relative isomer abundance of fullerenes and carbon nanotubes correlates with kinetic stability. Phys. Rev. Lett. 2011, 107, 175506, Erratum in 2012, 108, 249902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Zhang, H.; Liu, Y. The Clar covering polynomial of hexagonal systems. II. An application to resonance energy of condensed aromatic hydrocarbons. Chin. J. Chem. 1996, 14, 321–325. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F. The Clar covering polynomial of hexagonal systems I. Discret. Appl. Math. 1996, 69, 147–167. [Google Scholar] [CrossRef]
- Zhang, H. The Clar covering polynomial of hexagonal systems with an application to chromatic polynomials. Discret. Math. 1997, 172, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, F. The Clar covering polynomial of hexagonal systems III. Discr. Math. 2000, 212, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Herndon, W.C. Thermochemical parameters for benzenoid hydrocarbons. Thermochim. Acta 1974, 8, 225–237. [Google Scholar] [CrossRef]
- Gutman, I.; Furtula, B.; Balaban, A.T. Algorithm for simultaneous calculations of Kekulé and Clar structure counts, and Clar number of benzenoid molecules. Polycyclic Aromat. Compd. 2006, 26, 17–35. [Google Scholar] [CrossRef]
- Chou, C.P.; Witek, H.A. An algorithm and FORTRAN program for automatic calculations of the Zhang-Zhang polynomial of benzenoids. MATCH Commun. Math. Comput. Chem. 2012, 68, 3–30. [Google Scholar]
- Chou, C.P.; Witek, H.A. Zhang-Zhang polynomials of various classes of benzenoid systems. MATCH Commun. Math. Comput. Chem. 2012, 68, 31–64. [Google Scholar]
- Chou, C.P.; Witek, H.A. ZZDecomposer: A Graphical Toolkit for Analyzing the Zhang-Zhang Polynomials of Benzenoid Structures. MATCH Commun. Math. Comput. Chem. 2014, 71, 741–764. [Google Scholar]
- Chou, C.P.; Witek, H.A. ZZDecomposer. 2017. Available online: https://bitbucket.org/solccp/zzdecomposer_binary/downloads/ (accessed on 30 July 2020).
- Chen, H.; Chou, C.P.; Witek, H.A. ZZDecomposer. 2019. Available online: https://bitbucket.org/peggydbc1217/zzdecomposer_hsi/downloads/ (accessed on 30 July 2020).
- Chou, C.P.; Witek, H.A. Determination of Zhang-Zhang Polynomials for Various Classes of Benzenoid Systems: Non-Heuristic Approach. MATCH Commun. Math. Comput. Chem. 2014, 72, 75–104. [Google Scholar]
- Gutman, I.; Borovićanin, B. Zhang-Zhang polynomial of multiple linear hexagonal chains. Z. Naturforsch. A 2006, 61, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Deng, H.; Chen, D. Zhang-Zhang polynomials of cyclo-polyphenacenes. J. Math. Chem. 2009, 46, 347–362. [Google Scholar] [CrossRef]
- Chou, C.P.; Witek, H.A. Comment on ‘Zhang–Zhang polynomials of cyclo polyphenacenes’ by Q. Guo, H. Deng, and D. Chen. J. Math. Chem. 2012, 50, 1031–1033. [Google Scholar] [CrossRef]
- Chen, D.; Deng, H.; Guo, Q. Zhang-Zhang polynomials of a class of pericondensed benzenoid graphs. MATCH Commun. Math. Comput. Chem. 2010, 63, 401–410. [Google Scholar]
- Chou, C.P.; Witek, H.A. Closed-Form Formulas for the Zhang-Zhang Polynomials of Benzenoid Structures: Chevrons and Generalized Chevrons. MATCH Commun. Math. Comput. Chem. 2014, 72, 105–124. [Google Scholar]
- Chou, C.P.; Witek, H.A. Two Examples for the Application of the ZZDecomposer: Zigzag-Edge Coronoids and Fenestrenes. MATCH Commun. Math. Comput. Chem. 2015, 73, 421–426. [Google Scholar]
- Witek, H.A.; Moś, G.; Chou, C.P. Zhang-Zhang Polynomials of Regular 3- and 4-tier Benzenoid Strips. MATCH Commun. Math. Comput. Chem. 2015, 73, 427–442. [Google Scholar]
- Chou, C.P.; Kang, J.S.; Witek, H.A. Closed-form formulas for the Zhang–Zhang polynomials of benzenoid structures: Prolate rectangles and their generalizations. Discr. Appl. Math. 2016, 198, 101–108. [Google Scholar] [CrossRef]
- Witek, H.A.; Langner, J.; Moś, G.; Chou, C.P. Zhang-Zhang Polynomials of Regular 5-tier Benzenoid Strips. MATCH Commun. Math. Comput. Chem. 2017, 78, 487–504. [Google Scholar]
- Langner, J.; Witek, H.A. Connectivity Graphs for Single Zigzag Chains and their Application for Computing ZZ Polynomials. Croat. Chem. Acta 2017, 90, 391–400. [Google Scholar] [CrossRef]
- Langner, J.; Witek, H.A. Algorithm for generating generalized resonance structures of single zigzag chains based on interface theory. J. Math. Chem. 2018, 56, 1393–1406. [Google Scholar] [CrossRef]
- Langner, J.; Witek, H.A.; Moś, G. Zhang-Zhang Polynomials of Multiple Zigzag Chains. MATCH Commun. Math. Comput. Chem. 2018, 80, 245–265. [Google Scholar]
- Langner, J.; Witek, H.A. Interface Theory of Benzenoids. MATCH Commun. Math. Comput. Chem. 2020, 84, 143–176. [Google Scholar]
- Langner, J.; Witek, H.A. Interface Theory of Benzenoids: Basic applications. MATCH Commun. Math. Comput. Chem. 2020, 84, 177–215. [Google Scholar]
- He, B.H.; Witek, H.A. Clar theory for hexagonal benzenoids with corner defects. MATCH Commun. Math. Comput. Chem. 2021, 85. in press. [Google Scholar]
- Zhang, H.; Shiu, W.C.; Sun, P.K. A relation between Clar covering polynomial and cube polynomial. MATCH Commun. Math. Comput. Chem. 2013, 70, 477–492. [Google Scholar]
- Žigert Pleteršek, P. Equivalence of the Generalized Zhang-Zhang Polynomial and the Generalized Cube Polynomial. MATCH Commun. Math. Comput. Chem. 2018, 80, 215–226. [Google Scholar]
- Langner, J.; Witek, H.A. Equivalence between Clar Covering Polynomials of Single Zigzag Chains and Tiling Polynomials of 2 × n Rectangles. Discr. Appl. Math. 2018, 243, 297–303. [Google Scholar] [CrossRef]
- Witek, H.A.; Irle, S.; Zheng, G.; de Jong, W.A.; Morokuma, K. Modeling carbon nanostructures with the self-consistent charge density-functional tight-binding method: Vibrational spectra and electronic structure of C28, C60, and C70. J. Chem. Phys. 2006, 125, 214706. [Google Scholar] [CrossRef] [PubMed]
- Babić, D.; Ori, O. Matching polynomial and topological resonance energy of C70. Chem. Phys. Lett. 1995, 234, 240–244. [Google Scholar] [CrossRef]
- Mishra, R.K.; Patra, S.M. Numerical Determination of the Kekulé Structure Count of Some Symmetrical Polycyclic Aromatic Hydrocarbons and Their Relationship with π-Electronic Energy (A Computational Approach). J. Chem. Inf. Comput. Sci. 1998, 38, 113–124. [Google Scholar] [CrossRef]
- Zhang, C.; Cao, Z.; Lin, C.; Zhang, Q. Qualitatively graph-theoretical study on stability and formation of fullerenes and nanotubes. Sc. China Ser. B-Chem. 2003, 46, 513–520. [Google Scholar] [CrossRef]
- Gutman, I.; Gojak, S.; Furtula, B. Clar theory and resonance energy. Chem. Phys. Lett. 2005, 413, 396–399. [Google Scholar] [CrossRef]
- Gutman, I. Topology and stability of conjugated hydrocarbons. The dependence of total electron energy on molecular topology. J. Serb. Chem. Soc. 2005, 70, 441–456. [Google Scholar] [CrossRef]
- Gutman, I.; Gojak, S.; Furtula, B.; Radenković, S.; Vodopivec, A. Relating Total π-Electron Energy and Resonance Energy of Benzenoid Molecules with Kekulé- and Clar-Structure-Based Parameters. Monatsh. Chem. 2006, 137, 1127–1138. [Google Scholar] [CrossRef]
- Gutman, I.; Radenković, S. A simple formula for calculating resonance energy of benzenoid hydrocarbons. Bull. Chem. Technol. Macedonia 2006, 25, 17–21. [Google Scholar]
- Yeh, C.N.; Chai, J.D. Role of Kekulé and Non-Kekulé Structures in the Radical Character of Alternant Polycyclic Aromatic Hydrocarbons: A TAO-DFT Study. Sci. Rep. 2016, 6, 30562. [Google Scholar] [CrossRef] [PubMed]
- Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 1998, 58, 7260–7268. [Google Scholar] [CrossRef]
- Manoharan, M.; Balakrishnarajan, M.M.; Venuvanalingam, P.; Balasubramanian, K. Topological resonance energy predictions of the stability of fullerene clusters. Chem. Phys. Lett. 1994, 222, 95–100. [Google Scholar] [CrossRef]
Fullerene | Isomer | Symmetry | Schlegel Diagram | ZZ Polynomial |
---|---|---|---|---|
1 | 36 | |||
1 | ||||
1 | ||||
1 | ||||
2 | ||||
1 | ||||
2 | ||||
3 | ||||
1 | ||||
2 | ||||
3 | ||||
4 | ||||
5 | ||||
6 | ||||
1 | ||||
2 | ||||
3 | ||||
4 | ||||
5 | ||||
6 | ||||
1 | ||||
2 | ||||
3 | ||||
4 | ||||
5 | ||||
6 | ||||
7 | ||||
8 | ||||
9 | ||||
10 | ||||
11 | ||||
12 | ||||
13 | ||||
14 | ||||
15 | ||||
1 | ||||
2 | ||||
3 | ||||
4 | ||||
5 | ||||
6 | ||||
7 | ||||
8 | ||||
9 | ||||
10 | ||||
11 | ||||
12 | ||||
13 | ||||
14 | ||||
15 | ||||
16 | ||||
17 | ||||
1 | ||||
2 | ||||
3 | ||||
4 | ||||
5 | ||||
6 | ||||
7 | ||||
8 | ||||
9 | ||||
10 | ||||
11 | ||||
12 | ||||
13 | ||||
14 | ||||
15 | ||||
16 | ||||
17 | ||||
18 | ||||
19 | ||||
20 | ||||
21 | ||||
22 | ||||
23 | ||||
24 | ||||
25 | ||||
26 | ||||
27 | ||||
28 | ||||
29 | ||||
30 | ||||
31 | ||||
32 | ||||
33 | ||||
34 | ||||
35 | ||||
36 | ||||
37 | ||||
38 | ||||
39 | ||||
40 | ||||
1 | ||||
2 | ||||
3 | ||||
4 | ||||
5 | ||||
6 | ||||
7 | ||||
8 | ||||
9 | ||||
10 | ||||
11 | ||||
12 | ||||
13 | ||||
14 | ||||
15 | ||||
16 | ||||
17 | ||||
18 | ||||
19 | ||||
20 | ||||
21 | ||||
22 | ||||
23 | ||||
24 | ||||
25 | ||||
26 | ||||
27 | ||||
28 | ||||
29 | ||||
30 | ||||
31 | ||||
32 | ||||
33 | ||||
34 | ||||
35 | ||||
36 | ||||
37 | ||||
38 | ||||
39 | ||||
40 | ||||
41 | ||||
42 | ||||
43 | ||||
44 | ||||
45 | ||||
1 | ||||
2 | ||||
3 | ||||
4 | ||||
5 | ||||
6 | ||||
7 | ||||
8 | ||||
9 | ||||
10 | ||||
11 | ||||
12 | ||||
13 | ||||
14 | ||||
15 | ||||
16 | ||||
17 | ||||
18 | ||||
19 | ||||
20 | ||||
21 | ||||
22 | ||||
23 | ||||
24 | ||||
25 | ||||
26 | ||||
27 | ||||
28 | ||||
29 | ||||
30 | ||||
31 | ||||
32 | ||||
33 | ||||
34 | ||||
35 | ||||
36 | ||||
37 | ||||
38 | ||||
39 | ||||
40 | ||||
41 | ||||
42 | ||||
43 | ||||
44 | ||||
45 | ||||
46 | ||||
47 | ||||
48 | ||||
49 | ||||
50 | ||||
51 | ||||
52 | ||||
53 | ||||
54 | ||||
55 | ||||
56 | ||||
57 | ||||
58 | ||||
59 | ||||
60 | ||||
61 | ||||
62 | ||||
63 | ||||
64 | ||||
65 | ||||
66 | ||||
67 | ||||
68 | ||||
69 | ||||
70 | ||||
71 | ||||
72 | ||||
73 | T | |||
74 | ||||
75 | ||||
76 | ||||
77 | ||||
78 | ||||
79 | ||||
80 | ||||
81 | ||||
82 | ||||
83 | ||||
84 | ||||
85 | ||||
86 | ||||
87 | ||||
88 | ||||
89 | ||||
1 | ||||
2 | ||||
3 | ||||
4 | ||||
5 | ||||
6 | ||||
7 | ||||
8 | ||||
9 | ||||
10 | ||||
11 | ||||
12 | ||||
13 | ||||
14 | ||||
15 | ||||
16 | ||||
17 | ||||
18 | ||||
19 | ||||
20 | ||||
21 | ||||
22 | ||||
23 | ||||
24 | ||||
25 | ||||
26 | ||||
27 | ||||
28 | ||||
29 | ||||
30 | ||||
31 | ||||
32 | ||||
33 | ||||
34 | ||||
35 | ||||
36 | ||||
37 | ||||
38 | ||||
39 | ||||
40 | ||||
41 | ||||
42 | ||||
43 | ||||
44 | ||||
45 | ||||
46 | ||||
47 | ||||
48 | ||||
49 | ||||
50 | ||||
51 | ||||
52 | ||||
53 | ||||
54 | ||||
55 | ||||
56 | ||||
57 | ||||
58 | ||||
59 | ||||
60 | ||||
61 | ||||
62 | ||||
63 | ||||
64 | ||||
65 | ||||
66 | ||||
67 | ||||
68 | ||||
69 | ||||
70 | ||||
71 | ||||
72 | ||||
73 | ||||
74 | ||||
75 | ||||
76 | ||||
77 | ||||
78 | ||||
79 | ||||
80 | ||||
81 | ||||
82 | ||||
83 | ||||
84 | ||||
85 | ||||
86 | ||||
87 | ||||
88 | ||||
89 | ||||
90 | ||||
91 | ||||
92 | ||||
93 | ||||
94 | ||||
95 | ||||
96 | ||||
97 | ||||
98 | ||||
99 | ||||
100 | ||||
101 | ||||
102 | ||||
103 | ||||
104 | ||||
105 | ||||
106 | ||||
107 | ||||
108 | ||||
109 | ||||
110 | ||||
111 | ||||
112 | ||||
113 | ||||
114 | ||||
115 | ||||
116 | ||||
1 | ||||
2 | ||||
3 | ||||
4 | ||||
5 | ||||
6 | ||||
7 | ||||
8 | ||||
9 | ||||
10 | ||||
11 | ||||
12 | ||||
13 | ||||
14 | ||||
15 | ||||
16 | ||||
17 | ||||
18 | ||||
19 | ||||
20 | ||||
21 | ||||
22 | ||||
23 | ||||
24 | ||||
25 | ||||
26 | ||||
27 | ||||
28 | ||||
29 | ||||
30 | ||||
31 | ||||
32 | ||||
33 | ||||
34 | ||||
35 | ||||
36 | ||||
37 | ||||
38 | ||||
39 | ||||
40 | ||||
41 | ||||
42 | ||||
43 | ||||
44 | ||||
45 | ||||
46 | ||||
47 | ||||
48 | ||||
49 | ||||
50 | ||||
51 | ||||
52 | ||||
53 | ||||