Trapezium-Type Inequalities for Raina’s Fractional Integrals Operator Using Generalized Convex Functions
Abstract
:1. Introduction
2. Preliminaries
3. Results
4. Raina’s Fractional Integral Inequalities for Generalized -Convex Functions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grinalatt, M.; Linnainmaa, J.T. Jensen’s Inequality, parameter uncertainty and multiperiod investment. Rev. Asset Pric. Stud. 2011, 1, 1–3. [Google Scholar] [CrossRef]
- Nicolescu, C.; Peerson, L. Convex Functions and Their Applications. A Contemporary Approach; CMS Books in Mathematics; Springer: New York, NY, USA, 2006. [Google Scholar]
- Pečarić, J.E.; Proschan, F.; Tong, Y.L. Convex functions, partial orderings and statistical applications. Mathematics. In Science and Engineering; Academic Press, Inc.: Boston, MA, USA, 1992. [Google Scholar]
- Ruel, J.J.; Ayres, M.P. Jensen’s inequality predicts effects of environmental variations. Trends Ecol. Evol. 1999, 14, 361–366. [Google Scholar] [CrossRef]
- Hernández Hernández, J.E.; Vivas-Cortez, M.J. Hermite-Hadamard Inequalities type for Raina’s Fractional integral Operator using η-Convex Functions. Revista Matemática Teoría y Aplicaciones (Univ. Nac. Costa Rica) 2019, 26, 1–19. [Google Scholar]
- Liu, W.; Wen, W.; Park, J. Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals. J. Nonlinear Sci. Appl. 2016, 9, 766–777. [Google Scholar] [CrossRef]
- Noor, M.A. Some new classes of non-convex functions. Nonlinear Funct. Analy. Appl. 2006, 11, 165–171. [Google Scholar]
- Vivas-Cortez, M. Féjer type inequalities for (s,m)-convex functions in second sense. Appl. Math. Inf. Sci. 2016, 10, 1689–1696. [Google Scholar] [CrossRef]
- Vivas, M.; Hernández Hernández, J.E.; Merentes, N. New Hermite-Hadamard and Jensen type inequalities for h-convex functions on fractal sets. Rev. Colomb. Matemáticas 2016, 50, 145–164. [Google Scholar] [CrossRef]
- Du, T.; Awan, M.U.; Kashuri, A.; Zhao, S. Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m,h)-preinvexity. Appl. Anal. 2019, 2019, 1–21. [Google Scholar] [CrossRef]
- Hernández Hernández, J.E. Some fractional integral inequalities of Hermite Hadamard and Minkowski type. Selecciones. Matemáticas (Univ. Trujillo Perú) 2019, 6, 41–48. [Google Scholar]
- Jleli, M.; Samet, B. On Hermite-Hadamard type inequalities via fractional integral of a function with respect to another function. J. Nonlinear Sci. Appl. 2016, 9, 1252–1260. [Google Scholar] [CrossRef] [Green Version]
- Aslani, S.M.; Delavar, R.; Vaezpour, S.M. Inequalities of Fejér type related to generalized convex functions with applications. Int. J. Anal. Appl. 2018, 16, 38–49. [Google Scholar]
- Chen, F.; Wu, S. Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions. J. Nonlinear Sci. Appl. 2016, 9, 705–716. [Google Scholar] [CrossRef] [Green Version]
- Delavar, M.R.; De La Sen, M. Some generalizations of Hermite-Hadamard type inequalities. Springerplus 2016, 5, 1–9. [Google Scholar]
- Kashuri, A.; Liko, R. Some new Hermite-Hadamard type inequalities and their applications. Stud. Sci. Math. Hung. 2019, 56, 103–142. [Google Scholar] [CrossRef]
- Omotoyinbo, O.; Mogbademu, A. Some new Hermite-Hadamard integral inequalities for convex functions. Int. J. Sci. Innov. Tech. 2014, 1, 1–12. [Google Scholar]
- Xi, B.Y.; Qi, F. Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means. J. Funct. Spaces Appl. 2012, 2012, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hristov, J. Response functions in linear viscoelastic constitutive equations and related fractional operators. Math. Model. Nat. Phenom. 2019, 14, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Singh, J.; Baleanu, D. Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel. Phys. A Stat. Mech. Appl. 2018, 492, 155–167. [Google Scholar] [CrossRef]
- Owolabi, K.M. Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative. Eur. Phys. J. Plus 2018, 133, 1–15. [Google Scholar] [CrossRef]
- Mihai, M.V. Some Hermite-Hadamard type inequalities via Riemann-Liouville fractional calculus. Tamkang J. Math. 2013, 44, 411–416. [Google Scholar] [CrossRef]
- Mubeen, S.; Habibullah, G.M. k-Fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Özdemir, M.E.; Dragomir, S.S.; Yildiz, C. The Hadamard’s inequality for convex function via fractional integrals. Acta Math. Sci. Ser. B Engl. Ed. 2013, 33, 153–164. [Google Scholar]
- Set, E.; Noor, M.A.; Awan, H.U.; Gözpinar, A. Generalized Hermite-Hadamard type inequalities involving fractional integral operators. J. Inequalities Appl. 2017, 169, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Du, T.; Zhang, Y. k-fractional integral trapezium-like inequalities through (h,m)-convex and (α,m)-convex mappings. J. Inequalities Appl. 2017, 311, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Bracamonte, M.; Giménez, J.; Vivas-Cortez, M. Hermite-Hadamard-Fejér type inequalities for strongly (s, m)-convex functions with modulus c, in second sense. Appl. Math. Inf. Sci. 2016, 10, 2045–2053. [Google Scholar] [CrossRef]
- Viloria, J.M.; Vivas-Cortez, M. Hermite-Hadamard type inequalities for harmonically convex functions on n-coordinates. Appl. Math. Inf. Sci. Lett. 2018, 6, 53–58. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; García, C. Ostrowski Type inequalities for functions whose derivatives are (m,h1,h2)-convex. Appl. Math. Inf. Sci. 2017, 11, 79–86. [Google Scholar] [CrossRef]
- Vivas-Cortez, M. Relative strongly h-convex functions and integral inequalities. Appl. Math. Inf. Sci. Lett. 2016, 4, 39–45. [Google Scholar] [CrossRef]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2005, 21, 191–203. [Google Scholar]
- Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hil: New York, NY, USA, 1955; pp. 1–301. [Google Scholar]
- Lebedev, A. Special Functions and Their Applications; Dover Publications, Inc.: New York, NY, USA, 1972; pp. 1–322. [Google Scholar]
- Agarwal, R.P.; Luo, M.J.; Raina, R.K. On Ostrowski Type Inequalities. Fasc. Math. 2016, 56, 5–27. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yaldiz, H. On weighted Montogomery identities for Riemann-Liouville fractional integrals. Konuralp J. Math. 2013, 1, 48–53. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivas-Cortez, M.; Kashuri, A.; Hernández, J.E.H. Trapezium-Type Inequalities for Raina’s Fractional Integrals Operator Using Generalized Convex Functions. Symmetry 2020, 12, 1034. https://doi.org/10.3390/sym12061034
Vivas-Cortez M, Kashuri A, Hernández JEH. Trapezium-Type Inequalities for Raina’s Fractional Integrals Operator Using Generalized Convex Functions. Symmetry. 2020; 12(6):1034. https://doi.org/10.3390/sym12061034
Chicago/Turabian StyleVivas-Cortez, Miguel, Artion Kashuri, and Jorge E. Hernández Hernández. 2020. "Trapezium-Type Inequalities for Raina’s Fractional Integrals Operator Using Generalized Convex Functions" Symmetry 12, no. 6: 1034. https://doi.org/10.3390/sym12061034